首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In biological research on the ozone depletion issue, action spectra are typically used as biological spectral weighting functions (BSWF). There has been little testing, however, of the appropriateness of different functions under realistic field conditions. Here we quantitatively evaluate a new BSWF for plant growth response to UV radiation, and other action spectra potentially usable as BSWF, in two seasons of field experiments. We utilized supplemental UV-B radiation with various combinations of filtered solar UV-A radiation. Our new BSWF, which we call the UV plant growth weighting function, indicates responses in the UV-A waveband. In field tests it proved to be the most appropriate weighting function for the responses we measured in oat ( Avena sativa L. cv. Otana) over the two field seasons in these studies. A 10-day field experiment with canola, Brassica rapa L. cv. Goldrush , also suggested substantial effects of both UV-B and UV-A radiation on growth. If this new UV plant growth BSWF proves to be appropriate for many plant species, it represents a lower radiation amplification factor (RAF) than several previously used weighting functions for plants. This means less change in biologically effective UV for each increment of ozone column change. However, the lower RAF also means that experiments utilizing supplemental UV treatments have supplied milder doses of additional UV than intended, since they were based on BSWF that overemphasized UV-B and ignored the UV-A region. While we await continued field testing of BSWF on diverse taxa, we recommend: (1) reporting weighted irradiance with our new BSWF, and other appropriate functions; (2) continued reporting of the generalized plant weighted UV for continuity and comparative purposes, since it has been so widely used.  相似文献   

2.
Caldwell  Martyn M.  Flint  Stephan D. 《Plant Ecology》1997,128(1-2):67-76
In several phases of assessing implications of stratospheric ozone reduction for plants, biological spectral weighting functions (BSWF) play a key role: calculating the increase of biologically effective solar ultraviolet-B radiation (UV-BBE) due to ozone reduction, assessing current latitudinal gradients of UV-BBE, and comparing solar UV-BBE with that from lamps and filters in plant experiments. Plant UV action spectra (usually determined with monochromatic radiation in the laboratory with exposure periods on the order of hours) are used as BSWF. Yet, many complicating factors cloud the realism of such spectra for plants growing day after day in polychromatic solar radiation in the field. The uses and sensitivity of BSWF in the stratospheric ozone reduction problem are described. The need for scaling BSWF from action spectra determined with monochromatic radiation in laboratory conditions over periods of hours to polychromatic solar radiation in the field is developed. Bottom-up mechanistic and top-down polychromatic action spectrum development are considered as not satisfactory to resolve realistic BSWF. A compromise intermediate approach is described in which laboratory results are tested under polychromatic radiation in growth chambers and, especially, under field conditions. The challenge of the scaling exercise is to resolve disagreements between expected spectral responses at different scales of time and radiation conditions. Iterative experiments with feedback among the different experimental venues is designed to reduce uncertainties about realistic BSWF in the field. Sensitivity analyses are employed to emphasize characteristics of BSWF that are particularly important in assessing the ozone problem. Implications for use of realistic BSWF both for improved research design and for retrospective analysis of past research is described.  相似文献   

3.
Spectral balance and UV-B sensitivity of soybean: a field experiment   总被引:12,自引:5,他引:7  
Soybean [Glycine max (L.) Merr.] cultivar Essex was grown and tested for sensitivity to UV-B radiation (280–320 nm) under different combinations of UV-A (320–400 nm) and PFD (400–700 nm) radiation in four simultaneous field experiments. The radiation conditions were effected with combinations of filtered solar radiation and UV-B and UV-A lamps electronically modulated to track ambient radiation. Significant UV-B-caused decreases in total aboveground production and growth were seen only when PFD and UV-A were reduced to less than half their flux in sunlight. When PFD was low, UV-A appeared to be particularly effective in mitigating UV-B damage. However, when PFD was high, substantial UV-A did not appear to be required for UV-B damage mitigation. Leaf chlorophyll fluorescence did not indicate photosynthetic damage under any radiation combination. With UV-B, leaves in all experiments exhibited increased UV-absorbing pigments and decreased whole-leaf UV transmittance. Results of these field experiments indicate difficulties in extrapolating from UV-B experiments conducted in glasshouse or growth cabinet conditions to plant UV-B sensitivity in the field. Implications for UV radiation weighting functions in evaluating atmospheric ozone reduction are also raised.  相似文献   

