首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sex steroids play a predominant role in the development and differentiation of normal mammary gland as well as in the regulation of hormone-sensitive breast cancer growth. There is evidence suggesting that local intracrine formation of sex steroids from inactive precursors secreted by the adrenals namely, dehydroepiandrosterone (DHEA) and 4-androstenedione (4-dione) play an important role in the regulation of growth and function of peripheral target tissues, including the breast. Moreover, human breast carcinomas are often infiltrated by stromal/immune cells secreting a wide spectra of cytokines. These might in turn regulate the activity of both immune and neoplastic cells. The present study was designed to examine the action of cytokines on 17β-hydroxysteroid dehydrogenase (17β-HSD) and 3β-hydroxysteroid dehydrogenase/isomerase (3β-HSD) activities in human breast cancer cells. The various types of human 17β-HSD (five types) and 3β-HSD (two types), because of their tissue- and cell-specific expression and substrate specificity, provide each cell with necessary mechanisms to control the level of intracellular active androgens and estrogens. We first investigated the effect of exposure to IL-4 and IL-6 on reductive and oxidative 17β-HSD activities in both intact ZR-75-1 and T-47D human breast cancer cells. In ZR-75-1 cells, a 6 d exposure to IL-4 and IL-6 decreased E2-induced cell proliferation, the half maximal inhibitory effect being exerted at 88 and 26 pM, respectively. In parallel, incubation with IL-4 and IL-6 increased oxidative 17β-HSD activity by 4.4- and 1.9-fold, respectively, this potent activity being observed at 50 values of 22.8 and 11.3 pM, respectively. Simultaneously, reductive 17β-HSD activity leading to E2 formation was decreased by 70 and 40% by IL-4 and IL-6, respectively. Moreover, IL-4 and IL-6 exerted the same regulatory effects on 17β-HSD activities when testosterone and 4-dione were used as substrates, thus strongly suggesting the expression of the type 2 17β-HSD ZR-75-1 cells. In contrast, in T-47D cells, IL-4 increased the formation of E2, whereas IL-6 exerts no effect on this parameter. However, we found that T-47D cells failed to convert testosterone efficiently into 4-DIONE, thus suggesting that there is little or no expression of type 2 17β-HSD in this cell line. The present findings demonstrate that the potent regulatory effects of IL-4 and IL-6 on 17β-HSD activities depend on the cell-specific gene expression of various types of 17β-HSD enzymes. We have also studied the effect of cytokines on the regulation of the 3β-HSD expression in both ZR-75-1 and T-47D human breast cancer cells. Under basal culture conditions, there is no 3β-HSD activity detectable in these cells. However, exposure to IL-4 caused a rapid and potent induction of 3β-HSD activity, whereas IL-6 failed to induce 3β-HSD expression. Our data thus demonstrate that cytokines may play a crucial role in sex steroid biosynthesis from inactive adrenal precursors in human breast cancer cells.  相似文献   

2.
The patterns of changes in the immune response when deep cooling with different rates acted at various periods during development of the immune response, were examined in Wistar rats. Cold exposure causes not only a suppression but also stimulation of the immune response to antigen. The suppressive effect of deep cooling when it preceded immune challenge (the antigen injected at a body temperature decreased by 3-4 degrees C) waned and became stimulating with increasing time interval between antigen challenge and cold exposure. The stimulating effect on the immune response was most pronounced when cold exposure occurred in 5 days after the antigen challenge. These changes differed quantitatively also when cooling was either rapid, or slow. Thus the modulating effect of the thermal afferent signal was differently manifested depending in the cooling rate, i.e. the presence or absence of the dynamic activity of the peripheral thermosensitive afferents, and the time elapsed between antigen challenge and cold exposure.  相似文献   

