首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We report that late in a simian virus 40 (SV40) infection in CV-1 cells, there are significant decreases in phosphorylations of two mammalian target of rapamycin (mTOR) signaling effectors, the eIF4E-binding protein (4E-BP1) and p70 S6 kinase (p70S6K). The hypophosphorylation of 4E-BP1 results in 4E-BP1 binding to eIF4E, leading to the inhibition of cap-dependent translation. The dephosphorylation of 4E-BP1 is specifically mediated by SV40 small t antigen and requires the protein phosphatase 2A binding domain but not an active DnaJ domain. Serum-starved primary African green monkey kidney (AGMK) cells also showed decreased phosphorylations of mTOR, 4E-BP1, and p70S6K at late times in infection (48 h postinfection [hpi]). However, at earlier times (12 and 24 hpi), in AGMK cells, phosphorylated p70S6K was moderately increased, correlating with a significant increase in phosphorylation of the p70S6K substrate, ribosomal protein S6. Hyperphosphorylation of 4E-BP1 at early times could not be determined, since hyperphosphorylated 4E-BP1 was present in mock-infected AGMK cells. Elevated levels of phosphorylated eIF4G, a third mTOR effector, were detected in both CV-1 and AGMK cells at all times after infection, indicating that eIF4G phosphorylation was induced throughout the infection and unaffected by small t antigen. The data suggest that during SV40 lytic infection in monkey cells, the phosphorylations of p70S6K, S6, and eIF4G are increased early in the infection (12 and 24 hpi), but late in the infection (48 hpi), the phosphorylations of mTOR, p70S6K, and 4E-BP1 are dramatically decreased by a mechanism mediated, at least in part, by small t antigen.  相似文献   

3.
Localisation and regulation of the eIF4E-binding protein 4E-BP3   总被引:3,自引:0,他引:3  
The cap-binding protein eIF4E-binding protein 3 (4E-BP3) was identified some years ago, but its properties have not been investigated in detail. In this report, we investigated the regulation and localisation of 4E-BP3. We show that 4E-BP3 is present in the nucleus as well as in the cytoplasm in primary T cells, HEK293 cells and HeLa cells. 4E-BP3 was associated with eIF4E in both cell compartments. Furthermore, 4E-BP3/eIF4E association in the cytoplasm was regulated by serum or interleukin-2 starvation in the different cell types. Rapamycin did not affect the association of eIF4E with 4E-BP3 in the cytoplasm or in the nucleus.  相似文献   

4.
The phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), a potent stimulator of Erk, leads to the phosphorylation of 4E-BP1 and its dissociation from eIF4E. In contrast to agonists such as insulin, this occurs independently of PKB activation. In this report, we investigate the mechanism by which TPA regulates 4E-BP1 phosphorylation. Treatment of HEK293 cells with TPA was found to result in the phosphorylation of 4E-BP1 at Ser(64), Thr(69), and Thr(36/45). The TPA-stimulated phosphorylation of all these sites is sensitive to inhibitors of MEK and to the inhibitor of mTOR, rapamycin, indicating that inputs from both mTOR and MEK are required for the regulation of 4E-BP1 phosphorylation by TPA. Indeed, evidence is presented that mTOR may initially be required for the phosphorylation of Thr(45) in a priming step, which is necessary for the subsequent phosphorylation of Ser(64) and Thr(69) through an Erk-dependent pathway. Overexpression of constitutively active MEK in HEK293 cells resulted both in the phosphorylation of 4E-BP1 at Ser(64) and Thr(36/45) and its release from eIF4E. In this case, the phosphorylation of these sites was also blocked by inhibitors of MEK or by rapamycin. In conclusion, the Erk pathway, via mechanisms also requiring mTOR, regulates the phosphorylation of multiple sites in 4E-BP1 in vivo and this is sufficient for the release of 4E-BP1 from eIF4E.  相似文献   

