首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenosine-enhanced ischemic preconditioning (APC) extends the cardioprotection of ischemic preconditioning (IPC) by both significantly decreasing myocardial infarct size and significantly enhancing postischemic functional recovery. In this study, the role of adenosine receptors during ischemia-reperfusion was determined. Rabbit hearts (n = 92) were used for Langendorff perfusion. Control hearts were perfused for 180 min, global ischemia hearts received 30-min ischemia and 120-min reperfusion, and IPC hearts received 5-min ischemia and 5-min reperfusion before ischemia. APC hearts received a bolus injection of adenosine coincident with IPC. Adenosine receptor (A(1), A(2), and A(3)) antagonists were used with APC before ischemia and/or during reperfusion. GR-69019X (A(1)/A(3)) and MRS-1191/MRS-1220 (A(3)) significantly increased infarct size in APC hearts when administered before ischemia and significantly decreased functional recovery when administered during both ischemia and reperfusion (P < 0.05 vs. APC). DPCPX (A(1)) administered either before ischemia and/or during reperfusion had no effect on APC cardioprotection. APC-enhanced infarct size reduction is modulated by adenosine receptors primarily during ischemia, whereas APC-enhanced postischemic functional recovery is modulated by adenosine receptors during both ischemia and reperfusion.  相似文献   

2.
3.
4.
The possible relationships between intracellular Na(+) (Na(i)(+)), bioenergetic status and intracellular pH (pH(i)) in the mechanism for ischemic preconditioning were studied using (23)Na and (31)P magnetic resonance spectroscopy in isolated Langendorff perfused rat heart. The ischemic preconditioning (three 5-min ischemic episodes followed by two 5-min and one 10-min period of reperfusion) prior to prolonged ischemia (20 min stop-flow) resulted in a decrease in ischemic acidosis and faster and complete recovery of cardiac function (ventricular developed pressure and heart rate) after 30 min of reperfusion. The response of Na(i) during ischemia in the preconditioned hearts was characterized by an increase in Na(i)(+) at the end of preconditioning and an accelerated decrease during the first few minutes of reperfusion. During post-ischemic reperfusion, bioenergetic parameters (PCr/P(i) and betaATP/P(i) ratios) were partly recovered without any significant difference between control and preconditioned hearts. The reduced acidosis during prolonged ischemia and the accelerated decrease in Na(i)(+) during reperfusion in the preconditioned hearts suggest activation of Na(+)/H(+) exchanger and other ion transport systems during preconditioning, which may protect the heart from intracellular acidosis during prolonged ischemia, and result in better recovery of mechanical function (LVDP and heart rate) during post-ischemic reperfusion.  相似文献   

5.
Ischemic preconditioning (IP) reduces infarct size in young animals; however, its impact on aging is underinvestigated. The effect of variations in IP stimuli was studied in young, middle-aged, and aged rat hearts. Isolated hearts underwent 35 min of regional ischemia and 120 min of reperfusion. Hearts with IP were subjected to either one ischemia-reperfusion cycle (5 min of ischemia and 5 min of reperfusion per cycle) or three successive cycles before 35 min of regional ischemia. Additional studies investigated the effects of pharmacological preconditioning in aged hearts using the adenosine A(1) receptor agonist 2-chloro-N(6)-cyclopentyladenosine, the protein kinase C analog 1,2-dioctanoyl-sn-glycerol, and the mitochondrial ATP-sensitive potassium (K(ATP))-channel opener diazoxide. Infarct sizes indicated that the aged rat heart could not be preconditioned via ischemic or pharmacological means. The middle-aged rat heart had a blunted IP response compared with the young adult (only an increased IP stimulus caused a significant reduction in infarct size). These results suggest that there are defects within the IP signaling cascade of the aged heart. Clinical relevance is important if we are to use any IP-like mimetics to the benefit of an aging population.  相似文献   