3.
The effects of pharmacological stimulation of skin ion channels TRPA1, TRPM8, TRPV1 on the immune response are presented. These effects are compared with the effects of different types of temperature exposures - skin cooling, deep cooling, and deep heating. This analysis allows us to clear the differences in the influence on the immune response of thermosensitive ion channels localized in the skin; (2) whether the changes in the immune response under temperature exposures are due to these thermosensitive ion channels. Experiments were performed on Wistar rats. For stimulation of TRPM8 ion channel, an application to the skin of 1% menthol was used, for TRPA1 - 0.04% allylisotiocianate, and for TRPV1 - capsaicin in a concentration of 0.001.The antigen binding in the spleen was two-times stimulated by activation of the cold-sensitive ion channel TRPM8 and much weaker by activation of warm-sensitive TRPV1 (by 15%), and another cold-sensitive ion channel TRPA1 (by 40%). Only the stimulation of TRPA1 significantly (by 140%) increased antibody formation in the spleen, while TRPM8 had practically no effect on this process, and activation of TRPV1 significantly (by 60%) inhibited antibody formation. Stimulation of the TRPM8 ion channel significantly (by 60%) reduced the level of IgG in the blood, which is believed to control of infectious diseases.The obtained results show that pharmacological activation of the skin TRPA1, TRPM8, TRPV1 ion channels can differently affect the immune system. At the epicenter of changes there were the antigen binding and antibody formation in the spleen, as well as the level of IgG in the blood. Exactly stimulation of the TRPM8 ion channel determines the changes in the immune response when only the skin is cooling, while at deep body heating, the changes in the immune response are mostly determined by the activation of the skin TRPV1 ion channel.  相似文献   

4.
Equine umbilicus was cannulated in utero and a series of cord plasma samples removed for analysis. After steroid extraction and derivatisation, gas chromatographic-mass spectrometric (GC-MS) analysis demonstrated large differences in steroid content between the plasma samples obtained from the umbilical artery and vein, the blood supplies leading to and from the placental surface, respectively. 3β-Hydroxy-5,7-androstadien-17-one, dehydroepiandrosterone, pregnenolone, 3β-hydroxy-5-pregnan-20-one, 5-pregnene-3β,20β-diol and 5β-pregnane-3β,20β-diol were identified as major constituents in extracts from umbilical arterial plasma samples, mostly as unconjugated steroids. Together with 5-pregnane-3,20-dione, these steroids were identified in extracts from umbilical venous plasma samples but at significantly reduced levels to those determined in arterial plasma samples. Oestradiol-17, dihydroequilin-17 and dihydroequilenin-17 were identified in extracts (mostly sulphate-conjugated) from both umbilical arterial and venous plasma samples, much larger amounts being detected in the plasma sampled from, rather than to, the placental surface. Equilin, equilenin, oestrone, oestradiol-17β, dihydroequilin-17β and dihydroequilenin-17β were not detected in the present studies. Isomers of 5(10)-oestrene-3,17β-diol together with 5(10),7-oestradiene-3,17β-diol and its possible oxidative artifact, 5(10),7,9-oestratriene-3,17β-diol, were tentatively identified only in sulphate-conjugated extracts from umbilical venous plasma samples. No glucuronic acid-conjugated steroids could be detected. The implications of this work in the elucidation of the biosynthetic pathways leading to both the formation of oestrogens and C18 neutral steroids at the placental surface are discussed.  相似文献   

5.
Two Bacillus strains were isolated from the foregut of the water beetle Agabus affinis (Payk.) and tested for their steroid transforming ability. After incubation with androst-4-en-3,17-dione (AD), 13 different transformation products were detected. AD was hydroxylated at C6, C7, C11 and C14, resulting in formation of 6β-, 7-, 11- and 14-hydroxy-AD. One strain also produced small amounts of 6β,14-dihydroxy-AD. Partly, the 6β-hydroxy group was further oxidized to the corresponding 6-oxo steroids. In addition, a specific reduction of the Δ4-double bond was observed, leading to the formation of 5-androstane derivatives. In minor yields the carbonyl functions at C3 and C17 were reduced leading to the formation of 3ξ-OH or 17β-OH steroids. EI mass spectra of the trimethylsilyl and O-methyloxime trimethylsilyl ether derivatives of some transformation products are presented for the first time.  相似文献   