5.
Stimulation of serum-starved human embryonic kidney (HEK) 293 cells with either the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), or insulin resulted in increases in the phosphorylation of 4E-BP1 and p70 S6 kinase, eIF4F assembly, and protein synthesis. All these effects were blocked by rapamycin, a specific inhibitor of mTOR. Phosphatidylinositol 3-kinase and protein kinase B were activated by insulin but not by TPA. Therefore TPA can induce eIF4F assembly, protein synthesis, and the phosphorylation of p70 S6 kinase and 4E-BP1 independently of both phosphatidylinositol 3-kinase and protein kinase B. Using two structurally unrelated inhibitors of MEK (PD098059 and U0126), we provide evidence that Erk activation is important in TPA stimulation of eIF4F assembly and the phosphorylation of p70 S6 kinase and 4E-BP1 and that basal MEK activity is important for basal, insulin, and TPA-stimulated protein synthesis. Transient transfection of constitutively active mitogen-activated protein kinase interacting kinase 1 (the eIF4E kinase) indicated that inhibition of protein synthesis and eIF4F assembly by PD098059 is not through inhibition of eIF4E phosphorylation but of other signals emanating from MEK. This report also provides evidence that increased eIF4E phosphorylation alone does not affect the assembly of the eIF4F complex or general protein synthesis.  相似文献   

6.
BACKGROUND: The mammalian target of rapamycin, mTOR, is a serine/threonine kinase that controls cell growth and proliferation via the translation regulators eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). We recently identified a TOR signaling (TOS) motif in the N terminus of S6K1 and the C terminus of 4E-BP1 and demonstrated that in S6K1, the TOS motif is necessary to facilitate mTOR signaling to phosphorylate and activate S6K1. However, it is unclear how the TOS motif in S6K1 and 4E-BP1 mediates mTOR signaling. RESULTS: Here, we show that a functional TOS motif is required for 4E-BP1 to bind to raptor (a recently identified mTOR-interacting protein), for 4E-BP1 to be efficiently phosphorylated in vitro by the mTOR/raptor complex, and for 4E-BP1 to be phosphorylated in vivo at all identified mTOR-regulated sites. mTOR/raptor-regulated phosphorylation is necessary for 4E-BP's efficient release from the translational initiation factor eIF4E. Consistently, overexpression of a mutant of 4E-BP1 containing a single amino acid change in the TOS motif (F114A) reduces cell size, demonstrating that mTOR-dependent regulation of cell growth by 4E-BP1 is dependent on a functional TOS motif. CONCLUSIONS: Our data demonstrate that the TOS motif functions as a docking site for the mTOR/raptor complex, which is required for multisite phosphorylation of 4E-BP1, eIF4E release from 4E-BP1, and cell growth.  相似文献   

7.
The mammalian target of rapamycin (mTOR) integrates nutrient and mitogen signals to regulate cell growth (increased cell mass and cell size) and cell division. The immunosuppressive drug rapamycin inhibits cell cycle progression via inhibition of mTOR; however, the signaling pathways by which mTOR regulates cell cycle progression have remained poorly defined. Here we demonstrate that restoration of mTOR signaling (by using a rapamycin-resistant mutant of mTOR) rescues rapamycin-inhibited G(1)-phase progression, and restoration of signaling along the mTOR-dependent S6K1 or 4E-BP1/eukaryotic translation initiation factor 4E (eIF4E) pathways provides partial rescue. Furthermore, interfering RNA-mediated reduction of S6K1 expression or overexpression of mTOR-insensitive 4E-BP1 isoforms that block eIF4E activity inhibit G(1)-phase progression individually and additively. Thus, the activities of both the S6K1 and 4E-BP1/eIF4E pathways are required for and independently mediate mTOR-dependent G(1)-phase progression. In addition, overexpression of constitutively active mutants of S6K1 or wild-type eIF4E accelerates serum-stimulated G(1)-phase progression, and stable expression of wild-type S6K1 confers a proliferative advantage in low-serum-containing media, suggesting that the activity of each of these pathways is limiting for cell proliferation. These data demonstrate that, as for the regulation of cell growth and cell size, the S6K1 and 4E-BP1/eIF4E pathways each represent critical mediators of mTOR-dependent cell cycle control.  相似文献   