6.
All four adenosine receptor subtypes have been shown to play a role in cardioprotection, and there is evidence that all four subtypes may be expressed in cardiomyocytes. There is also increasing evidence that optimal adenosine cardioprotection requires the activation of more than one receptor subtype. The purpose of this study was to determine whether adenosine A(2A) and/or A(2B) receptors modulate adenosine A(1) receptor-mediated cardioprotection. Isolated perfused hearts of wild-type (WT), A(2A) knockout (KO), and A(2B)KO mice, perfused at constant pressure and constant heart rate, underwent 30 min of global ischemia and 60 min of reperfusion. The adenosine A(1) receptor agonist N(6)-cyclohexyladenosine (CHA; 200 nM) was administrated 10 min before ischemia and for the first 10 min of reperfusion. Treatment with CHA significantly improved postischemic left ventricular developed pressure (74 ± 4% vs. 44 ± 4% of preischemic left ventricular developed pressure at 60 min of reperfusion) and reduced infarct size (30 ± 2% with CHA vs. 52 ± 5% in control) in WT hearts, effects that were blocked by the A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine (100 nM). Treatments with the A(2A) receptor agonist CGS-21680 (200 nM) and the A(2B) agonist BAY 60-6583 (200 nM) did not exert any beneficial effects. Deletion of adenosine A(2A) or A(2B) receptor subtypes did not alter ischemia-reperfusion injury, but CHA failed to exert a cardioprotective effect in hearts of mice from either KO group. These findings indicate that both adenosine A(2A) and A(2B) receptors are required for adenosine A(1) receptor-mediated cardioprotection, implicating a role for interactions among receptor subtypes.  相似文献   

7.
Ischemic preconditioning (IPC) is thought to protect by activating survival kinases during reperfusion. We tested whether binding of adenosine receptors is also required during reperfusion and, if so, how long these receptors must be populated. Isolated rabbit hearts were subjected to 30 min of regional ischemia and 2 h of reperfusion. IPC reduced infarct size from 32.1 +/- 4.6% of the risk zone in control hearts to 7.3 +/- 3.6%. IPC protection was blocked by a 20-min pulse of the nonselective adenosine receptor blocker 8-(p-sulfophenyl)-theophylline when started either 5 min before or 10 min after the onset of reperfusion but not when started after 30 min of reperfusion. Protection was also blocked by either 8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1-selective receptor antagonist, or MRS1754, an A2B-selective antagonist, but not by 8-(3-chlorostyryl)caffeine, an A2A-selective antagonist. Blockade of phosphatidylinositol 3-OH kinase (PI3K) with a 20-min pulse of wortmannin also aborted protection when started either 5 min before or 10 or 30 min after the onset of reperfusion but failed when started after 60 min of reflow. U-0126, an antagonist of MEK1/2 and therefore of ERK1/2, blocked protection when started 5 min before reperfusion but not when started after only 10 min of reperfusion. These studies reveal that A1 and/or A2B receptors initiate the protective signal transduction cascade during reperfusion. Although PI3K activity must continue long into the reperfusion phase, adenosine receptor occupancy is no longer needed by 30 min of reperfusion, and ERK activity is only required in the first few minutes of reperfusion.  相似文献   

8.
Connexin 43 (Cx43) is localized at left ventricular (LV) gap junctions and in cardiomyocyte mitochondria. A genetically induced reduction of Cx43 as well as blockade of mitochondrial Cx43 import abolishes the infarct size (IS) reduction by ischemic preconditioning (IP). With progressing age, Cx43 content in ventricular and atrial tissue homogenates is reduced. We now investigated whether or not 1) the mitochondrial Cx43 content is reduced in aged mice hearts and 2) IS reduction by IP is lost in aged mice hearts in vivo. Confirming previous results, sarcolemmal Cx43 content was reduced in aged (>13 mo) compared with young (<3 mo) C57Bl/6 mice hearts, whereas the expression levels of protein kinase C epsilon and endothelial nitric oxide synthase remained unchanged. Also in mitochondria isolated from aged mice LV myocardium, Western blot analysis indicated a 40% decrease in Cx43 content compared with mitochondria isolated from young mice hearts. In young mice hearts, IP by one cycle of 10 min ischemia and 10 min reperfusion reduced IS (% of area at risk) following 30 min regional ischemia and 120 min reperfusion from 67.7 +/- 3.3 (n = 17) to 34.2 +/- 6.6 (n = 5, P < 0.05). In contrast, IP's cardioprotection was lost in aged mice hearts, since IS in nonpreconditioned (57.5 +/- 4.0, n = 10) and preconditioned hearts (65.4 +/- 6.3, n = 8, P = not significant) was not different. In conclusion, mitochondrial Cx43 content is decreased in aged mouse hearts. The reduced levels of Cx43 may contribute to the age-related loss of cardioprotection by IP.  相似文献   