4.
Antonelli  F.  Grifoni  D.  Sabatini  F.  Zipoli  G. 《Plant Ecology》1997,128(1-2):127-136
During the last few decades many experiments have been performed to evaluate the responses of plants to enhanced solar UV-B radiation (280–320 nm) that may occur because of stratospheric ozone depletion; most of them were performed in controlled environment conditions where plants were exposed to low photosynthetically active radiation (PAR) levels and high UV-B irradiance. Since environmental radiative regimes can play a role in the response of plants to UV-B enhancement, it appears doubtful whether it is valid to extrapolate the results from these experiments to plants grown in natural conditions. The objective of this work was to evaluate the effects on physiology and morphology of a bean (Phaseolus vulgaris L.) cultivar Nano Bobis, exposed to supplemental UV radiation in the open-air. UV-B radiation was supplied by fluorescent lamps to simulate a 20% stratospheric ozone reduction. Three groups of plants were grown: control (no supplemental UV), UV-A treatment (supplementation in the UV-A band) and UV-B treatment (supplemental UV-B and UV-A radiation). Each group was replicated three times. After 33 days of treatment plants grown under UV-B treatment had lower biomass, leaf area and reduced leaf elongation compared to UV-A treatment. No significant differences were detected in photosynthetic parameters, photosynthetic pigments and UV-B absorbing compounds among the three groups of plants. However, plants exposed to UV-A treatment showed a sort of 'stimulation' of their growth when compared to the control. The results of this experiment showed that plants may be sensitive to UV-A radiation, thus it is difficult to evaluate the specific effects of UV-B (280–320 nm) radiation from fluorescent lamps and it is important to choose the appropriate control. Environmental conditions strongly affect plant response to UV radiation so further field studies are necessary to assess the interaction between UV-B exposure and meteorological variability.  相似文献   

5.
The influence of solar UV-A and UV-B radiation at Beltsville, Maryland, on growth and flavonoid content in four cultivars of Cucumis sativus L. (Ashley, Poinsett, Marketmore, and Salad Bush cucumber) was examined during the summers of 1994 and 1995. Plants were grown from seed in UV exclusion chambers consisting of UV-transmitting Plexiglas, lined with Llumar to exclude UV-A and UV-B, polyester to exclude UV-B, or cellulose acetate to transmit UV-A and UV-B. Despite previously determined differences in sensitivity to supplemental UV-B radiation, all four cultivars responded similarly to UV-B exclusion treatment. After 19–21 days, the four cultivars grown in the absence of solar UV-B (polyester) had an average of 34, 55, and 40% greater biomass of leaves, stems, and roots, respectively, 27% greater stem height, and 35% greater leaf area than those grown under ambient UV-B (cellulose acetate). Plants protected from UV-A radiation as well (Llumar) showed an additional 14 and 22% average increase, respectively, in biomass of leaves and stems, and a 22 and 19% average increase, respectively, in stem elongation and leaf area over those grown under polyester. These findings demonstrate the extreme sensitivity of cucumber not only to present levels of UV-B but also to UV-A and suggest that even small changes in ozone depletion may have important biological consequences for certain plant species.  相似文献   