8.
Heat shock protein 90 (Hsp90) was co-immunoprecipitated with raptor, the binding partner of the mammalian target of rapamycin (mTOR) from HEK293 cells. Hsp90 was detected in the anti-raptor antibody immunoprecipitates prepared from the cell extract by immunoblot analysis using the anti-Hsp90 antibody, and the association of these two proteins was confirmed by immunoprecipitation from the cells co-expressing Hsp90 and raptor as epitope-tagged molecules. Geldanamycin, a potent inhibitor of Hsp90, disrupted the in vivo binding of Hsp90 to raptor without affecting the association of raptor and mTOR, and suppressed the phosphorylation by mTOR of the downstream translational regulators p70 S6 kinase (S6K) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). The protein kinase activity of S6K as well as the phosphorylation of the substrate, 40S ribosomal protein S6, were lowered in the geldanamycin-treated cells. These results indicate that Hsp90 is involved in the regulation of protein translation by facilitating the phosphorylation reaction of 4E-BP1 and S6K catalyzed by the mTOR/raptor complex through the association with raptor, and that the mTOR signaling pathway is a novel target of geldanamycin.  相似文献   

9.
Signaling mediated by the cellular kinase mammalian target of rapamycin (mTOR) activates cap-dependent translation under normal (nonstressed) conditions. However, translation is inhibited by cellular stress responses or rapamycin treatment, which inhibit mTOR kinase activity. We show that during human cytomegalovirus (HCMV) infection, viral protein synthesis and virus production proceed relatively normally when mTOR kinase activity is inhibited due to hypoxic stress or rapamycin treatment. Using rapamycin inhibition of mTOR, we show that HCMV infection induces phosphorylation of two mTOR effectors, eucaryotic initiation factor 4E (eIF4E) binding protein (4E-BP) and eIF4G. The virally induced phosphorylation of eIF4G is both mTOR and phosphatidylinositol 3-kinase (PI3K) independent, whereas the phosphorylation of 4E-BP is mTOR independent, but PI3K dependent. HCMV infection does not induce mTOR-independent phosphorylation of a third mTOR effector, p70S6 kinase (p70S6K). We show that the HCMV-induced phosphorylation of eIF4G and 4E-BP correlates with the association of eIF4E, the cap binding protein, with eIF4G in the eIF4F translation initiation complex. Thus, HCMV induces mechanisms to maintain the integrity of the eIF4F complex even when mTOR signaling is inhibited.  相似文献   

10.
Endotoxin (i.e., lipopolysaccharide, LPS) impairs skeletal muscle protein synthesis. Although this impairment is not acutely associated with a decreased plasma concentration of total amino acids, LPS may blunt the anabolic response to amino acids. To examine this hypothesis, rats were injected intraperitoneally with LPS or saline (Sal) and 4 h thereafter were orally administered either leucine (Leu) or Sal. The gastrocnemius was removed 20 min later to assess signaling components important in the translational control of protein synthesis. In the Sal-Leu group phosphorylation of 4E-BP1 in muscle was markedly increased, compared to values from time-matched saline-treated control rats. This change was associated with a redistribution of eukaryotic initiation factor (eIF) 4E from the inactive eIF4E x 4E-BP1 complex to the active eIF4E x eIF4G complex. In LPS-treated rats, the Leu-induced phosphorylation of 4E-BP1 and changes in eIF4E distribution were partially or completely abrogated. LPS also antagonized the Leu-induced increase in phosphorylation of S6K1, ribosomal protein S6 and mTOR. Neither LPS nor leu altered the total amount or phosphorylation of TSC2 in muscle. The ability of LPS to blunt the anabolic effects of Leu could not be attributed to differences in the plasma concentrations of insulin or Leu between groups. Furthermore, the replacement of plasma insulin-like growth factor (IGF)-I in LPS-treated rats to basal levels also did not ameliorate the defect in leucine-induced phosphorylation of S6K1 or S6, although it did reverse the LPS-induced decrease in the constitutive phosphorylation of mTOR, S6 and 4E-BP1. Pretreatment with the glucocorticoid receptor antagonist RU486 was unable to prevent the LPS-induced leucine resistance. In contrast, to the abovementioned results with leucine, LPS did not prevent the ability of pharmacological levels of IGF-I to phosphorylate 4E-BP1, S6K1, mTOR or alter the availability of eIF4E. Hence, LPS working via a glucocorticoid-independent mechanism produces a leucine resistance in skeletal muscle that might be expected to impair the ability of this amino acid to stimulate translation initiation and protein synthesis.  相似文献   

