首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this report, we demonstrate that F9 and PC-13 embryonal carcinoma (EC) cells do not bind significant amounts of platelet-derived growth factor (PDGF), whereas the endoderm-like differentiated cells derived from EC cells do. The F9-differentiated cells exhibit approximately 8300 receptors per cell, with an apparent dissociation constant of 30 pM. Two endoderm-like cell lines, PSA-5E and PYS-2, also bind PDGF and exhibit approximately 4800 and 23,500 receptors per cell, respectively. The lack of PDGF binding by the parental EC cells is consistent with their release of a factor(s) that is closely related to PDGF. This factor(s) competes with PDGF for binding to membrane receptors and is recognized by antibodies raised against PDGF. However, this factor(s) does not appear to be antigenically identical to PDGF. We also show that production of this PDGF-like factor(s) is reduced more than 90% when F9 EC cells differentiate into cells that bind PDGF. Thus, our findings indicate that EC cells release a factor(s) that should be capable of binding to their differentiated cells. This raises the possibility that PDGF, or a closely related factor, can influence cell proliferation and/or cell behavior of early embryonic cells.  相似文献   

2.
3.
We have characterized effects of phorbol, 12-myristate 13 acetate (PMA) on growth and differentiation in a nullipotent embryonal carcinoma (EC) cell line, F9, in a pluripotent EC line, P19, and in the differentiated derivatives of these cells, In P19EC and F9EC PMA addition resulted in inhibition of growth, while in the differentiated derivates PMA was mitogenic. PMA did not induce differentiation in EC cells but potentiated the retinoic acid (RA) induced differentiation in P19EC, although, not in F9EC. Rapid morphological changes by PMA were seen in P19EC and two differentiated derivatives which represent different stages of differentiation. In F9 no rapid morphological changes were induced by PMA. Using [3H]phorbol dibutyrate as a ligand we showed that during differentiation into endoderm-like cells the number of phorbol ester receptors increases, while in epithelial-like derivatives no increase is found. In differentiated cells with an increased number of phorbol ester receptors, the cytoplasmic Ca2+- and phospholipid-dependent protein kinase (the putative receptor for phorbol esters) activity was also increased. Only in those derivatives where the number of phorbol ester receptors is increased, is the binding of epidermal growth factor (EGF) inhibited by PMA. These results suggest a relationship between levels of expression of phorbol ester receptors, cytoplasmic protein kinase C and biological effects, namely rapid morphological changes, altered growth, potentiation of RA induced differentiation, and inhibition of EGF binding.  相似文献   

4.
The human embryonal carcinoma (EC) cell line Tera 2 clone 13 (T2/13) can be induced to differentiate in vitro into neuroectodermal cell types with retinoic acid. Undifferentiated cells are characterized by rapid proliferation, whereas differentiated cells show a prolonged generation time, have a limited life span, and possess new cell-surface markers. In the present study we establish that both differentiated and undifferentiated T2/13 cells express the type-B platelet-derived growth factor (PDGF) receptor mRNA and bind PDGF-BB with high affinity. Differentiation causes a three-fold increase in receptor number per cell and leaves the affinity of the receptors unaffected. These data are the first to describe expression of this receptor in EC cells. The biosynthesis and degradation of this receptor were studied in undifferentiated as well as in differentiated T2/13 cells using an anti-type-B receptor antibody. These experiments revealed that high concentrations of recombinant PDGF-AA did not accelerate receptor metabolism in both cell types. In contrast, human PDGF or recombinant PDGF-BB added to the culture dishes readily increased receptor degradation. These results demonstrate that T2/13 cells express functional type-B PDGF receptors and suggest that cells responsive to PDGF might be present during mammalian development before the onset of mesoderm formation.  相似文献   