6.
Aims Bryophytes play an important role in primary production in harsh alpine environment. As other alpine plants, the alpine bryophytes are often exposed to stronger UV radiation than lowland plants. Plants growing under high UV radiation may differ from those from low UV regimes in their physiological response to UV radiation. We were to (i) test the hypothesis and to address whether and/or how alpine bryophytes differ in photosynthetic photochemical characteristics in response to UV light and (ii) understand the potential effects of UV radiation on photosynthetic photochemical process in alpine bryophytes.Methods We examined the maximum quantum efficiency of photosystem II (PSII) photochemistry (F v /F m) for two alpine bryophyte species, Distichium inclinatum and Encalypta alpine, from a Kobresia humilis meadow and a Kobresia tibetica wetland, respectively, in Haibei, Qinghai (37°29′N, 101°12′E, altitude 3?250 m), and for a lowland bryophyte, Polytrichum juniperinum, under different spectrum of UV light. Biological spectral weighting function (BSWF) was obtained to evaluate the effect of UV light on the physiological response in these species.Important findings1)?The maximum quantum efficiency of photosystem II photochemistry (F v /F m) declined linearly with the increase of radiation dose in wavelengths from 250 to 420 nm. The effect of UV radiation on F v /F m decreased with higher rate from 250 to 320 nm and from 400 to 420 nm than in UVA range. 2)?The three species from different ecosystems contrasting in altitudes showed similar pattern of UV effectiveness. In comparison with other species reported so far, the moss BSWF was among those with the most modest decrease trend with spectrum effect of UV light 50 times higher at 250 than at 420 nm. 3)?Under the scenario of 16% reduction of stratospheric ozone, the integrated effectiveness from 290 to 345 nm increased only 5%, suggesting that the photochemical activity of the bryophyte PSII is likely to insensitive to O 3 depletion.  相似文献   

7.
The loss of stratospheric ozone and the accompanying increase in solar UV flux have led to concerns regarding decreases in global microbial productivity. Central to understanding this process is determining the types and amounts of DNA damage in microbes caused by solar UV irradiation. While UV irradiation of dormant Bacillus subtilis endospores results mainly in formation of the "spore photoproduct" 5-thyminyl-5,6-dihydrothymine, genetic evidence indicates that an additional DNA photoproduct(s) may be formed in spores exposed to solar UV-B and UV-A radiation (Y. Xue and W. L. Nicholson, Appl. Environ. Microbiol. 62:2221-2227, 1996). We examined the occurrence of double-strand breaks, single-strand breaks, cyclobutane pyrimidine dimers, and apurinic-apyrimidinic sites in spore DNA under several UV irradiation conditions by using enzymatic probes and neutral or alkaline agarose gel electrophoresis. DNA from spores irradiated with artificial 254-nm UV-C radiation accumulated single-strand breaks, double-strand breaks, and cyclobutane pyrimidine dimers, while DNA from spores exposed to artificial UV-B radiation (wavelengths, 290 to 310 nm) accumulated only cyclobutane pyrimidine dimers. DNA from spores exposed to full-spectrum sunlight (UV-B and UV-A radiation) accumulated single-strand breaks, double-strand breaks, and cyclobutane pyrimidine dimers, whereas DNA from spores exposed to sunlight from which the UV-B component had been removed with a filter ("UV-A sunlight") accumulated only single-strand breaks and double-strand breaks. Apurinic-apyrimidinic sites were not detected in spore DNA under any of the irradiation conditions used. Our data indicate that there is a complex spectrum of UV photoproducts in DNA of bacterial spores exposed to solar UV irradiation in the environment.  相似文献   