11.
Elevations in free fatty acids (FFAs) impair glucose uptake in skeletal muscle. However, there is no information pertaining to the effect of elevated circulating lipids on either basal protein synthesis or the anabolic effects of leucine and insulin-like growth factor I (IGF-I). In chronically catheterized conscious rats, the short-term elevation of plasma FFAs by the 5-h infusion of heparin plus Intralipid decreased muscle protein synthesis by approximately 25% under basal conditions. Lipid infusion was associated with a redistribution of eukaryotic initiation factor (eIF)4E from the active eIF4E.eIF4G complex to the inactive eIF4E.4E-BP1 complex. This shift was associated with a decreased phosphorylation of eIF4G but not 4E-BP1. Lipid infusion did not significantly alter either the total amount or phosphorylation state of mTOR, TSC2, S6K1, or the ribosomal protein S6 under basal conditions. In control rats, oral leucine increased muscle protein synthesis. This anabolic response was not impaired by lipid infusion, and no defects in signal transduction pathways regulating translation initiation were detected. In separate rats that received a bolus injection of IGF-I, lipid infusion attenuated the normal redistribution of eIF4E from the active to inactive complex and largely prevented the increased phosphorylation of 4E-BP1, eIF4G, S6K1, and S6. This IGF-I resistance was associated with enhanced Ser(307) phosphorylation of insulin receptor substrate-1 (IRS-1). These data indicate that the short-term elevation of plasma FFAs impairs basal protein synthesis in muscle by altering eIF4E availability, and this defect may be related to impaired phosphorylation of eIF4G, not 4E-BP1. Moreover, hyperlipidemia impairs IGF-I action but does not produce leucine resistance in skeletal muscle.  相似文献   

12.
《Cellular signalling》2014,26(10):2117-2121
Mammalian target of rapamycin (mTOR) controls cellular growth and proliferation by virtue of its ability to regulate protein translation. Eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1) — a key mTOR substrate, binds and sequesters eIF4E to impede translation initiation that is supposedly overcome upon 4E-BP1 phosphorylation by mTOR. Ambiguity surrounding the precise identity of mTOR regulated sites in 4E-BP1 and their invariable resistance to mTOR inactivation raises concerns about phospho-regulated model proposed for 4E:4E-BP1 interaction. Our attempt to mimic dephosphorylation associated with rapamycin response by introducing phospho deficient mutants for sites implicated in regulating 4E:4E-BP1 interaction individually or globally highlighted no obvious difference in the quantum of their association with CAP bound 4E when compared with their phosphomimicked counterparts or the wild type 4E-BP1. TOS or RAIP motif deletion variants compromised for raptor binding and resultant phosphodeficiency did little to influence their association with CAP bound 4E. Interestingly ectopic expression of ribosomal protein S6 kinase 1 (S6K1) that restored 4E-BP1 sensitivity to rapamycin/Torin reflected by instant loss of 4E-BP1 phosphorylation, failed to bring about any obvious change in 4E:4E-BP1 stoichiometry. Our data clearly demonstrate a potential disconnect between rapamycin response of 4E-BP1 and its association with CAP bound 4E.  相似文献   

13.
Muscle protein synthesis rates decrease during contraction/exercise, but rapidly increase post-exercise. Previous studies mainly focused on signaling pathways that control protein synthesis during post-exercise recovery, such as mTOR and its downstream targets S6K1 and 4E-BP1. In this study, we investigated the effect of high-frequency electrical stimulation on the phosphorylation state of signaling components controlling protein synthesis in rat skeletal muscle. Electrical stimulation increased S6K1 Thr389 phosphorylation, which was unaffected by Torin1, a selective mTOR inhibitor, suggesting that S6K1 phosphorylation by contraction was mTOR-independent. Phosphorylation of eIF4B Ser422 was also increased during electrical stimulation, which was abrogated by inhibition of MEK/ERK/RSK1 activation. Moreover, although phosphorylation of conventional mTOR sites in 4E-BP1 decreased during contraction, mTOR-independent phosphorylation was also apparent, which was associated with the release of 4E-BP1 from eIF4E. The results indicate mTOR-independent phosphorylation of S6K1 and 4E-BP1 and suggest MEK/ERK/RSK1-dependent phosphorylation of eIF4B during skeletal muscle contraction. These phosphorylation events would keep the translation initiation machinery “primed” in an active state so that protein synthesis could quickly resume post-exercise.  相似文献   

