首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cho Y  McQuade T  Zhang H  Zhang J  Chan FK 《PloS one》2011,6(8):e23209

Background

Programmed necrosis/necroptosis is an emerging form of cell death that plays important roles in mammalian development and the immune system. The pro-necrotic kinases in the receptor interacting protein (RIP) family are crucial mediators of programmed necrosis. Recent advances in necrosis research have been greatly aided by the identification of chemical inhibitors that block programmed necrosis. Necrostatin-1 (Nec-1) and its derivatives were previously shown to target the pro-necrotic kinase RIP1/RIPK1. The protective effect conferred by Nec-1 and its derivatives in many experimental model systems was often attributed to the inhibition of RIP1 function.

Methodology/Principal Findings

We compared the effect of Nec-1 and siRNA-mediated silencing of RIP1 in the murine fibrosarcoma cell line L929. Treatment of L929 cells with the pan-caspase inhibitor zVAD-fmk or exogenous TNF induces necrosis. Strikingly, we found that siRNA-mediated silencing of RIP1 inhibited zVAD-fmk induced necrosis, but not TNF-induced necrosis. TNF-induced cell death in RIP1 knocked down L929 cells was inhibited by Nec-1, but not the caspase inhibitor zVAD-fmk. We found that PKA-C§ expression, but not Jnk or Erk activation, was moderately inhibited by Nec-1. Moreover, we found that Nec-1 inhibits proximal T cell receptor signaling independent of RIP1, leading to inhibition of T cell proliferation.

Conclusions/Significance

Our results reveal that besides RIP1, Nec-1 also targets other factors crucial for necrosis induction in L929 cells. In addition, high doses of Nec-1 inhibit other signal transduction pathways such as that for T cell receptor activation. These results highlight the importance to independently validate results obtained using Nec-1 with other approaches such as siRNA-mediated gene silencing. We propose that some of the previous published results obtained using Nec-1 should be re-evaluated in light of our findings.  相似文献   

2.
While a number of studies have documented the neurotropism of Japanese encephalitis virus (JEV), little is known regarding the molecular mechanism of neuronal death following viral infection. The tumor necrosis factor receptor (TNFR)-associated death domain (TRADD) has been suggested to be the crucial signal adaptor that mediates all intracellular responses from TNFR-1. Using mouse (Neuro2a) and human (SK-N-SH) neuroblastoma cell lines, we have shown that the altered expression of TNFR-1 and TRADD following JEV infection regulates the downstream apoptotic cascades. Activation of TRADD led to mitochondria-mediated neuronal apoptosis. As TRADD-knockout animals or deficient cell lines are unavailable, it has been difficult to definitively address the physiological role of TRADD in diseases pathology following JEV infection. We circumvented this problem by silencing TRADD expression with small-interfering RNA (siRNA) and have found that TRADD is required for TNFR-1-initiated neuronal apoptosis following in vitro infection with JEV. Interestingly, siRNA against TRADD also decreased the viral load in Neuro2a cells. Furthermore, siRNA against TRADD increased the survival of JEV-infected mice by altering the expression of pro apoptotic versus antiapoptotic molecules. These studies show that the engagement of TNFR-1 and TRADD following JEV infection plays a crucial role in neuronal apoptosis.  相似文献   

3.
4.
The cytokine tumor necrosis factor alpha (TNF-alpha) stimulates the NF-kappaB, SAPK/JNK, and p38 mitogen-activated protein (MAP) kinase pathways by recruiting RIP1 and TRAF2 proteins to the tumor necrosis factor receptor 1 (TNFR1). Genetic studies have revealed that RIP1 links the TNFR1 to the IkappaB kinase (IKK) complex, whereas TRAF2 couples the TNFR1 to the SAPK/JNK cascade. In transfection studies, RIP1 and TRAF2 stimulate p38 MAP kinase activation, and dominant-negative forms of RIP1 and TRAF2 inhibit TNF-alpha-induced p38 MAP kinase activation. We found TNF-alpha-induced p38 MAP kinase activation and interleukin-6 (IL-6) production impaired in rip1(-/-) murine embryonic fibroblasts (MEF) but unaffected in traf2(-/-) MEF. Yet, both rip1(-/-) and traf2(-/-) MEF exhibit a normal p38 MAP kinase response to inducers of osmotic shock or IL-1alpha. Thus, RIP1 is a specific mediator of the p38 MAP kinase response to TNF-alpha. These studies suggest that TNF-alpha-induced activation of p38 MAP kinase and SAPK/JNK pathways bifurcate at the level of RIP1 and TRAF2. Moreover, endogenous RIP1 associates with the MAP kinase kinase kinase (MAP3K) MEKK3 in TNF-alpha-treated cells, and decreased TNF-alpha-induced p38 MAP kinase activation is observed in Mekk3(-/-) cells. Taken together, these studies suggest a mechanism whereby RIP1 may mediate the p38 MAP kinase response to TNF-alpha, by recruiting the MAP3K MEKK3.  相似文献   