8.
The physiological mechanisms controlling plant responses to dynamic changes in ambient solar ultraviolet (UV) radiation are not fully understood: this information is important to further comprehend plant adaptation to their natural habitats. We used the fluorimeter Dualex to estimate in vivo the epidermal flavonoid contents by measuring epidermal UV absorbance (A(375) ) in Betula pendula Roth (silver birch) leaves of different ages under altered UV. Seedlings were grown in a greenhouse for 15 days without UV and transferred outdoors under three UV treatments (UV-0, UV-A and UV-A+B) created by three types of plastic film. After 7 and 13 days, Dualex measurements were taken at adaxial and abaxial epidermis of the first three leaves (L1, L2 and L3) of the seedlings. After 14 days, some of the seedlings were reciprocally swapped amongst the treatments to study the accumulation of epidermal flavonoids in the youngest unfolded leaves (L3) during leaf expansion under changing solar UV environments. A(375) of the leaves responded differently to the UV treatment depending on their position. UV-B increased the A(375) in the leaves independently of leaf position. L3 quickly adjusted A(375) in their epidermis according to the UV they received and these adjustments were affected by previous UV exposure. The initial absence of UV-A+B or UV-A, followed by exposure to UV-A+B, particularly enhanced leaf A(375) . Silver birch leaves modulate their protective pigments in response to changes in the UV environment during their expansion, and their previous UV exposure history affects the epidermal-absorbance achieved during later UV exposure.  相似文献   

9.
The loss of stratospheric ozone and the accompanying increase in solar UV flux have led to concerns regarding decreases in global microbial productivity. Central to understanding this process is determining the types and amounts of DNA damage in microbes caused by solar UV irradiation. While UV irradiation of dormant Bacillus subtilis endospores results mainly in formation of the “spore photoproduct” 5-thyminyl-5,6-dihydrothymine, genetic evidence indicates that an additional DNA photoproduct(s) may be formed in spores exposed to solar UV-B and UV-A radiation (Y. Xue and W. L. Nicholson, Appl. Environ. Microbiol. 62:2221–2227, 1996). We examined the occurrence of double-strand breaks, single-strand breaks, cyclobutane pyrimidine dimers, and apurinic-apyrimidinic sites in spore DNA under several UV irradiation conditions by using enzymatic probes and neutral or alkaline agarose gel electrophoresis. DNA from spores irradiated with artificial 254-nm UV-C radiation accumulated single-strand breaks, double-strand breaks, and cyclobutane pyrimidine dimers, while DNA from spores exposed to artificial UV-B radiation (wavelengths, 290 to 310 nm) accumulated only cyclobutane pyrimidine dimers. DNA from spores exposed to full-spectrum sunlight (UV-B and UV-A radiation) accumulated single-strand breaks, double-strand breaks, and cyclobutane pyrimidine dimers, whereas DNA from spores exposed to sunlight from which the UV-B component had been removed with a filter (“UV-A sunlight”) accumulated only single-strand breaks and double-strand breaks. Apurinic-apyrimidinic sites were not detected in spore DNA under any of the irradiation conditions used. Our data indicate that there is a complex spectrum of UV photoproducts in DNA of bacterial spores exposed to solar UV irradiation in the environment.  相似文献   

10.
Saplings of pedunculate oak (Quercus robur L.) were exposed at an outdoor facility to modulated levels of elevated UV-B radiation (280–315 nm) under treatment arrays of cellulose diacetate-filtered fluorescent lamps which also produced UV-A radiation (315–400 nm). Saplings were also exposed to UV-A radiation alone under control arrays of polyester-filtered lamps and to ambient levels of solar radiation under arrays of unenergized lamps. The UV-B treatment corresponded to a 30% elevation above the ambient level of erythemally weighted UV-B radiation. Sapling growth and the occurrence of associated organisms were examined over two years. In both years, leaves of saplings exposed to UV-B treatment were thicker and smaller in area relative to leaves exposed to ambient and control levels of radiation. UV-B treatment also retarded bud burst at one sampling in the first year of the study. Some responses were recorded which were common to both treatment and control arrays, implying that UV-A radiation, or some other factor associated with energized lamps, was responsible for the observed effects. Saplings under treatment and control arrays were taller in the first year of the study, suffered greater herbivory from chewing insects, and had lower root dry weights and greater insertion heights of secondary branches than saplings exposed to ambient levels of radiation. Exposure of saplings to elevated UV-A radiation alone under control arrays increased estimated leaf volumes in the second year of the study and reduced the number of secondary branches and the total number of branches per sapling after two years, relative to both treatment and ambient arrays. There were no effects of elevated ultraviolet radiation on shoot or total plant weight, root/shoot ratios, stem diameter, the numbers or insertion heights of primary or tertiary branches, total leaf number, timing of leaf fall or frequency of ectomycorrhizas. Our study suggests that any increases in UV-B radiation as a result of stratospheric ozone depletion will influence the growth of Q. robur primarily through effects on leaf morphology.  相似文献   