6.
7.
Fourier transform infrared spectroscopy has been used to investigate the conformational changes of glycinin, a major storage protein of soybean seeds, upon film-forming. The results show that the secondary structure of glycinin is mainly composed of a β-sheet (48%) and unordered (49%) structures. The amide I band of glycinin in film-forming conditions, i.e. in alkaline media and in the presence of plasticizing agent, reveals the conversion of 18% of the secondary structure of the protein from the β-sheet (6%) and random coil (12%) to the -helical conformation due to the helicogenic effect of the ethylene glycol used as the plasticizing agent. Conformational changes also occur upon the film-forming process leading to the formation of intermolecular hydrogen-bonded β-sheet structures. Results obtained from other plant families indicate that, whatever the origin and conformation of protein, formation of films leads to the appearance of intermolecular hydrogen-bonded β-sheet structures, suggesting that this type of structure might be essential for the network formation in films. Thus, it is hypothesized that, in the film state, intermolecular hydrogen bonding between segments of β-sheet may act as junction zones in the film network. This study reveals for the first time that there is a close relationship between the conformation of proteins and the mechanical properties of films.  相似文献   

8.
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1) catalyses the interconversion of active corticosterone and inert 11-dehydrocorticosterone. Short-term glucocorticoid excess upregulates 11β-HSD-1 in liver and hippocampus leading to suggestions that 11β-HSD-1 ameliorates the deleterious effects of glucocorticoid excess by its 11β-dehydrogenase activity. However the predominant activity of 11β-HSD-1 in vivo is 11β-reduction, thus generating active glucocorticoid. We have re-examined the time-course of glucocorticoid regulation of 11β-HSD-1 in the liver, hippocampus and kidney of adult male rats in vivo.

Sham operation markedly reduced 11β-HSD-1 mRNA expression in all tissues, and reduced 11β-HSD bioactivity in liver and hippocampus when compared to untouched controls. Adrenalectomy reduced 11β-HSD-1 expression in all tissues in the short-term (7 days), followed by subsequent recovery of enzyme activity by 21 days in liver and hippocampus. Dexamethasone replacement of adrenalectomised rats attenuated the initial decrease in hepatic 11β-HSD-1 activity, but by 21 days dexamethasone reduced activity compared to control levels.

Thus glucocorticoids regulate 11β-HSD-1 in a complex tissue- and temporal-specific manner. This pattern of regulation suggests glucocorticoids repress 11β-HSD-1 at least in the liver, a pattern of regulation more consistent with the evidence that 11β-HSD-1 is an 11β-reductase in vivo. Operational stress per se down-regulates 11β-HSD-1 which has implications for interpretation and design of in vivo studies of 11β-HSD-1.  相似文献   


9.
R M Santos  E Rojas 《FEBS letters》1987,220(2):342-346
The effects of forskolin on electrical coupling among pancreatic β-cells were studied. Two microelectrodes were used to measure membrane potentials simultaneously in pairs of islet β-cells. Intracellular injection of a current pulse (ΔI) elicited a membrane response ΔV1 in the injected cell and also a response ΔV2 in a nearby β-cell confirming the existence of cell-to-cell electrical coupling among islet β-cells. In the presence of glucose (7 mM), application of forskolin evoked a transient depolarization of the membrane and electrical activity suggesting that the drug induced a partial inhibition of the β-cell membrane K+ conductance. Concomitant with this depolarization of the membrane there was a marked decrease in β-cell input resistance (ΔV2/ΔI) suggesting that exposure to forskolin enhanced intercellular coupling. Direct measurements of the coupling ratio ΔV2/ΔV1 provided further support to the idea that forskolin enhances electrical coupling among islet cells. Indeed, application of forskolin reversibly increased the coupling ratio. These results suggest that cAMP might be involved in the modulation of electrical coupling among islet β-cells.  相似文献   