9.
10.
Although the causal relationship between insulin resistance (IR) and hypertension is not fully resolved, the importance of IR in cardiovascular dysfunction is recognized. As IR may follow excess sucrose or fructose diet, the aim of this study was to test whether dietary starch substitution with sucrose results in myocardial dysfunction in energy substrate utilization and contractility during normoxic and post-ischemic conditions. Forty-eight male Wistar rats were randomly allocated to three diets, differing only in their starch to sucrose (S) ratio (13, 2 and 0 for the Low S, Middle S and High S groups, respectively), for 3 weeks. Developed pressure and rate × pressure product (RPP) were determined in Langendorff mode-perfused hearts. After 30 min stabilization, hearts were subjected to 25 min of total normothermic global ischemia, followed by 45-min reperfusion. Oxygen consumption, β-oxidation rate (using 1-13C hexanoate and Isotopic Ratio Mass Spectrometry of CO2 produced in the coronary effluent) and flux of non-oxidative glycolysis were also evaluated. Although fasting plasma glucose levels were not affected by increased dietary sucrose, high sucrose intake resulted in increased plasma insulin levels, without significant rise in plasma triglyceride and free fatty acid concentrations. Sucrose-rich diet reduced pre-ischemic baseline measures of heart rate, RPP and non-oxidative glycolysis. During reperfusion, post-ischemic recovery of RPP was impaired in the Middle S and High S groups, as compared to Low S, mainly due to delayed recovery of developed pressure, which by 45 min of reperfusion eventually resumed levels matching Low S. At the start of reperfusion, delayed post-ischemic recovery of contractile function was accompanied by: (i) reduced lactate production; (ii) decreased lactate to pyruvate ratio; (iii)␣increased β-oxidation; and (iv) depressed metabolic efficiency. In conclusion, sucrose rich-diet increased plasma insulin levels, in intact rat, and increased cardiac β-oxidation and coronary flow-rate, but reduced glycolytic flux and contractility during normoxic baseline function of isolated perfused hearts. Sucrose rich-diet impaired early post-ischemic recovery of isolated heart cardiac mechanical function and further augmented cardiac β-oxidation but reduced glycolytic and lactate flux.  相似文献   

11.
The Chromogranin A (CgA)-derived anti-hypertensive peptide catestatin (CST) antagonizes catecholamine secretion, and is a negative myocardial inotrope acting via a nitric oxide-dependent mechanism. It is not known whether CST contributes to ischemia/reperfusion injury or is a component of a cardioprotective response to limit injury. Here, we tested whether CST by virtue of its negative inotropic activity improves post-ischemic cardiac function and cardiomyocyte survival. Three groups of isolated perfused hearts from adult Wistar rats underwent 30-min ischemia and 120-min reperfusion (I/R, Group 1), or were post-conditioned by brief ischemic episodes (PostC, 5-cycles of 10-s I/R at the beginning of 120-min reperfusion, Group 2), or with exogenous CST (75 nM for 20 min, CST-Post, Group-3) at the onset of reperfusion. Perfusion pressure and left ventricular pressure (LVP) were monitored. Infarct size was evaluated with nitroblue-tetrazolium staining. The CST (5 nM) effects were also tested in simulated ischemia/reperfusion experiments on cardiomyocytes isolated from young-adult rats, evaluating cell survival with propidium iodide labeling. Infarct size was 61 ± 6% of risk area in hearts subjected to I/R only. PostC reduced infarct size to 34 ± 5%. Infarct size in CST-Post was 36 ± 3% of risk area (P < 0.05 respect to I/R). CST-Post reduced post-ischemic rise of diastolic LVP, an index of contracture, and significantly improved post-ischemic recovery of developed LVP. In isolated cardiomyocytes, CST increased the cell viability rate by about 65% after simulated ischemia/reperfusion. These results suggest a novel cardioprotective role for CST, which appears mainly due to a direct reduction of post-ischemic myocardial damages and dysfunction, rather than to an involvement of adrenergic terminals and/or endothelium.  相似文献   