11.
Ultraviolet (UV) light induces a stocky phenotype in many plant species. In this study, we investigate this effect with regard to specific UV wavebands (UV-A or UV-B) and the cause for this dwarfing. UV-A- or UV-B-enrichment of growth light both resulted in a smaller cucumber (Cucumis sativus L.) phenotype, exhibiting decreased stem and petiole lengths and leaf area (LA). Effects were larger in plants grown in UV-B- than in UV-A-enriched light. In plants grown in UV-A-enriched light, decreases in stem and petiole lengths were similar independent of tissue age. In the presence of UV-B radiation, stems and petioles were progressively shorter the younger the tissue. Also, plants grown under UV-A-enriched light significantly reallocated photosynthates from shoot to root and also had thicker leaves with decreased specific LA. Our data therefore imply different morphological plant regulatory mechanisms under UV-A and UV-B radiation. There was no evidence of stress in the UV-exposed plants, neither in photosynthetic parameters, total chlorophyll content, or in accumulation of damaged DNA (cyclobutane pyrimidine dimers). The abscisic acid content of the plants also was consistent with non-stress conditions. Parameters such as total leaf antioxidant activity, leaf adaxial epidermal flavonol content and foliar total UV-absorbing pigment levels revealed successful UV acclimation of the plants. Thus, the UV-induced dwarfing, which displayed different phenotypes depending on UV wavelengths, occurred in healthy cucumber plants, implying a regulatory adjustment as part of the UV acclimation processes involving UV-A and/or UV-B photoreceptors.

A stocky phenotype develops in healthy cucumber plants as a regulatory adjustment toward UV-A and UV-B-enriched light, revealing a strong interaction between UV acclimation and developmental processes.  相似文献   

12.
Tropical regions currently receive the highest levels of global solar ultraviolet-B radiation (UV-B, 280–320 nm) even without ozone depletion. The influence of natural, present-day UV-B irradiance in the tropics was examined for five tropical species including three native rain forest tree species (Cecropia obtusifolia, Tetragastris panamensis, Calophyilum longifolium) and two economically important species (Swietenia macrophylla, Manihot esculenta). Solar UV-B radiation conditions in a small clearing on Barro Colorado Island, Panama (9° N), were obtained using either a UV-B-excluding plastic film or a film that transmits most of the solar UV-B. Significant differences between UV-B-excluded and near-ambient UV-B plants were often exhibited as increased foliar UV-B absorbing compounds and, in several cases, as reduced plant height with exposure to solar UV-B. Increases in leaf mass per area and reductions in leaf blade length under solar UV-B occurred less frequently. Biomass and photosystem II function using chlorophyll a fluorescence were generally unaffected. The results of this study provide evidence that tropical vegetation, including native rain forest species, responds to the present level of natural solar UV-B radiation. This suggests that even minor ozone depletion in the tropics may have biological implications.  相似文献   

13.
UV-B辐射对马尾松凋落叶分解和养分释放的影响   总被引:1,自引:0,他引:1  
由大气臭氧层减薄导致的UV-B辐射变化将直接影响到凋落物的分解。目前,有关UV-B辐射影响木本植物凋落物分解的研究还很少,在国内还没有开展。采用分解袋法开展了马尾松凋落叶在自然环境和UV-B辐射滤减两种辐射环境下的分解试验。结果表明:在UV-B辐射滤减环境下的马尾松凋落叶年分解速率比对照环境减慢了47.74%。UV-B辐射极显著(p<0.01)地加快了马尾松凋落叶的分解速率,促进了凋落叶中碳、磷、钾的释放和木质素的降解,对氮的释放无明显影响。研究结果意味着UV-B辐射将加快马尾松林的营养循环速度,降低马尾松林凋落物层的碳储量。  相似文献   