10.
In order to elucidate early Aptian marine paleotemperature evolution across the period of enhanced organic carbon (Corg)-burial [Oceanic Anoxic Event (OAE) 1a], stable isotope analyses were performed on pelagic limestones at Deep Sea Drilling Project Site 463, central Pacific Ocean. The δ18O data exhibit a distinct anomaly by ~ − 2‰ spanning the OAE 1a interval (i.e., a ~ 6 m-thick, phytoplanktonic Corg-rich unit constrained by magneto-, bio- and δ13C stratigraphy). Elucidation of paleotemperature significance of the δ18O shift is made by taking account of recent Sr/Ca evidence at the same section, which revealed that geochemical signals in carbonate-poor lithologies are relatively unaltered against burial diagenesis. By discriminating δ18O values from carbonate-poor samples (CaCO3 contents = 5–30 wt.%), it appears that an abrupt rise in sea-surface temperatures (SSTs) by 8 °C (= − 1.7‰ shift in δ18O) occurred immediately before OAE 1a, whereas a cooling mode likely prevailed during the peak Corg-burial. In terms of its stratigraphic relationship as to the Corg-rich interval and to a pronounced negative δ13C excursion, as well as its timescale, the observed SST rise resembles those associated with the Paleocene–Eocene thermal maximum and, more strikingly, Jurassic Toarcian OAE. This observation is consistent with the hypothesis that these paleoenvironmental events were driven by a common causal mechanism, which was likely initiated by the greenhouse effect via massive release of CH4 or CO2 from the isotopically-light carbon reservoir and terminated by a negative productivity feedback.  相似文献   

11.
Thermally reversible acid-induced gelation of low-methoxy pectin   总被引:1,自引:0,他引:1  
Gelation of low-methoxy pectin (DE 31.1) on cooling under acidic conditions in the absence of Ca2+ has been investigated by rheological measurements under low-amplitude oscillatory shear. The mechanical spectra obtained after 60 min at 5°C showed a progressive increase in solid-like response (increasing G′; decreasing tan δ; increasing frequency-dependence of η*) as the pH was reduced from 4.0 to 1.6, with formation of a critically crosslinked network at pH 3.0 (for a polymer concentration of 3.0 wt%). By extrapolation from X-ray fibre diffraction analysis of pectic acid, it is suggested that crosslinking occurs by association of three-fold helices. At pH values between 3.5 and 2.5 there is no detectable thermal hysteresis between the sol–gel transition on cooling and gel–sol transition on heating, and both are accompanied by a sigmoidal change in optical rotation (attributed to formation and melting of three-fold order). Substantial hysteresis is, however, observed at lower and higher pH, and is attributed to extensive aggregation as electrostatic repulsion is suppressed (below pH 2.5) and slow formation of intermolecular hydrogen bonds by protonated carboxyl groups (above pH 3.5), respectively. The transition enthalpy from DSC heating scans has a maximum value of ΔH≈11 J/g at pH 3.0, but decreases sharply at lower and higher pH, with accompanying loss of a detectable transition in optical rotation. It is suggested that the chain conformation in solution at low pH is predominantly three-fold with, therefore, little conformational change on adoption of the ordered, intermolecular structure, whereas at high pH the solution conformation is predominantly two-fold, with only limited conversion to the three-fold (acid) form on cooling.  相似文献   

12.
Batch and continuous cultures conditions were studied in order to increase γ-linolenic acid production by Mucor fragilis CCMI 142, in response to the presence of ethanol. Continuous cultures were used to add ethanol pulses to steady state pellet cultures. It was demonstrated that pellet size, which allowed homogeneous fungal cultures, can be obtained by means of pH adjustment, thus enabling steady state continuous growth at 2.90±0.05.

The 5 and 2% (v/v) ethanol pulses induced hyphal morphological changes with arthrospore formation. A 1% (v/v) pulse of ethanol did not immediately affect growth, but induced morphological changes, which led to autolysis at the pellet core. A 0.5% (v/v) pulse of ethanol did not affect neither the morphology nor the physiology of the microorganism to any significant extent. The 0.5 and 1% (v/v) ethanol pulses resulted in an increase in the proportion of γ-linolenic acid production up to 11%. Data from batch cultures showed a higher enhancement of ethanol, attaining 30% of γ-linolenic acid.