5.
Fibroblast growth factors (FGFs) have been implicated in a number of proliferative lesions, including malignant tumor growth and vascularization. As a result, cytotoxic agents that target cell surface FGF receptors are currently under investigation. Previous reports have shown that conjugation of basic FGF with the ribosome inactivator, saporin, results in a potent cytotoxin specific for cells bearing high-affinity FGF receptors. In this report, we have used this FGF receptor-dependent cytotoxin to study receptor interactions at the surface of embryonal carcinoma cells, which express low numbers of high-affinity FGF receptors. The growth of three embryonal carcinoma cell lines and one embryonic stem cell line was shown to be inhibited by bFGF-saporin, suggesting that these cells are able to bind and internalize FGF through high-affinity FGF receptors. In addition, we determined that the responses of these cells to bFGF-saporin are qualitatively different than the responses of CHO-KI cells, which also exhibit low numbers of high-affinity FGF receptors. Specifically, pretreatment with bFGF-saporin reduces the cloning efficiency of CHO-KI cells 8- to 10-fold, whereas bFGF-saporin has little or no effect on the cloning efficiency of embryonal carcinoma cells. This finding suggests that bFGF-saporin is cytotoxic for CHO-KI cells, but not for embryonal carcinoma cells. Thus, our findings argue strongly that other factors, in addition to high-affinity FGF receptor number, are important in determining sensitivity of cells of bFGF-saporin.  相似文献   

6.
To characterize the role of epidermal growth factor (EGF) and fibroblast growth factor (FGF) in regulating neuroepithelial stem cells differentiation, we have examined the expression of FGF, EGF, and their receptors by neuroepithelial (NEP) cells and their derivatives. Our results indicate that undifferentiated NEP cells express a subset of FGF receptor (FGFR) isoforms, but do not express platelet-derived growth factor receptors (PDGFRs) or epidermal growth factor receptor (EGFR). The FGFR pattern of expression by differentiated neuron and glial cells differs from that found on NEP stem cells. FGFR-4 is uniquely expressed on NEP cells, while FGFR-1 is expressed by both NEP cells and neurons, and FGFR-2 is down-regulated during neuronal differentiation. FGFRs present on astrocytes and oligodendrocytes also represent a subset of those present on NEP cells. Expression of FGF and EGF by NEP cells and their progeny was also examined. NEP cells synthesize detectable levels of both FGF-1 and FGF-2, and EGF. FGF-1 and FGF-2 synthesis is likely to be biologically relevant, as cells grown at high density do not require exogenous FGF for their survival and cells grown in the presence of neutralizing antibodies to FGF show a reduction in cell survival and division. Thus, neuroepithelial cells synthesize and respond to FGF, but not to EGF, and are therefore distinct from other neural stem cells (neurospheres). The unique pattern of expression of FGF isoforms may serve to distinguish NEP cells from their more differentiated progeny.  相似文献   

7.
PC13 embryonal carcinoma cells produce a heparin-binding growth factor   总被引:2,自引:0,他引:2  
A polypeptide growth factor has been isolated from serum-free medium conditioned by mouse PC13 embryonal carcinoma cells, which is strongly mitogenic for Swiss 3T3 fibroblasts. On a CM-2-SW high-performance liquid chromatography cation-exchange column at low pH, this growth factor elutes at a salt concentration very close to that of basic fibroblast growth factor (FGF). The growth factor is mitogenic for a mesodermal derivative of embryonal carcinoma (EC) cells, but not for differentiated derivatives with endodermal or ectodermal characteristics, again similar to FGF. The PC13-derived growth factor binds to heparin-Sepharose, and elutes from this column at similar salt concentrations as FGF. These data demonstrate that PC13 embryonal carcinoma cells produce a basic heparin-binding growth factor (HBGF). Since the initial purification steps are similar to those used by Heath & Isacke (EMBO j 3 (1984) 2957 [7]) for isolation of a PC13 embryonal carcinoma-derived growth factor (ECDGF), which is cationic with a molecular weight (MW) close to that of FGF, the present heparin-binding growth factor (HBGF) is most likely identical with ECDGF.  相似文献   