14.
About 95% of the ultraviolet (UV) photons reaching the Earth’s surface are UV-A (315–400 nm) photons. Plant responses to UV-A radiation have been less frequently studied than those to UV-B (280–315 nm) radiation. Most previous studies on UV-A radiation have used an unrealistic balance between UV-A, UV-B, and photosynthetically active radiation (PAR). Consequently, results from these studies are difficult to interpret from an ecological perspective, leaving an important gap in our understanding of the perception of solar UV radiation by plants. Previously, it was assumed UV-A/blue photoreceptors, cryptochromes and phototropins mediated photomorphogenic responses to UV-A radiation and “UV-B photoreceptor” UV RESISTANCE LOCUS 8 (UVR8) to UV-B radiation. However, our understanding of how UV-A radiation is perceived by plants has recently improved. Experiments using a realistic balance between UV-B, UV-A, and PAR have demonstrated that UVR8 can play a major role in the perception of both UV-B and short-wavelength UV-A (UV-Asw, 315 to ∼350 nm) radiation. These experiments also showed that UVR8 and cryptochromes jointly regulate gene expression through interactions that alter the relative sensitivity to UV-B, UV-A, and blue wavelengths. Negative feedback loops on the action of these photoreceptors can arise from gene expression, signaling crosstalk, and absorption of UV photons by phenolic metabolites. These interactions explain why exposure to blue light modulates photomorphogenic responses to UV-B and UV-Asw radiation. Future studies will need to distinguish between short and long wavelengths of UV-A radiation and to consider UVR8’s role as a UV-B/UV-Asw photoreceptor in sunlight.

In sunlight, UVR8 mediates the perception of both UV-B and short-wavelength UV-A radiation with its sensitivity moderated by blue light perceived through cryptochromes.  相似文献   

15.
Exclusion of UV (280–380 nm) radiation from the solar spectrum can be an important tool to assess the impact of ambient UV radiation on plant growth and performance of crop plants. The effect of exclusion of UV-B and UV-A from solar radiation on the growth and photosynthetic components in soybean (Glycine max) leaves were investigated. Exclusion of solar UV-B and UV-B/A radiation, enhanced the fresh weight, dry weight, leaf area as well as induced a dramatic increase in plant height, which reflected a net increase in biomass. Dry weight increase per unit leaf area was quite significant upon both UV-B and UV-B/A exclusion from the solar spectrum. However, no changes in chlorophyll a and b contents were observed by exclusion of solar UV radiation but the content of carotenoids was significantly (34–46%) lowered. Analysis of chlorophyll (Chl) fluorescence transient parameters of leaf segments suggested no change in the F v/F m value due to UV-B or UV-B/A exclusion. Only a small reduction in photo-oxidized signal I (P700+)/unit Chl was noted. Interestingly the total soluble protein content per unit leaf area increased by 18% in UV-B/A and 40% in UV-B excluded samples, suggesting a unique upregulation of biosynthesis and accumulation of biomass. Solar UV radiation thus seems to primarily affect the photomorphogenic regulatory system that leads to an enhanced growth of leaves and an enhanced rate of net photosynthesis in soybean, a crop plant of economic importance. The presence of ultra-violet components in sunlight seems to arrest carbon sequestration in plants. An erratum to this article can be found at  相似文献   