12.
Recent studies have demonstrated that increased expression of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 2a improves myocardial contractility and Ca2+ handling at baseline and in disease conditions, including myocardial ischemia-reperfusion (I/R). Conversely, it has also been reported that pharmacological inhibition of SERCA might improve postischemic function in stunned hearts or in isolated myocardium following I/R. The goal of this study was to test how decreases in SERCA pump level/activity affect cardiac function following I/R. To address this question, we used a heterozygous SERCA2a knockout (SERCA2a+/-) mouse model with decreased SERCA pump levels and studied the effect of myocardial stunning (20-min ischemia followed by reperfusion) and infarction (30-min ischemia followed by reperfusion) following 60-min reperfusion. Our results demonstrate that postischemic myocardial relaxation was significantly impaired in SERCA2a+/- hearts with both stunning and infarction protocols. Interestingly, postischemic recovery of contractile function was comparable in SERCA2a+/- and wild-type hearts subjected to stunning. In contrast, following 30-min ischemia, postischemic contractile function was reduced in SERCA2a+/- hearts with significantly larger infarction. Rhod-2 spectrofluorometry revealed significantly higher diastolic intracellular Ca2+ in SERCA2a+/- hearts compared with wild-type hearts. Both at 30-min ischemia and 2-min reperfusion, intracellular Ca2+ levels were significantly higher in SERCA2a+/- hearts. Electron paramagnetic resonance spin trapping showed a similar extent of postischemic free-radical generation in both strains. These data provide direct evidence that functional SERCA2a level, independent of oxidative stress, is crucial for postischemic myocardial function and salvage during I/R.  相似文献   

13.
Physiological parameters, rates of mitochondrial respiration, high energy phosphate levels and creatine phosphokinase (CPK) activity were investigated in the hearts from control and alloxan-induced diabetic rabbits before and after 40-min total ischemia and reperfusion. Diabetic hearts demonstrated significant decreases in the rates of contraction (+dP/dt) and relaxation (-dP/dt), heart rates and cardiac work compared to control hearts. Determination of mitochondrial respiration rates in saponin-skinned fibers showed a low mitochondrial respiratory function in diabetic hearts. It was found that the ATP and ADP levels and the total and mitochondrial isoenzyme activities of CPK in diabetic hearts were lowered in comparison with control. A post-ischemic recovery of cardiac performance for diabetic hearts was better than in controls. After reperfusion diabetic hearts had increased ATP levels. The data obtained demonstrate some abnormalities of both cardiac performance and energy metabolism in the hearts of diabetic animals and a decreased sensitivity of the latter to ischemic injury.  相似文献   

14.
A(3) adenosine receptors (A(3)ARs) have been implicated in regulating mast cell function and in cardioprotection during ischemia-reperfusion injury. The physiological role of A(3)ARs is unclear due to the lack of widely available selective antagonists. Therefore, we examined mice with targeted gene deletion of the A(3)AR together with pharmacological studies to determine the role of A(3)ARs in myocardial ischemia-reperfusion injury. We evaluated the functional response to 15-min global ischemia and 30-min reperfusion in isovolumic Langendorff hearts from A(3)AR(-/-) and wild-type (A(3)AR(+/+)) mice. Loss of contractile function during ischemia was unchanged, but recovery of developed pressure in hearts after reperfusion was improved in A(3)AR(-/-) compared with wild-type hearts (80 +/- 3 vs. 51 +/- 3% at 30 min). Tissue viability assessed by efflux of lactate dehydrogenase was also improved in A(3)AR(-/-) hearts (4.5 +/- 1 vs. 7.5 +/- 1 U/g). The adenosine receptor antagonist BW-A1433 (50 microM) decreased functional recovery following ischemia in A(3)AR(-/-) but not in wild-type hearts. We also examined myocardial infarct size using an intact model with 30-min left anterior descending coronary artery occlusion and 24-h reperfusion. Infarct size was reduced by over 60% in A(3)AR(-/-) hearts. In summary, targeted deletion of the A(3)AR improved functional recovery and tissue viability during reperfusion following ischemia. These data suggest that activation of A(3)ARs contributes to myocardial injury in this setting in the rodent. Since A(3)ARs are thought to be present on resident mast cells in the rodent myocardium, we speculate that A(3)ARs may have proinflammatory actions that mediate the deleterious effects of A(3)AR activation during ischemia-reperfusion injury.  相似文献   