8.
Heparin is required for the binding of basic fibroblast growth factor (bFGF) to high-affinity receptors on cells deficient in cell surface heparan sulfate proteoglycan. So that this heparin requirement could be evaluated in the absence of other cell surface molecules, we designed a simple assay based on a genetically engineered soluble form of murine FGF receptor 1 (mFR1) tagged with placental alkaline phosphatase. Using this assay, we showed that FGF-receptor binding has an absolute requirement for heparin. By using a cytokine-dependent lymphoid cell line engineered to express mFR1, we also showed that FGF-induced mitogenic activity is heparin dependent. Furthermore, we tested a series of small heparin oligosaccharides of defined lengths for their abilities to support bFGF-receptor binding and biologic activity. We found that a heparin oligosaccharide with as few as eight sugar residues is sufficient to support these activities. We also demonstrated that heparin facilitates FGF dimerization, a property that may be important for receptor activation.  相似文献   

9.
High affinity receptors for insulin, transferrin, epidermal growth factor (EGF) and a multiplication-stimulating activity (MSA) have been identified and partially characterized on a mouse embryonal carcinoma cell line, OTT-6050, using various 125I-ligands. With the exception of MSA receptors which bound both MSA and insulin, the receptors for EGF, insulin and transferrin exhibited specificity of binding for their respective ligands. There is a correlation between the saturation of these receptors and the concentration of growth factors necessary for optimal growth of OTT-6050 cells in serum-free medium supplemented with insulin (or MSA), transferrin, EGF, fibroblast growth factor (FGF) and Pedersen fetuin on culture surfaces treated with polylysine or various types of collagen. Cells cultured in this medium exhibit growth rates equivalent to that observed with cells maintained in medium containing 5% fetal calf serum (FCS). These results suggest that relatively undifferentiated mouse embryonal carcinoma cells or endoderm cells possess receptors for various growth factors and that their presence on these cells is correlated with the ability of these cells to mitogenically respond to these growth factors.  相似文献   

10.
The fibroblast growth factor (FGF) receptor of human umbilical vein-derived endothelial (HUE) cells has been identified by affinity labeling. It has an apparent molecular weight of 130,000. It binds both basic and acidic FGF, but not with epidermal growth factor, insulin, or transferrin. The lectin concanavalin-A does not inhibit the binding of 125l-bFGF to HUE cell-surface receptors, whereas it inhibits bFGF binding to BHK-21 cell-surface FGF receptor. This suggests that both types of receptors may differ in their degree of glycosylation. In contrast to other cell types, heparin only slightly inhibits the binding of basic FGF to its receptor. Protamine sulfate, which is anti-angiogenic in vivo, and suramin, a drug used in the therapy of trypanosomiasis and onchocerciasis, also inhibit the binding of basic FGF to the receptor.  相似文献   

11.
We have used the P19 embryonal carcinoma (EC) aggregation system as a model for early mouse development to study induction and modulation of mesodermal and neuronal differentiation. By studying the expression of marker genes for differentiated cells in this model we have shown that there is a good correlation between the differentiation direction induced in P19 EC aggregates and the expression of these genes. Expression of the neuronal gene midkine is exclusively upregulated when P19 EC cells are induced to form neurons while expression of early mesodermal genes such as Brachyury T, evx-1 , goosecoid and nodal is elevated after induction to the mesodermal pathway. In the present study we have further shown that activin A blocks the different directions of differentiation of P19 EC cells induced by retinoic acid (RA) in a dose-dependent way. To understand the mechanism behind this inhibitory action of activin A the expression of several RA-responsive genes, including the three RA receptor genes (RARα, RARβ and RARγ) was determined. Since activin has no clear effect on the expression and activity of the RAR it is very likely that this factor acts downstream of these receptors. In addition to activin, fibroblast growth factors (FGF) were shown to modulate P19 EC cell differentiation. However, in contrast to activin, FGF exclusively blocks the mesodermal differentiation of P19 EC cells by either 10−9mol/L RA or a factor produced by visceral endoderm-like cells (END-2 factor). The FGF effect is dose-independent. These results suggest an important function for RA and the END-2 factor in the induction and for activin and FGF in the modulation of specific differentiation processes in murine development.  相似文献   