5.
Ceramide accumulation in the cell can occur from either hydrolysis of sphingomyelin or by de novo synthesis. In this study, we found that blocking de novo ceramide synthesis significantly inhibits ceramide accumulation and subsequent cell death in response to tumor necrosis factor alpha. When cells were pre-treated with glutathione, a proposed cellular regulator of neutral sphingomyelinase, inhibition of ceramide accumulation at early time points was achieved with attenuation of cell death. Inhibition of both pathways achieved near-complete inhibition of ceramide accumulation and cell death indicating that both pathways of ceramide generation are stimulated. This illustrates the complexity of ceramide generation in cytokine action.  相似文献   

6.
Alix/AIP1 regulates cell death in a way involving interactions with the calcium-binding protein ALG-2 and with proteins of ESCRT (endosomal sorting complex required for transport). Using mass spectrometry we identified caspase-8 among proteins co-immunoprecipitating with Alix in dying neurons. We next demonstrated that Alix and ALG-2 interact with pro-caspase-8 and that Alix forms a complex with the TNFalpha receptor-1 (TNF-R1), depending on its capacity to bind ESCRT proteins. Thus, Alix and ALG-2 may allow the recruitment of pro-caspase-8 onto endosomes containing TNF-R1, a step thought to be necessary for activation of the apical caspase. In line with this, expression of Alix deleted of its ALG-2-binding site (AlixDeltaALG-2) significantly reduced TNF-R1-induced cell death, without affecting endocytosis of the receptor. In a more physiological setting, we found that programmed cell death of motoneurons, which can be inhibited by AlixDeltaALG-2, is regulated by TNF-R1. Taken together, these results highlight Alix and ALG-2 as new actors of the TNF-R1 pathway.  相似文献   

7.
8.
Stimulation of cells with tumor necrosis factor (TNFalpha) triggers a recruitment of various signaling molecules, such as RIP, to the TNFalpha receptor 1 complex, leading to activation of NF-kappaB. Previous studies indicate that RIP plays an essential role for TNFalpha-induced NF-kappaB activation, but the molecular mechanism by which RIP mediates TNFalpha signals to activate NF-kappaB is not fully defined. Earlier studies suggest that RIP undergoes a ligand-dependent ubiquitination. However, it remains to be determined whether the ubiquitination of RIP is required for TNFalpha-induced NF-kappaB activation. In this study, we have identified Lys377 of RIP as the functional ubiquitination site, because mutating this residue to arginine completely abolished RIP-mediated NF-kappaB activation. The K377R mutation of RIP cannot undergo ligand-dependent ubiquitination and fails to recruit its downstream signaling components into the TNFalpha receptor 1 complex. Together, our studies provide the first genetic evidence that the ubiquitination of RIP is required for TNFalpha-induced NF-kappaB activation.  相似文献   