16.
Surface ultraviolet (UV) irradiance depends not only on stratospheric ozone amounts, but also varies with time and date, latitude, cloud amount and aerosol load. Any assessment of the effect of stratospheric ozone depletion on surface UV irradiance must take into consideration all of the above parameters. Measurements in the UV-B region may be accomplished using filter and detector combinations which mimic a biological response curve. However there are uncertainties such as in determining the exact filter response and in the cosine error of the detector. The UV-A region lacks a strong ozone absorption band and approaches which relate measured UV-A irradiance to measured global irradiance show promise. Theoretical models have been derived which calculate spectral UV irradiance in cloudless and cloudy conditions. Results show that cloud transmissivities increase as wavelength increases; however, there is a strong dependence on cloud type. In the absence of surface observations of clouds, satellite data may be used to map UV-A and UV-B irradiance in a region, and this approach is illustrated using two specific examples.  相似文献   

17.
The increase in ultraviolet-B (UV-B; 0.290-0.320 [mu]m) radiation received by plants due to stratospheric ozone depletion heightens the importance of understanding UV-B tolerance. Photosynthetic tissue is believed to be protected from UV-B radiation by UV-B-absorbing compounds (e.g. flavonoids). Although synthesis of flavonoids is induced by UV-B radiation, its protective role on photosynthetic pigments has not been clearly demonstrated. This results in part from the design of UV-B experiments in which experimental UV-A irradiance has not been carefully controlled, since blue/UV-A radiation is involved in the biosynthesis of the photosynthetic pigments. The relationship of flavonoids to photosynthetic performance, photosynthetic pigments, and growth measures was examined in an experiment where UV-A control groups were included at two biologically effective daily UV-B irradiances, 14.1 and 10.7 kJ m-2. Normal, chlorophyll-deficient, and flavonoid-deficient pigment isolines of two soybean (Glycine max) cultivars that produced different flavonol glycosides (Harosoy produced kaempferol, Clark produced quercetin and kaempferol) were examined. Plants with higher levels of total flavonoids, not specific flavonol glycosides, were more UV-B tolerant as determined by growth, pigment, and gas-exchange variables. Regression analyses indicated no direct relationship between photosynthesis and leaf levels of UV-B-absorbing compounds. UV-B radiation increased photosynthetic pigment content, along with UV-B-absorbing compounds, but only the former (especially carotenoids) was related to total biomass (r2 = 0.61, linear) and to photosynthetic efficiency (negative, exponential relationship, r2 = 0.82). A reduction in photosynthesis was associated primarily with a stomatal limitation rather than photosystem II damage. This study suggests that both carotenoids and flavonoids may be involved in plant UV-B photoprotection, but only carotenoids are directly linked to photoprotection of photosynthetic function. These results additionally show the importance of UV-A control in UV-B experiments conducted using artificial lamps and filters.  相似文献   

18.
A study was made of the effects of solar ultraviolet‐B radiation (UV‐B) on the growth of the dominant plant species of a shrub‐dominated ecosystem in Tierra del Fuego. This part of southern Argentina can be under the direct influence of the Antarctic ‘ozone hole’ during the austral spring and lingering ozone‐depleted air during the summer. The plant community is dominated by an evergreen shrub (Chiliotrichum diffusum) with an herbaceous layer of Gunnera magellanica and Blechnum penna‐marina in the interspaces between the shrubs. Inspections of ozone trends indicate that the springtime and summertime ozone column over Tierra del Fuego has decreased by 10–13% from 1978/9 to 1998/9. In a set of well‐replicated field plots, solar UV‐B was reduced to approximately 15–20% of the ambient UV‐B using plastic films. Polyester films were used to attenuate UV‐B radiation and UV‐transparent films (~90% UV‐B transmission) were used as control. Treatments were imposed during the growing season beginning in 1996 and continued for three complete growing seasons. Stem elongation of the shrub C. diffusum was not affected by UV‐B attenuation in any of the three seasons studied. However, frond length of B. penna‐marina under attenuated UV‐B was significantly greater than that under near‐ambient UV‐B in all three seasons. Attenuation of solar UV‐B also promoted the expansion of G. magellanica leaves in two of the growing seasons. Differences between treatments in leaf or frond length in B. penna‐marina and G. magellanica did not exceed 12%. Another significant effect of UV‐B attenuation was a promotion of insect herbivory in G. magellanica, with a 25–75% increase in the leaf area consumed. Changes in plant phenology or relative species cover were not detected within the time frame of this study. The results suggest that the increase in UV‐B radiation associated with the erosion of the ozone layer might be affecting the functioning of this ecosystem to some degree, particularly by inhibiting the growth of some plant species and by altering plant–insect interactions.  相似文献   