14.
Insulin and TNF-alpha exert opposing effects on skeletal muscle protein synthesis that are mediated in part by the rapamycin-sensitive mammalian target of rapamycin (mTOR) pathway and the PD-98059-sensitive, extracellular signal-regulated kinase (ERK)1/2 pathway. The present study examined the separate and combined effects of insulin (INS), TNF, PD-98059, or dnMEK1 adenovirus on the translational control of protein synthesis in C(2)C(12) myotubes. Cultures were treated with INS, TNF, PD-98059, dnMEK1, or a combination of INS + TNF with PD-98059 or dnMEK1. INS stimulated protein synthesis, enhanced eIF4E.eIF4G association, and eIF4G phosphorylation and repressed eIF4E.4E-BP1 association vs. control. INS also promoted phosphorylation of ERK1/2, S6K1, and 4E-BP1 and dephosphorylation of eIF4E. TNF alone did not have an effect on protein synthesis (vs. control), eIF4E.eIF4G association, or the phosphorylation of eIF4G, S6K1, or 4E-BP1, although it transiently increased ERK1/2 and eIF4E phosphorylation. When myotubes were treated with TNF + INS, the cytokine blocked the insulin-induced stimulation of protein synthesis. This appeared to be due to an attenuation of insulin-stimulated eIF4E.eIF4G association, because other stimulatory effects of INS, e.g., phosphorylation of ERK1/2, 4E-BP1, S6K1, eIF4G, and eIF4E and eIF4E.4E-BP1 association, were unaffected. Finally, treatment of myotubes with PD-98059 or dnMEK1 adenovirus before TNF + INS addition resulted in a derepression of protein synthesis and the association of eIF4G with eIF4E. These findings suggest that TNF abrogates insulin-induced stimulation of protein synthesis in myotubes through a decrease in eIF4F complex assembly independently of S6K1 and 4E-BP1 signaling and dependently on a MEK1-sensitive signaling pathway.  相似文献   

15.
BACKGROUND: The mammalian target of rapamycin (mTOR) controls the translation machinery via activation of S6 kinases 1 and 2 (S6K1/2) and inhibition of the eukaryotic initiation factor 4E (eIF4E) binding proteins 1, 2, and 3 (4E-BP1/2/3). S6K1 and 4E-BP1 are regulated by nutrient-sensing and mitogen-activated pathways. The molecular basis of mTOR regulation of S6K1 and 4E-BP1 remains controversial. RESULTS: We have identified a conserved TOR signaling (TOS) motif in the N terminus of all known S6 kinases and in the C terminus of the 4E-BPs that is crucial for phosphorylation and regulation S6K1 and 4E-BP1 activities. Deletion or mutations within the TOS motif significantly inhibit S6K1 activation and the phosphorylation of its hydrophobic motif, Thr389. In addition, this sequence is required to suppress an inhibitory activity mediated by the S6K1 C terminus. The TOS motif is essential for S6K1 activation by mTOR, as mutations in this motif mimic the effect of rapamycin on S6K1 phosphorylation, and render S6K1 insensitive to changes in amino acids. Furthermore, only overexpression of S6K1 with an intact TOS motif prevents 4E-BP1 phosphorylation by a common mTOR-regulated modulator of S6K1 and 4E-BP1. CONCLUSIONS: S6K1 and 4E-BP1 contain a conserved five amino acid sequence (TOS motif) that is crucial for their regulation by the mTOR pathway. mTOR seems to regulate S6K1 by two distinct mechanisms. The TOS motif appears to function as a docking site for either mTOR itself or a common upstream activator of S6K1 and 4E-BP1.  相似文献   