9.
Tumor necrosis factor receptor-1 death domain (TNFR-1 DD) is the intracellular functional domain responsible for the receptor signaling activities. The solution structure of the R347K mutant of TNFR-1 DD was solved by NMR spectroscopy. A total of 20 structures were calculated by means of hybrid distance geometry-simulated annealing using a total of 1167 distance constraints and 117 torsion angle constraints. The atomic rms distribution about the mean coordinate positions for the 20 structures for residues composing the secondary structure region is 0.40 A for the backbone atoms and 1.09 A for all atoms. The structure consists of six antiparallel alpha-helices arranged in a similar fashion to the other members of the death domain superfamily. The secondary structure and three-dimensional structure of R347K TNFR1-DD are very similar to the secondary structure and deduced topology of the R347A TNFR1-DD mutant. Mutagenesis studies identified critical residues located in alpha2 and part of alpha3 and alpha4 that are crucial for self-interaction and interaction with TRADD. Structural superposition with previously solved proteins in the death domain superfamily reveals that the major differences between the structures reside in alpha2, alpha3, and alpha4. Interestingly, these regions correspond to the binding sites of TNFR1-DD, providing a structural basis for the specificity of death domain interactions and its subsequent signaling event.  相似文献   

10.
Despite abundant evidence for changes in mitochondrial membrane permeability in tumor necrosis factor (TNF)-mediated cell death, the role of plasma membrane ion channels in this process remains unclear. These studies examine the influence of TNF on ion channel opening and death in a model rat liver cell line (HTC). TNF (25 ng/ml) elicited a 2- and 5-fold increase in K(+) and Cl(-) currents, respectively, in HTC cells. These increases occurred within 5-10 min after TNF exposure and were inhibited either by K(+) or Cl(-) substitution or by K(+) channel blockers (Ba(2+), quinine, 0.1 mm each) or Cl(-) channel blockers (10 microm 5-nitro-2-(3-phenylpropylamino)benzoic acid and 0.1 mm N-phenylanthranilic acid), respectively. TNF-mediated increases in K(+) and Cl(-) currents were each inhibited by intracellular Ca(2+) chelation (5 mm EGTA), ATP depletion (4 units/ml apyrase), and the protein kinase C (PKC) inhibitors chelerythrine (10 micrometer) or PKC 19-36 peptide (1 micrometer). In contrast, currents were not attenuated by the calmodulin kinase II 281-309 peptide (10 micrometer), an inhibitor of calmodulin kinase II. In the presence of actinomycin D (1 micrometer), each of the above ion channel blockers significantly delayed the progression to TNF-mediated cell death. Collectively, these data suggest that activation of K(+) and Cl(-) channels is an early response to TNF signaling and that channel opening is Ca(2+)- and PKC-dependent. Our findings further suggest that K(+) and Cl(-) channels participate in pathways leading to TNF-mediated cell death and thus represent potential therapeutic targets to attenuate liver injury from TNF.  相似文献   

11.
The CD95 (Fas/APO-1) and tumor necrosis factor (TNF) receptor pathways share many similarities, including a common reliance on proteins containing 'death domains' for elements of the membrane-proximal signal relay. We have created mutant cell lines that are unable to activate NF-kappaB in response to TNF. One of the mutant lines lacks RIP, a 74 kDa Ser/Thr kinase originally identified by its ability to associate with Fas/APO-1 and induce cell death. Reconstitution of the line with RIP restores responsiveness to TNF. The RIP-deficient cell line is susceptible to apoptosis initiated by anti-CD95 antibodies. An analysis of cells reconstituted with mutant forms of RIP reveals similarities between the action of RIP and FADD/MORT-1, a Fas-associated death domain protein.  相似文献   

12.
13.
Hu J  Liu X  Hughes D  Esteva FJ  Liu B  Chandra J  Li S 《PloS one》2011,6(8):e23270
Tumor-targeted antibody therapy is one of the safest biological therapeutics for cancer patients, but it is often ineffective at inducing direct tumor cell death and is ineffective against resistant tumor cells. Currently, the antitumor efficacy of antibody therapy is primarily achieved by inducing indirect tumor cell death, such as antibody-dependent cell cytotoxicity. Our study reveals that Herceptin conjugates, if generated via the crosslinker EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride), are capable of engendering human epidermal growth factor receptor 2 (Her2) positive tumor cells death. Using a high-performance liquid chromatography (HPLC) system, three peaks with estimated molecular weights of antibody monomer, dimer, and trimer were isolated. Both Herceptin trimer and dimer separated by HPLC induced significant levels of necrotic tumor cell death, although the trimer was more effective than the dimer. Notably, the Herceptin trimer also induced Herceptin-resistant tumor cell death. Surprisingly different from the known cell death mechanism that often results from antibody treatment, the Herceptin trimer elicited effective and direct tumor cell death via a novel mechanism: programmed cell necrosis. In Her2-positive cells, inhibition of necrosis pathways significantly reversed Herceptin trimer-induced cell death. In summary, the Herceptin trimer reported herein harbors great potential for overcoming tumor cell resistance to Herceptin treatment.  相似文献   