12.
One characteristic of skeletal muscle differentiation is the conversion of proliferating cells to a population that is irreversibly postmitotic. This developmental change can be induced in vitro by depriving the cultures of specific mitogens such as fibroblast growth factor (FGF). Analysis of cell surface FGF receptor (FGFR) in several adult mouse muscle cell lines and epidermal growth factor receptor (EGFR) in mouse MM14 cells reveals a correlation between receptor loss and the acquisition of a postmitotic phenotype. Quiescent MM14 cells, mitogen-depleted, differentiation-defective MM14 cells, and differentiated BC3H1 muscle cells (a line that fails to become postmitotic upon differentiation) retained their cell surface FGFR. These results indicate that FGFR loss is not associated with either reversible cessation of muscle cell proliferation or biochemical differentiation and thus, further support a correlation between receptor loss and acquisition of a postmitotic phenotype. Comparison of the kinetics for growth factor receptor loss and for commitment of MM14 cells to a postmitotic phenotype reveals that FGFR rises transiently from approximately 700 receptors/cell to a maximum of approximately 2,000 receptors/cell 12 h after FGF removal, when at the same time, greater than 95% of the cells are postmitotic. FGFR levels then decline to undetectable levels by 24 h after FGF removal. During the interval in which FGFR increases and then disappears there is no change in its affinity for FGF. The transient increase in growth factor receptors appears to be due to a decrease in ligand-mediated internalization because EGFR, which undergoes an immediate decline when cultures are deprived of FGF (Lim, R. W., and S. D. Hauschka. 1984. J. Cell Biol. 98:739-747), exhibits a similar transient rise when cultures are grown in media containing both EGF and FGF before switching the cells to media without these added factors. These results indicate that the loss of certain growth factor receptors is a specific phenotype acquired during skeletal muscle differentiation, but they do not resolve whether regulation of FGFR number is causal for initiation of the postmitotic phenotype. A general model is presented in the discussion.  相似文献   

13.
J Lotem  L Sachs 《The EMBO journal》1986,5(9):2163-2170
There are clones of myeloid leukemic cells which are different from normal myeloid cells in that they have become independent of hematopoietic growth factor for cell viability and growth. The ability of these clones to bind three types of hematopoietic growth factors (MGI-1GM = GM-CSF, IL-3 = multi-CSF and MGI-1M = M-CSF = CSF-1) was measured using the method of quantitative absorption at 1 degree C and low pH elution of cell-bound biological activity. Results of binding to normal myeloid and lymphoid cells were similar to those obtained by radioreceptor assays. The results indicate that the number of receptors on different clones of these leukemic cells varied from 0 to 1,300 per cell. The receptors have a high binding affinity. Receptors for different growth factors can be independently expressed in different clones. There was no relationship between expression of receptors for these growth factors and the phenotype of the leukemic cells regarding their ability to be induced to differentiate. The number of receptors on the leukemic cells was lower than on normal mature macrophages. Myeloid leukemic cells induced to differentiate by normal myeloid cell differentiation factor MGI-2 (= DF), or by low doses of actinomycin D or cytosine arabinoside, showed an up-regulation of the number of MGI-1GM and IL-3 receptors. Induction of differentiation of leukemic cells by MGI-2 also induced production and secretion of the growth factor MGI-1GM, and this induced MGI-1GM saturated the up-regulated MGI-1GM receptors. It is suggested that up-regulation of these receptors during differentiation is required for the functioning of differentiated cells.  相似文献   