16.
PLD1 regulates mTOR signaling and mediates Cdc42 activation of S6K1   总被引:5,自引:0,他引:5  
BACKGROUND: The mammalian target of rapamycin (mTOR) regulates cell growth and proliferation via the downstream targets ribosomal S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1). We have identified phosphatidic acid (PA) as a mediator of mitogenic activation of mTOR signaling. In this study, we set out to test the hypotheses that phospholipase D 1 (PLD1) is an upstream regulator of mTOR and that the previously reported S6K1 activation by Cdc42 is mediated by PLD1. RESULTS: Overexpression of wild-type PLD1 increased S6K1 activity in serum-stimulated cells, whereas a catalytically inactive PLD1 exerted a dominant-negative effect on S6K1. More importantly, eliminating endogenous PLD1 by RNAi led to drastic inhibition of serum-stimulated S6K1 activation and 4E-BP1 hyperphosphorylation in both HEK293 and COS-7 cells. Knockdown of PLD1 also resulted in reduced cell size, suggesting a critical role for PLD1 in cell growth control. Using a rapamycin-resistant S6K1 mutant, Cdc42's action was demonstrated to be through the mTOR pathway. When Cdc42 was mutated in a region specifically required for PLD1 activation, its ability to activate S6K1 in the presence of serum was hindered. However, when exogenous PA was used as a stimulus, the PLD1-inactive Cdc42 mutant behaved similarly to the wild-type protein. CONCLUSIONS: Our observations reveal the involvement of PLD1 in mTOR signaling and cell size control, and provide a molecular mechanism for Cdc42 activation of S6K1. A new cascade is proposed to connect mitogenic signals to mTOR through Cdc42, PLD1, and PA.  相似文献   

17.
Signaling through the mammalian target of rapamycin (mTOR) controls cell size and growth as well as other functions, and it is a potential therapeutic target for graft rejection, certain cancers, and disorders characterized by inappropriate cell or tissue growth. mTOR signaling is positively regulated by hormones or growth factors and amino acids. mTOR signaling regulates the phosphorylation of several proteins, the best characterized being ones that control mRNA translation. Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) undergoes phosphorylation at multiple sites. Here we show that amino acids regulate the N-terminal phosphorylation sites in 4E-BP1 through the RAIP motif in a rapamycin-insensitive manner. Several criteria indicate this reflects a rapamycin-insensitive output from mTOR. In contrast, the insulin-stimulated phosphorylation of the C-terminal site Ser64/65 is generally sensitive to rapamycin, as is phosphorylation of another well-characterized target for mTOR signaling, S6K1. Our data imply that it is unlikely that mTOR directly phosphorylates Thr69/70 in 4E-BP1. Although 4E-BP1 and S6K1 bind the mTOR partner, raptor, our data indicate that the outputs from mTOR to 4E-BP1 and S6K1 are distinct. In cells, efficient phosphorylation of 4E-BP1 requires it to be able to bind to eIF4E, whereas phosphorylation of 4E-BP1 by mTOR in vitro shows no such preference. These data have important implications for understanding signaling downstream of mTOR and the development of new strategies to impair mTOR signaling.  相似文献   

18.
The mammalian target of rapamycin (mTOR) kinase occurs in mTOR complex 1 (mTORC1) and complex 2 (mTORC2), primarily differing by the substrate specificity factors raptor (in mTORC1) and rictor (in mTORC2). Both complexes are activated during human cytomegalovirus (HCMV) infection. mTORC1 phosphorylates eukaryotic initiation factor 4E (eIF4E)-binding protein (4E-BP1) and p70S6 kinase (S6K) in uninfected cells, and this activity is lost upon raptor depletion. In infected cells, 4E-BP1 and S6K phosphorylation is maintained when raptor or rictor is depleted, suggesting that either mTOR complex can phosphorylate 4E-BP1 and S6K. Studies using the mTOR inhibitor Torin1 show that phosphorylation of 4E-BP1 and S6K in infected cells depends on mTOR kinase. The total levels of 4E-BP1 and viral proteins representative of all temporal classes were lowered by Torin1 treatment and by raptor, but not rictor, depletion, suggesting that mTORC1 is involved in the production of all classes of HCMV proteins. We also show that Torin1 inhibition of mTOR kinase is rapid and most deleterious at early times of infection. While Torin1 treatment from the beginning of infection significantly inhibited translation of viral proteins, its addition at later time points had far less effect. Thus, with respect to mTOR's role in translational control, HCMV depends on it early in infection but can bypass it at later times of infection. Depletion of 4E-BP1 by use of short hairpin RNAs (shRNAs) did not rescue HCMV growth in Torin1-treated human fibroblasts as it has been shown to in murine cytomegalovirus (MCMV)-infected 4E-BP1(-/-) mouse embryo fibroblasts (MEFs), suggesting that during HCMV infection mTOR kinase has additional roles other than phosphorylating and inactivating 4E-BP1. Overall, our data suggest a dynamic relationship between HCMV and mTOR kinase which changes during the course of infection.  相似文献   

