首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《水生昆虫》2012,34(2):189-205
The abundance and taxonomic composition of the aquatic insect fauna were investigated, with focus on adult water bugs, water beetles and water scavenger beetles (Heteroptera: Nepomorpha and Gerromorpha, and Coleoptera: Hydradephaga and Hydrophilidae) in two different freshwater habitats: (1) a periodically flooded area of the Special Zoological Reserve in Kopa?ki rit Nature Park, Croatia; and (2) melioration canals in the wider area of the Nature Park during 2005. Aquatic insects are generally abundant in various water systems, including floodplains that are exposed to water level fluctuations. Our aims were (1) to determine abundance and species richness in relation to habitat type; (2) to determine the influence of high flood peaks and oscillations during high water levels on the diversity of aquatic Coleoptera and Heteroptera in the flooded area; and (3) to identify characteristic species associated with each habitat type. We collected 71 species; 41 were captured at canals and 64 at the flooded area. Diversity of the two habitat types varied depending on the months but there were remarkable differences in species pool and their abundance. Both high and low water levels as well as oscillations during high water levels had major influence on species assemblages at the flooded area. Diversity of aquatic Coleoptera and Heteroptera was higher when the water level decreased after high water level peaks. A total of 11 species fulfilled the criteria for specificity and were sufficiently abundant to be suitable species characteristic for these two habitats. A higher proportion of significant characteristic species was present in the flooded area than in the canals. The presence of two Red List species of water beetles (Graphoderus bilineatus De Geer, 1774 and Berosus geminus Reiche et Saulcy, 1856) and nine significant characteristic species at the flooded area clearly indicates that the contribution of floodplains in maintaining freshwater biodiversity is not only important regionally but also at the international level. Also, our results suggest that the power of high water levels is an important factor that can be used in analyses on aquatic Coleoptera and Heteroptera assemblages, showing the uniqueness of large floodplain areas.  相似文献   

3.
The density‐dependence in parasitism by the robber fly Mallophora ruficauda (Diptera: Asilidae) on scarab beetle larvae (Coleoptera: Scarabaeidae) populations was studied in the present research. Mallophora ruficauda is a pestiferous species common in the open grasslands of the Pampas region of South America. Adults are predators of insects and larvae are solitary parasitoids of third instar larvae of several species of scarab beetle (Coleoptera: Scarabaeidae). In contrast with most studied host‐parasitoid interactions, host searching by M. ruficauda is carried out by both larvae and adults. Typically, robber fly females lay eggs on tall grasses from where larvae drop to the ground, and attack hosts which are buried in the soil. We carried out our study at two spatial scales close to 14 apiaries located in the provinces of Buenos Aires and Entre Ríos (Argentina). We found that parasitism is density‐independent at the larger spatial scale and inversely density‐dependent at the smaller one. We also found that M. ruficauda selects Cyclocephala signaticollis among several scarab beetle species. Specificity is observed both at large and small spatial scales. We discuss the implications of both host specificity and host searching behaviour on the observed parasitism patterns.  相似文献   

4.
The paper studies mycobiota of the dead insects in West Siberia, Primorsky krai, and Kyrgyzstan. Ascomycetes anamorphs of 13 genera are revealed. In all regions Beauveria bassiana (Bals.-Criv.) Vuill. dominated comprising on average 68% of the total number of isolates. The fungus hosts list the insects of 7 orders and 32 families with Coleoptera, Lepidoptera, and Hemiptera dominating. The rarely found entomopathogens include Tolypocladium inflatum Gams (primarily on Lepidoptera), Metarhizium anisopliae (Metschn.) Sorokin (on Coleoptera). The mortality rate of the insects due to micromycetes is observed mainly on enzootic level. The study of the pathogenic properties of the dominating species (B. bassiana) show the absence of specificity of its environmental isolates for a number of representatives of Orthoptera, Lepidoptera, Coleoptera, and Diptera.  相似文献   