14.
The regulation of cell surface fibroblast growth factor (FGF) receptors during the differentiation of F9 teratocarcinoma cells was investigated. The capacity of F9 cells to bind 125I-basic FGF (FGF-2) increased upon induction of differentiation with dibutyryl cAMP and retinoic acid. No change in binding capacity was observed in the first 24 h after addition of differentiating agents, but a sixfold increase in binding capacity was observed after 48 h and a fivefold increase after 72 h. Scatchard analysis of the binding data indicated that the increased binding of 125I-FGF-2 was due to an increase in the number of receptors with no change in their affinity. When 125I-FGF-2 was cross-linked to cell surface receptors, an increase in FGF-2-receptor complexes with molecular weights of 140,000–160,000 was also observed in the differentiated F9 cells. Undifferentiated F9 cells are known to secrete FGF-4 and cease expression of this molecule upon differentiation. To determine whether the low level of receptors in undifferentiated cells might be related to their production of FGF ligands, the ability of suramin, a drug that can disrupt FGF-receptor interactions, to modulate receptor number on F9 cells was investigated. Suramin treatment increased 125I-FGF-2 binding capacity of undifferentiated F9 cells threefold but had little effect on the binding capacity of differentiated cells. In addition, antibodies to FGF-4 increased the 125I-FGF-2 binding capacity of undifferentiated F9 cells by 58%. These results suggest that undifferentiated F9 cells might be responding in an autocrine manner to their own FGF ligands resulting in downregulation of cell surface FGF receptors. The increased number of receptors observed in differentiated cells may partly result from the decreased production of FGF ligands by these cells. © 1994 Wiley-Liss, Inc.  相似文献   

15.
The androgen-dependent clonal cell line SC-3, derived from Shionogi carcinoma 115, secretes a fibroblast growth factor (FGF)-autocrine growth factor in response to androgen, which is able to bind to FGF receptors. In SC-3 cells, FGF receptor expression is upregulated by the SC-3-derived growth factor, providing a means of amplifying an autocrine loop of cell growth. In the present investigations, the effect of the polysulfonated naphthylurea suramin on this autocrine loop and its amplification in SC-3 cells were studied. Suramin inhibited androgen-dependent growth of SC-3 cells in a concentration-dependent fashion: ~50% inhibition was observed at 25 μM. [3H]Thymidine incorporation into the cells stimulated with partially purified SC-3-derived growth factor was inhibited by suramin in a similar way. Additionally, suramin inhibited acidic (a) or basic (b) FGF-induced cell proliferation, though relatively high concentrations were necessary to achieve the maximal inhibition. Pretreatment of SC-3 cells with suramin decreased cell surface 125I-bFGF binding without altering dissociation constant (Kd) of the binding sites. When the cells were incubated with 250 μM suramin for 24 h, the maximum binding (Bmax) decreased to almost 50% of the control. Treatment with suramin also decreased the levels of FGF receptor-1 mRNA to a similar extent, whereas it appeared not to affect the levels of β-actin mRNA. Moreover, suramin completely blocked androgen- or bFGF-induced accumulation of FGF receptor-1 mRNA. The inhibitory effects of suramin on FGF receptor expression were reversed by simultaneous addition of high concentrations of bFGF. These results indicate that suramin exerts its potent antiproliferative action on SC-3 cells through inhibition of an androgen-inducible autocrine loop involving SC-3-derived growth factor and FGF receptor. © 1993 Wiley-Liss, Inc.  相似文献   

16.
Activin and inhibin are polypeptide factors which control the release of follicle stimulating hormone(FSH) from pituitary cells. The recent finding that erythroid differentiation factor(EDF) is identical to activin showed the multifunctional feature of this protein. To identify the specific receptor for activin, the binding of 125I-labeled activinA was investigated for a number of culture cell lines. Friends leukemia cell, which can be differentiated by activin, and embryonal carcinoma(EC) cells(PCC3, P19 and F9), were found to express 3500-20,000 per cell of activin receptors. Scatchard plot analysis of the binding data shows that the receptors on those cells could be divided into two groups with different Kd values. The Kd values of high and low affinity receptors are 0.15-0.4 nM and 1.5-3.0 nM respectively. The proportion of the number of the high and low affinity receptors was varied in each cell. Inhibin was able to compete for activin binding to both types of receptors, although the binding affinity was about 50-200 fold lower than that of activinA. Transforming growth factor-beta had no binding ability to the activin receptors.  相似文献   