19.
Acute alcohol (EtOH) intoxication impairs skeletal muscle protein synthesis. Although this impairment is not associated with a decrease in the total plasma amino acid concentration, EtOH may blunt the anabolic response to amino acids. To examine this hypothesis, rats were administered EtOH or saline (Sal) and 2.5 h thereafter were orally administered either leucine (Leu) or Sal. The gastrocnemius was removed 20 min later to assess protein synthesis and signaling components important in translational control of protein synthesis. Oral Leu increased muscle protein synthesis by the same magnitude in Sal- and EtOH-treated rats. However, the increase in the latter group was insufficient to overcome the suppressive effect of EtOH, and the rate of synthesis remained lower than that observed in rats from the Sal-Sal group. Leu markedly increased phosphorylation of Thr residues 36, 47, and 70 on 4E-binding protein (BP)1 in muscle from rats not receiving EtOH, and this response was associated with a redistribution of eukaryotic initiation factor (eIF) 4E from the inactive eIF4E. 4E-BP1 to the active eIF4E. eIF4G complex. In EtOH-treated rats, the Leu-induced phosphorylation of 4E-BP1 and changes in eIF4E availability were partially abrogated. EtOH also prevented the Leu-induced increase in phosphorylation of eIF4G, the serine/threonine protein kinase S6K1, and the ribosomal protein S6. Moreover, EtOH attenuated the Leu-induced phosphorylation of the mammalian target of rapamycin (mTOR). The ability of EtOH to blunt the anabolic effects of Leu could not be attributed to differences in the plasma concentrations of insulin, insulin-like growth factor I, or Leu. Finally, although EtOH increased the plasma corticosterone concentration, inhibition of glucocorticoid action by RU-486 was unable to prevent EtOH-induced defects in the ability of Leu to stimulate 4E-BP1, S6K1, and mTOR phosphorylation. Hence, ethanol produces a leucine resistance in skeletal muscle, as evidenced by the impaired phosphorylation of 4E-BP1, eIF4G, S6K1, and mTOR, that is independent of elevations in endogenous glucocorticoids.  相似文献   

20.
Feeding promotes protein accretion in skeletal muscle through a stimulation of the mRNA translation initiation phase of protein synthesis either secondarily to nutrient-induced rises in insulin or owing to direct effects of nutrients themselves. The present set of experiments establishes the effects of meal feeding on potential signal transduction pathways that may be important in accelerating mRNA translation initiation. Gastrocnemius muscle from male Sprague-Dawley rats trained to consume a meal consisting of rat chow was sampled before, during, and after the meal. Meal feeding enhanced the assembly of the active eIF4G.eIF4E complex, which returned to basal levels within 3 h of removal of food. The increased assembly of the active eIF4G.eIF4E complex was associated with a marked 10-fold rise in phosphorylation of eIF4G(Ser(1108)) and a decreased assembly of inactive 4E-BP1.eIF4E complex. The reduced assembly of 4E-BP1.eIF4E complex was associated with a 75-fold increase in phosphorylation of 4E-BP1 in the gamma-form during feeding. Phosphorylation of S6K1 on Ser(789) was increased by meal feeding, although the extent of phosphorylation was greater at 0.5 h after feeding than after 1 h. Phosphorylation of mammalian target of rapamycin (mTOR) on Ser(2448) or Ser(2481), an upstream kinase responsible for phosphorylating both S6K1 and 4E-BP1, was increased at all times during meal feeding, although the extent of phosphorylation was greater at 0.5 h after feeding than after 1 h. Phosphorylation of PKB, an upstream kinase responsible for phosphorylating mTOR, was elevated only after 0.5 h of meal feeding for Thr(308), whereas phosphorylation Ser(473) was significantly elevated at only 0.5 and 1 h after initiation of feeding. We conclude from these studies that meal feeding stimulates two signal pathways in skeletal muscle that lead to elevated eIF4G.eIF4E complex assembly through increased phosphorylation of eIF4G and decreased association of 4E-BP1 with eIF4E.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号