14.
Tumor necrosis factor alpha (TNF-alpha) is a key mediator of host immune and inflammatory responses and inhibits herpesvirus replication by cytolytic and noncytolytic mechanisms. TNF-alpha effects are primarily mediated through the major TNF-alpha receptor, TNF-R1, which is constitutively expressed in most cell types. Here we show that the Epstein-Barr virus (EBV) immediate-early protein BZLF1 prevents TNF-alpha activation of target genes and TNF-alpha-induced cell death. These effects are mediated by down-regulation of the promoter for TNF-R1. Additionally, we demonstrate that expression of TNF-R1 is downregulated during the EBV lytic replication cycle. Thus, EBV has developed a novel mechanism for evading TNF-alpha antiviral effects during lytic reactivation or primary infection.  相似文献   

15.
Recombinant avipox viruses are being widely evaluated as vaccines. To address how these viruses, which replicate poorly in mammalian cells, might be immunogenic, we studied how canarypox virus (ALVAC) interacts with primate antigen-presenting dendritic cells (DCs). When human and rhesus macaque monocyte-derived DCs were exposed to recombinant ALVAC, immature DCs were most susceptible to infection. However, many of the infected cells underwent apoptotic cell death, and dying infected cells were engulfed by uninfected DCs. Furthermore, a subset of DCs matured in the ALVAC-exposed DC cultures. DC maturation coincided with tumor necrosis factor alpha (TNF-alpha) secretion and was significantly blocked in the presence of anti-TNF-alpha antibodies. Interestingly, inhibition of apoptosis with a caspase 3 inhibitor also reduced some of the maturation induced by exposure to ALVAC. This indicates that both TNF-alpha and the presence of primarily apoptotic cells contributed to DC maturation. Therefore, infection of immature primate DCs with ALVAC results in apoptotic death of infected cells, which can be internalized by noninfected DCs driving DC maturation in the presence of the TNF-alpha secreted concomitantly by exposed cells. This suggests an important mechanism that may influence the immunogenicity of avipox virus vectors.  相似文献   

16.
Previous studies in this and other laboratories have demonstrated that IL-1, lymphotoxin (LT), and TNF rapidly stimulate a number of proinflammatory properties in cultured endothelial cells (EC) including cell-surface procoagulant activity and increased adhesivity for lymphocytes, monocytes, and polymorphonuclear leukocytes. In addition, we have demonstrated that LT and TNF, but not IL-1, stimulate increases in EC RNA synthesis, protein synthesis, and cellular volumes, changes which may correspond to the hypertrophy of EC seen at sites of inflammation in vivo. It is reported here that both human rIL-1 alpha and rIL-1 beta totally inhibit the increases in EC RNA synthesis, protein synthesis, and cell volumes induced by either TNF or LT. As little as 0.1 ng/ml of either IL-1 was sufficient to totally block the activation of EC induced by 100-fold higher concentrations (10 ng/ml) of either LT or TNF. The relevance of these findings to the regulation of inflammatory responses is discussed.  相似文献   