17.
The fibroblast growth factor (FGF) family consists of at least seven closely related polypeptide mitogens which exert their activities by binding and activation of specific cell surface receptors. Unanswered questions have been whether there are multiple FGF receptors and what factors determine binding specificity and biological response. We report the complete cDNA cloning of two human genes previously designated flg and bek. These genes encode two similar but distinct cell surface receptors comprised of an extracellular domain with three immunoglobulin-like regions, a single transmembrane domain, and a cytoplasmic portion containing a tyrosine kinase domain with a typical kinase insert. The expression of these two cDNAs in transfected NIH 3T3 cells led to the biosynthesis of proteins of 150 kd and 135 kd for flg and bek, respectively. Direct binding experiments with radiolabeled acidic FGF (aFGF) or basic FGF (bFGF), inhibition of binding with native growth factors, and Scatchard analysis of the binding data indicated that bek and flg bind either aFGF or bFGF with dissociation constants of (2-15) x 10(-11) M. The high affinity binding of two distinct growth factors to each of two different receptors represents a unique double redundancy without precedence among polypeptide growth factor-receptor interactions.  相似文献   

18.
B B Olwin  S D Hauschka 《Biochemistry》1986,25(12):3487-3492
Two distinct fibroblast growth factors (FGF) were purified to homogeneity from bovine brain on the basis of their ability to stimulate skeletal muscle myoblast proliferation. These growth factors are also mitogenic for Swiss 3T3 cells and appear to be closely related to or identical with previously isolated anionic and cationic fibroblast growth factors. The half-maximum concentrations (EC50) for stimulation of myoblast DNA synthesis by the anionic and cationic growth factors were 30pM and 1pM, respectively. In contrast, an EC50 of 45 pM was observed for stimulation of 3T3 cell DNA synthesis by both growth factors. Binding of 125I-labeled anionic FGF was saturable with apparent Kd values of 45 pM and 11 pM and approximately 60 000 and 2000 receptor sites per cell for 3T3 cells and MM14 murine myoblasts, respectively. Unlabeled anionic and cationic FGF equally displaced 125I-labeled anionic FGF from 3T3 cells while cationic FGF was more potent than anionic FGF for displacement from skeletal muscle myoblasts, demonstrating that a single receptor binds the two distinct growth factors. Binding was specific for these factors since platelet-derived growth factor, insulin, insulin-like growth factor 1, epidermal growth factor, and nerve growth factor were unable to displace bound 125I-labeled anionic FGF from Swiss 3T3 cells. Chemical cross-linking of specifically bound 125I-labeled anionic FGF to 3T3 cells and MM14 myoblasts identified a single detergent-soluble FGF receptor with an apparent molecular weight of 165 000.  相似文献   

19.
20.
Ligand-induced dimerization and transphosphorylation are thought to be important events by which receptor tyrosine kinases generate cellular signals. We have investigated the ability of signalling-defective, truncated fibroblast growth factor (FGF) receptors (FGFR-1 and FGFR-2) to block the FGF response in cells that express both types of endogenous FGF receptors. When these dominant negative receptors are expressed in NIH 3T3 cells transformed by the secreted FGF-4, the transformed properties of the cells can be reverted to various degrees, with better reversion phenotype correlating with higher levels of truncated receptor expression. Furthermore, truncated FGFR-2 is significantly more efficient at producing reversion than FGFR-1, indicating that FGF-4 preferentially utilizes the FGFR-2 signalling pathway. NIH 3T3 clones expressing these truncated receptors are more resistant to FGF-induced mitogenesis and also exhibit reduced tyrosine phosphorylation upon treatment with FGF. The block in FGF-signalling, however, can be overcome by the addition of excess growth factor. The truncated receptors have binding affinities that are four- to eightfold lower than those of wild-type receptors, as measured by Scatchard analysis. We also observed a partial specificity in the responses of truncated-receptor-expressing clones to FGF-2 or FGF-4. Our results suggest that the block to signal transduction produced by kinase-negative FGF receptors is achieved through a combination of dominant negative effects and competition for growth factor binding with functional receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号