The increase of γ-linolenic acid content observed in batch and continuous conditions appears to be a response associated with stress induced by the ethanol which seems to be of value as an industrial medium component.  相似文献   


13.
11β-hydroxysteroid dehydrogenase (11β-HSD) is thought to confer aldosterone specificity to mineralocorticoid target cells by protecting the mineralocorticoid receptor (MR) from occupancy by endogenous glucocorticoids. In aldosterone target cells the type 2 11β-HSD is present, which, in contrast to the type 1 11β-HSD, has very high affinity for its substrate, is unidirectional and prefers NAD as cofactor. cDNAs encoding 11β-HSD2 have been recently cloned from different species, and the cell-specific expression of its mRNA and protein were determined. 11β-HSD2 is expressed in every aldosterone target tissue. Northern analysis revealed that the rabbit 11β-HSD2 is expressed at high levels in the renal collecting duct and at much lower levels in the colon. RT-PCR experiments demonstrated that 11β-HSD2 mRNA is present only in aldosterone target cells within the kidney. We determined the subcellular localization of the rabbit 11β-HSD2 using a chimera encoding 11β-HSD2 and the green fluorescent protein (GFP). This construct was stably transfected into CHO and MDCK cells. The expressed 11β-HSD2/GFP protein retained high enzymatic activity, and its characteristics were undistinguishable from those of the native enzyme. The intracellular localization of this protein was determined by fluorescence microscopy. 11β-HSD2-associated fluorescence was observed as a reticular network over the cytoplasm whereas the plasma membrane and the nucleus were negative, suggesting endoplasmic reticulum (ER) localization. Co-staining with markers for ER proteins, the Golgi membrane, mitochondria and nucleus confirmed that 11β-HSD2 is localized exclusively to the ER. To determine what structural motifs are responsible for the ER localization, we generated deletion mutants missing the C-terminal 42 and 118 amino acids, and fused them to GFP. Similarly as with the intact 11β-HSD2, these mutants localized exclusively to the ER. Both C-terminal deletion mutants completely lost dehydrogenase activity, independently whether activity was determined in intact cells or homogenates. These results indicate that 11β-HSD2 has a novel ER retrieval signal which is not localized to the C-terminal region. In addition, the C-terminal 118 amino acids are essential for NAD-dependent 11β-HSD activity.  相似文献   

14.
In experiments on rats it was shown that it is possible to modulate the immune response in a whole organism by activating cold-sensitive TRPM8 ion channel by its agonist menthol. The most pronounced changes in the conditions without external temperature stimulation were related to immune parameters for the spleen cells and immunoglobulin level in blood: the activation of TRPM8 ion channel by menthol enhances antigen binding and inhibits antibody formation in spleen, significantly reduces the level of IgG in blood. Activation of TRPM8 ion channel changes the effect of subsequent temperature exposure—cooling or heating. Preliminary application of menthol eliminates the inhibitory effect of deep cooling on immune response. Stimulation of the antigen binding in spleen at deep heating is inversed to suppression in case of heating on the background of TRPM8 activation by menthol. On the contrary, suppression of antibody formation caused by deep heating is eliminated if heating is carried out on the background of TRPM8 stimulation.  相似文献   

15.
Octahedral tetraammineosmium(II) species are generated from their OsIII precursors containing an amine ligand cis to a labile alcohol or triflate. These compounds undergo reversible β-hydride eliminations resulting in the formation of cis-η2-iminium hydride complexes. Judging from NMR data, the η2-iminium group in these products lies parallel to the osmium-hydride bond with the iminium carbon eclipsing the hydride. Attempts to form η2-arene complexes of an OsII ammine system bearing a stereogenic carbon are also described.  相似文献   

16.
Human estrogenic 17β-hydroxysteroid dehydrogenase (17β-HSD1, EC1.1.1.62) is an important enzyme that catalyses the last step of active estrogen formation. 17β-HSD1 plays a key role in the proliferation of breast cancer cells. The three-dimensional structures of this enzyme and of the enzyme-estradiol complex have been solved (Zhu et al., 1993, J. Mol. Biol. 234:242; Ghosh et al., 1995, Structure 3:503; Azzi et al., 1996, Nature Struct. Biol. 3:665). The determination of the non-reactive ternary complex structure, which could mimic the transition state, constitutes a further critical step toward the rational design of inhibitors for this enzyme (Ghosh et al. 1995, Structure 3:503; Penning, 1996, Endocrine-Related Cancer, 3:41).