19.
Teasdale  B.W.  Lindstrom  S.C.  Fredericq  S.  Neefus  C.D.  Mathieson  A.C.  Taylor  H.  West  A.L.  Mercado  S.T.  Piche  N.  & Klein  A.S. 《Journal of phycology》2000,36(S3):65-65
Ground level ultraviolet-B (UV-B; 290–320 nm) fluxes in Antarctica have been increasing due to stratospheric ozone depletion. Although mat-forming cyanobacteria are major component of freshwater algal biomass in Antarctica, little is known about their response to increasing ultraviolet radiation (UVR). The present study evaluated the sensitivity to UVR of two strains of mat-forming cyanobacteria with different cell size, Phormidium murrayi (6.0 x 3.2 μm) and Schizothrix calcicola (2.2 x 2.3 μm). Cyanobacterial photosynthesis was measured under different UV spectral quality and quantity achieved by polychromatic filters with different cutoff wavelengths and neutral density screens. The productivity and irradiance data were used to generate biological weighting functions (BWF) for the assessment of UV inhibition on photosynthesis. The kinetics of UV inhibition, as determined by PAM fluorometry, differed between the two species so that inhibition of P. murrayi and S. calcicola were modeled based on UV-irradiance and cumulative exposure, respectively. After a one hour exposure, BWF's did not differ between the two isolates of cyanobacteria despite their differences in cell size. To evaluate the negative impact of increased UV-B exposure due to ozone depletion on cyanobacteria, the BWF's were applied to two solar spectra obtained from McMurdo Station, one on a day when the ozone hole was prominent (O3 = 170 Dobson units; DU = 10-3 cm O3), and the other on a day with high ozone concentration (O3 = 328 DU). The decrease in ozone level would reduce productivity by 3–8%. Seasonal variation of UVR has a bigger impact on cyanobacterial productivity than ozone depletion.  相似文献   

20.
Ground level ultraviolet‐B (UV‐B; 290–320 nm) fluxes in Antarctica have been increasing due to stratospheric ozone depletion. Although mat‐forming cyanobacteria are major component of freshwater algal biomass in Antarctica, little is known about their response to increasing ultraviolet radiation (UVR). The present study evaluated the sensitivity to UVR of two strains of mat‐forming cyanobacteria with different cell size, Phormidium murrayi (6.0 x 3.2 μm) and Schizothrix calcicola (2.2 x 2.3 μm). Cyanobacterial photosynthesis was measured under different UV spectral quality and quantity achieved by polychromatic filters with different cutoff wavelengths and neutral density screens. The productivity and irradiance data were used to generate biological weighting functions (BWF) for the assessment of UV inhibition on photosynthesis. The kinetics of UV inhibition, as determined by PAM fluorometry, differed between the two species so that inhibition of P. murrayi and S. calcicola were modeled based on UV‐irradiance and cumulative exposure, respectively. After a one hour exposure, BWF's did not differ between the two isolates of cyanobacteria despite their differences in cell size. To evaluate the negative impact of increased UV‐B exposure due to ozone depletion on cyanobacteria, the BWF's were applied to two solar spectra obtained from McMurdo Station, one on a day when the ozone hole was prominent (O3 = 170 Dobson units; DU = 10‐3 cm O3), and the other on a day with high ozone concentration (O3 = 328 DU). The decrease in ozone level would reduce productivity by 3–8%. Seasonal variation of UVR has a bigger impact on cyanobacterial productivity than ozone depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号