15.
PKG activator 8-(4-chlorophenylthio)-guanosine 3',5'-cyclic monophosphate (CPT) at reperfusion protects ischemic hearts, but the mechanism is unknown. We recently proposed that in preconditioned hearts PKC lowers the threshold for adenosine to initiate signaling from low-affinity A2b receptors during early reperfusion thus allowing endogenous adenosine to activate survival kinases phosphatidylinositol 3-kinase (PI3K) and ERK. We tested whether CPT might also sensitize A2b receptors to adenosine. CPT (10 microM) during the first minutes of reperfusion markedly reduced infarction in isolated rabbit hearts undergoing 30-min regional ischemia/2-h reperfusion, and salvage was blocked by MRS 1754, an A2b-selective antagonist. Coadministration of wortmannin (PI3K inhibitor) or PD-98059 (MEK1/2 and therefore ERK1/2 inhibitor) also blocked protection. In nonischemic hearts, 10-min infusion of CPT did not change phosphorylation of Akt or ERK1/2. Neither did a subthreshold dose (2.5 nM) of the nonselective but A2b-potent receptor agonist 5'-(N-ethylcarboxamido)adenosine (NECA). However, when 2.5 nM NECA was combined with 10 microM CPT, both phospho-Akt and phospho-ERK1/2 significantly increased, indicating CPT had lowered the threshold for A2b-dependent signaling. The PKC antagonist chelerythrine blocked this phosphorylation induced by CPT + NECA. Chelerythrine also blocked the anti-infarct effect of CPT as did nonselective (glibenclamide) and mitochondrial-selective (5-hydroxydecanoate) K(ATP) channel blockers. A free radical scavenger, N-(2-mercaptopropionyl)glycine, also blocked CPT protection. We propose CPT targets PKG, which activates PKC through mitochondrial K(ATP) channel (mitoKATP)-dependent redox signaling, a sequence mimicking that already documented in preconditioning. Activated PKC then augments sensitivity of normally low-affinity cardiac adenosine A2b receptors so endogenous adenosine can protect by activating Akt and ERK.  相似文献   

16.
Gao S  Oh YB  Park BM  Park WH  Kim SH 《Peptides》2012,36(2):199-205
Urotensin II (UII) is a vasoactive peptide which is bound to a G protein-coupled receptor. UII and its receptor are upregulated in ischemic and chronic hypoxic myocardium, but the effect of UII on ischemic reperfusion (I/R) injury is still controversial. The aim of the present study was to investigate whether UII protects heart function against I/R injury. Global ischemia was performed using isolated perfused Langendorff hearts of Sprague-Dawley rats. Hearts were perfused with Krebs-Henseleit buffer for 20min pre-ischemic period followed by a 20min global ischemia and 50min reperfusion. Pretreatment with UII (10nM) for 10min increased recovery percentage of the post-ischemic left ventricular developed pressure and ±dp/dt, and decreased post-ischemic left ventricular end-diastolic pressure as compared with I/R group. UII decreased infarct size and an increased lactate dehydrogenase level during reperfusion. Cardioprotective effects of UII were attenuated by pretreatment with UII receptor antagonist. The hydrogen peroxide activity was increased in UII-treated heart before ischemia. The Mn-SOD, catalase, heme oxygenase-1 and Bcl-2 levels were increased, and the Bax and caspase-9 levels were decreased in UII-treated hearts. These results suggest that UII has cardioprotective effects against I/R injury partly through activating antioxidant enzymes and reactive oxygen species.  相似文献   

17.
There is accumulating evidence showing that ischemic preconditioning (PC) may lose its cardioprotective effect in the diseased states. The present study investigated whether PC can be effective in hypothyroidism, a clinical condition which is common and often accompanies cardiac diseases such as heart failure and myocardial infarction. Hypothyroidism was induced in rats by 3-week administration of 6n-propyl-2-thiouracil in water (0.05 %). Normal and hypothyroid hearts (HYPO) were perfused in Langendorff mode and subjected to 20 min of zero-flow global ischemia and 45 min of reperfusion. A preconditioning protocol (PC) was also applied prior to ischemia. HYPO hearts had significantly improved post-ischemic recovery of left ventricular developed pressure, end-diastolic pressure and reduced lactate dehydrogenase release. Furthermore, phospho-JNK and p38 MAPK levels after ischemia and reperfusion were 4.0 and 3.0 fold lower in HYPO as compared to normal hearts (P<0.05). A different response to PC was observed in normal than in HYPO hearts. PC improved the post-ischemic recovery of function and reduced the extent of injury in normal hearts but had no additional effect on the hypothyroid hearts. This response, in the preconditioned normal hearts, resulted in 2.5 and 1.8 fold smaller expression of the phospho-JNK and phospho-p38 MAPK levels at the end of reperfusion, as compared to non-PC hearts (P<0.05), while in HYPO hearts, no additional reduction in the phosphorylation of these kinases was observed after PC. Hypothyroid hearts appear to be tolerant to ischemia-reperfusion injury. This response may be, at least in part, due to the down-regulation of ischemia-reperfusion induced activation of JNKs and p38 MAPK kinases. PC is not associated with further reduction in the activation of these kinases in the hypothyroid hearts and fails to confer added protection in those hearts.  相似文献   