To further study the transition state, two non-reactive ternary complexes, 17β-HSD1–EM519-NADP+ and 17β-HSD1–EM553-NADP+ were crystallized using combined methods of soaking and co-crystallization. Although they belong to the same C2 space group, they have different unit cells, with a=155.59 Å, b=42.82 Å, c=121.15 Å, β=128.5° for 17β-HSD1–EM519-NADP+, and a=124.01 Å, b=45.16 Å, c=61.40 Å, β=99.2° for 17β-HSD1–EM553-NADP+, respectively. Our preliminary results revealed that the inhibitors interact differently with the enzyme than do the natural substrates.  相似文献   


17.
18.
The objective of this investigation was to determine the effect of steroid hormones on the synthesis of progesterone in a stable porcine granulosa cell line, JC-410. We also examined the effect of steroid hormones on expression of the genes encoding the steroidogenic enzymes, cytochrome P450-cholesterol side chain cleavage (P450scc) and 3β-hydroxy-5-ene steroid dehydrogenase (3β-HSD). We observed that 48 h exposure of the JC-410 cells to estradiol-17β (estradiol), androstenedione, 5-dihydrotestosterone, levonorgestrel, and 5-cholesten-3β, 25-diol (25-hydroxycholesterol) resulted in stimulation of progesterone synthesis. 25-Hydroxycholesterol augmented progesterone synthesis stimulated by estradiol, 5-dihydrotestosterone, levonorgestrel and 8-bromoadenosine 3′:5′-cyclic monophosphate (8-Br-cAMP). This increase in progesterone synthesis was additive with estradiol, 5-dihydrotestosterone and levonorgestrel, and synergistic with 8-Br-cAMP. Cholera toxin, progesterone, levonorgestrel and androstenedione increased P450scc mRNA levels, whereas estradiol had no effect. Cholera toxin, progesterone and levonorgestrel increased 3β-HSD mRNA levels, but estradiol and androstenedione had no effect. The results were interpreted to mean that estrogens, androgens and progestins regulate progesterone synthesis in the JC-410 cells. The effect of androgens appears to be mediated by stimulation of P450scc gene expression while progestins stimulate both P450scc and 3β-HSD gene expression. Our results support the concept that progesterone is an autocrine regulator of its own synthesis in granulosa cells.  相似文献   

19.
Guignardia citricarpa is a phytopathogenic fungus and the causal agent of citrus black spot. Incubation in a semi-defined media resulted in formation of exopolysaccharides [EPS(s)]. A medium containing glucose gave rise to a (1→6)-linked β-glucan (200 kD), pustulan, which was characterized by NMR and methylation analysis. A sucrose-containing medium provided a homogalactan (376 kD) and methylation analysis showed nonreducing end- (20%), 6-O- (53%) and 5,6-di-O-substituted Galf units (27%). An HMQC spectrum of the homogalactan showed C-1/H-1 signals at δ 108.2/4.820, 108.3/4.820 and 107.1/5.079, corresponding to three types of β- -Galf units. A DEPT analysis showed inverted signals (CH2) at δ 67.8 and 67.2, corresponding to 6-O-substituted β- -Galf units, whereas a C-5 signal at δ 77.0 suggests 5-O-substitution, confirming a novel structure for a β-galactofuranan.  相似文献   

20.
Changes in the rat antigen-induced immune activity were shown to depend on cooling depth: slight cooling activated the immune response whereas deep cooling inhibited it. Involvement of the skin cold receptors' dynamic activity in responses to rapid cooling attenuated the effect of cold exposure on the immune response as well as the corticosterone elevation in plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号