17.
The adenovirus E1A and E1B proteins are required for transformation of primary rodent cells. When expressed in the absence of the 19,000-dalton (19K) E1B protein, however, the E1A proteins are acutely cytotoxic and induce host cell chromosomal DNA fragmentation and cytolysis, analogous to cells undergoing programmed cell death (apoptosis). E1A alone can efficiently initiate the formation of foci which subsequently undergo abortive transformation whereby stimulation of cell growth is counteracted by continual cell death. Cell lines with an immortalized growth potential eventually arise with low frequency. Coexpression of the E1B 19K protein with E1A is sufficient to overcome abortive transformation to produce high-frequency transformation. Like E1A, the tumoricidal cytokine tumor necrosis factor alpha (TNF-alpha) evokes a programmed cell death response in many tumor cell lines by inducing DNA fragmentation and cytolysis. Expression of the E1B 19K protein by viral infection, by transient expression, or in transformed cells completely and specifically blocks this TNF-alpha-induced DNA fragmentation and cell death. Cosegregation of 19K protein transforming activity with protection from TNF-alpha-mediated cytolysis demonstrates that both activities are likely the consequence of the same function of the protein. Therefore, we propose that by suppressing an intrinsic cell death mechanism activated by TNF-alpha or E1A, the E1B 19K protein enhances the transforming activity of E1A and enables adenovirus to evade TNF-alpha-dependent immune surveillance.  相似文献   

18.
Tumor necrosis factor (TNF) can induce caspase-dependent (apoptotic) and caspase-independent pathways to programmed cell death (PCD). Here, we demonstrate that stable transfection of a cDNA encompassing the C-terminal apoptosis inhibitory domain (AID) of FE65-like protein 1 into mouse L929 fibrosarcoma cells protects from caspase-independent as well as from apoptotic PCD induced by TNF. We show that the AID does not protect from caspase-independent PCD elicited by 1-methyl-3-nitro-1-nitrosoguanidine, suggesting that the AID might prevent cell death by affecting assembly of the death inducing signaling complex of the 55 kDa TNF receptor or clustering of the receptor itself. Interference with caspase-independent PCD mediated by the sphingolipid ceramide further increases protection conferred by the AID, as does the antioxidant butylated hydroxyanisole, implicating ceramide and reactive oxygen species as potential factors interacting with caspase-independent PCD regulated by the AID.  相似文献   

19.
Apoptosis signal-regulating kinase 1 (ASK1) plays a pivotal role in oxidative stress-induced cell death. Reactive oxygen species disrupt the interaction of ASK1 with its cellular inhibitor thioredoxin and thereby activates ASK1. However, the precise mechanism by which ASK1 freed from thioredoxin undergoes oligomerization-dependent activation has not been fully elucidated. Here we show that endogenous ASK1 constitutively forms a high molecular mass complex including Trx ( approximately 1,500-2,000 kDa), which we designate ASK1 signalosome. Upon H(2)O(2) treatment, the ASK1 signalosome forms a higher molecular mass complex at least in part because of the recruitment of tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF6. Consistent with our previous findings that TRAF2 and TRAF6 activate ASK1, H(2)O(2)-induced ASK1 activation and cell death were strongly reduced in the cells derived from Traf2-/- and Traf6-/- mice. A novel signaling complex including TRAF2, TRAF6, and ASK1 may thus be the key component in oxidative stress-induced cell death.  相似文献   

20.
Lymphokines and monokines have been reported to affect endothelial cell (EC) morphology and function. In experiments here described, we have demonstrated that recombinant tumor necrosis factor (TNF) stimulates the adhesion of T lymphocytes to confluent monolayers of human umbilical vein EC. The increase in adhesion induced by TNF was EC-specific inasmuch as preincubation of the lymphocytes with TNF did not alter binding, and preincubation of human dermal fibroblasts with TNF did not increase their inherently low adhesiveness for lymphocytes. Stimulation of T-EC binding occurred after treatment of the EC with as little as 0.01 U/ml (1 pg/ml) of TNF. In kinetic experiments, preincubation of EC with TNF for 4 hr resulted in optimal adhesion. TNF-treated EC retained their increased adhesiveness after fixation with paraformaldehyde, suggesting that TNF stimulated binding by increasing the expression or accessibility of EC surface receptors for lymphocytes. Although antibodies to the lymphocyte function-associated antigen 1 alpha- or beta-chains on the T cell markedly inhibited unstimulated T-EC binding, such antibodies had no effect on the increase in EC adhesiveness induced by TNF, indicating that the increased binding resulted from the generation of an alternate binding receptor on the EC membrane. These findings provide additional evidence that cytokines participate in the mobilization of mononuclear cells in the chronic inflammatory reaction by stimulation of the adhesiveness of endothelium for circulating lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号