18.
The relative roles of mitochondrial (mito) ATP-sensitive K(+) (mitoK(ATP)) channels, protein kinase C (PKC), and adenosine kinase (AK) in adenosine-mediated protection were assessed in Langendorff-perfused mouse hearts subjected to 20-min ischemia and 45-min reperfusion. Control hearts recovered 72 +/- 3 mmHg of ventricular pressure (50% preischemia) and released 23 +/- 2 IU/g lactate dehydrogenase (LDH). Adenosine (50 microM) during ischemia-reperfusion improved recovery (149 +/- 8 mmHg) and reduced LDH efflux (5 +/- 1 IU/g). Treatment during ischemia alone was less effective. Treatment with 50 microM diazoxide (mitoK(ATP) opener) during ischemia and reperfusion enhanced recovery and was equally effective during ischemia alone. A(3) agonism [100 nM 2-chloro-N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide], A(1) agonism (N(6)-cyclohexyladenosine), and AK inhibition (10 microM iodotubercidin) all reduced necrosis to the same extent as adenosine, but less effectively reduced contractile dysfunction. These responses were abolished by 100 microM 5-hydroxydecanoate (5-HD, mitoK(ATP) channel blocker) or 3 microM chelerythrine (PKC inhibitor). However, the protective effects of adenosine during ischemia-reperfusion were resistant to 5-HD and chelerythrine and only abolished when inhibitors were coinfused with iodotubercidin. Data indicate adenosine-mediated protection via A(1)/A(3) adenosine receptors is mitoK(ATP) channel and PKC dependent, with evidence for a downstream location of PKC. Adenosine provides additional and substantial protection via phosphorylation to 5'-AMP, primarily during reperfusion.  相似文献   

19.
This study examined the impact of age on contractile function, Ca(2+) homeostasis, and cell viability in isolated myocytes exposed to simulated ischemia and reperfusion. Ventricular myocytes were isolated from anesthetized young adult (3 mo) and aged (24 mo) male Fischer 344 rats. Cells were field-stimulated at 4 Hz (37 degrees C), exposed to simulated ischemia, and reperfused with Tyrode solution. Cell shortening and intracellular Ca(2+) were measured simultaneously with an edge detector and fura-2. Cell viability was assessed by Trypan blue exclusion. Ischemia (20-45 min) depressed amplitudes of contraction equally in isolated myocytes from young adult and aged animals. The degree of postischemic contractile depression (stunning) was comparable in both groups. Ca(2+) transient amplitudes were depressed in early reperfusion in young adult and aged cells and then recovered to preischemic levels in both groups. Cell viability also declined equally in reperfusion in both groups. In short, some cellular responses to simulated ischemia and reperfusion were similar in both groups. Even so, aged myocytes exhibited a much greater and more prolonged accumulation of diastolic Ca(2+) in ischemia and in early reperfusion compared with myocytes from younger animals. In addition, the degree of mechanical alternans in ischemia increased significantly with age. The observation that there is an age-related increase in accumulation of diastolic Ca(2+) in ischemia and early reperfusion may account for the increased sensitivity to ischemia and reperfusion injury in the aging heart. The occurrence of mechanical alternans in ischemia may contribute to contractile dysfunction in ischemia in the aging heart.  相似文献   

20.
A number of cardioplegic solutions have been described for the reduction of cellular damage during ischemic cardiac arrest. Using an isolated working rat heart model, we have attempted to precise some of the factors affecting the post-ischemic recovery of myocardial tissue after a 30-min period of total ischemia at 37 degrees C. The results indicate that procaine (1 mM) is able to afford some protective against normothermic ischemia while this protective effect remains consistently lower than that of the St. Thomas' Hospital solution (procaine + high K+ + high Mg2+; JYNGE et al., 1977). On the other hand, hearts from rats of the Wistar strain consistently exhibit a significantly better degree of recovery than do hearts from rats of the Shermann strain. When hearts were perfused at different levels of preload (1 or 2 kPa) and afterload (8 or 10 kPa), post-ischemic recovery was better in hearts with lower levels of cardiac work. Glucose, insulin and DL-propranolol which have been shown to exert a protective effect in isolated rat hearts with regional ischemia failed to protect the heart in the present experimental conditions. No clear correlation does exist between the post-ischemic recovery and the enzymatic assessment of myocardial cell damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号