5.
We evaluated responses of the predominant predators of pheromone-producing bark beetles (Coleoptera: Scolytidae) to chemical cues associated with other phloeophagous species that colonize the same trees. This study considered the range of chemical signals exploited by a category of predators that may be viewed either as specialists, because they feed almost exclusively within trees killed by bark beetles, or as generalists, because they feed on a diverse fauna of primary and secondary insects within this habitat. It also evaluated one aspect of a broader model of predator-prey coevolution, that proposes altered semiochemistry as a source of partial escape from predators that exploit kairomones. The predators, Thanasimus dubius (F.) (Coleoptera: Cleridae) and Platysoma cylindrica (Paykull) (Coleoptera: Histeridae), were attracted to cues associated with feeding on bark-phloem disks by two scolytids that produce adult pheromones, Ips pini (Say) and Ips grandicollis (Eichhoff). These predators were not attracted to beetles that feed on lower stems or roots and are not known to produce adult pheromones,Dendroctonus valens LeConte, Hylastes porculus Erickson (Coleoptera: Scolytidae), and Hylobius pales (Herbst) (Coleoptera: Curculionidae). The predator Tenebroides collaris (Sturm) (Coleoptera: Trogositidae) was attracted to I. pini and I. grandicollis, and also to D. valens, H. porculus, and H. pales. Ips pini was attracted to conspecifics only, but I. grandicollis was attracted both to its conspecifics and to volatiles associated with feeding lower stem and root insects. Lower stem and root insects were not or only weakly attracted to cues associated with their conspecifics. These results are consistent with a dynamic coevolved interaction between T. dubius and P. cylindrica and Ips spp.  相似文献   

6.
1. Daily changes in the flight activity of aquatic insects have been investigated in only a few water beetles and bugs. The diel flight periodicity of aquatic insects and the environmental factors governing it are poorly understood. 2. We found that primary aquatic insects belonging to 99 taxa (78 Coleoptera, 21 Heteroptera) fly predominantly in mid‐morning, and/or around noon and/or at nightfall. There appears to be at least four different types of diurnal flight activity rhythm in aquatic insects, characterised by peak(s): (i) in mid‐morning; (ii) in the evening; (iii) both in mid‐morning and the evening; (iv) around noon and again in the evening. These activity maxima are quite general and cannot be explained exclusively by daily fluctuations of air temperature, humidity, wind speed and risks of predation, which are all somewhat stochastic. 3. We found experimental evidence that the proportion (%) P(θ) of reflecting surfaces detectable polarotactically as ‘water’ is always maximal at the lowest (dawn and dusk) and highest (noon) angles of solar elevation (θ) for dark reflectors while P(θ) is maximal at dawn and dusk (low solar elevations) for bright reflectors under clear or partly cloudy skies. 4. From the temporal coincidence between peaks in the diel flight activity of primary aquatic insects and the polarotactic detectability P(θ) of water surfaces we conclude that the optimal times of day for aquatic insects to disperse are the periods of low and high solar elevations θ. The θ‐dependent reflection–polarisation patterns, combined with an appropriate air temperature, clearly explain why polarotactic aquatic insects disperse to new habitats in mid‐morning, and/or around noon and/or at dusk. We call this phenomenon the ‘polarisation sun‐dial’ of dispersing aquatic insects.  相似文献   

7.
Bao X  Tian X  Zhao Z  Qu Y  Wang B  Zhang J  Liu T  Yang L  Lv J  Song C 《Cell and tissue research》2008,332(3):555-563
Immediately following the discovery of tryptophan hydroxylase in Drosophila, we demonstrated the presence of tryptophan hydroxylase in the brain of the beetle Harmonia axyridis (Coleoptera: Coccinellidae). However, whether tryptophan hydroxylase is present in the brains of other insects is still a matter of discussion. In the current study, sheep anti-tryptophan hydroxylase polyclonal antibody has been applied to test for tryptophan hydroxylase immunoreactivity in a broader taxonomic range of insect brains, including holometabolous and hemimetabolous insects: one species each of Coleoptera, Hymenoptera, Diptera, and Blattaria, and two species of Lepidoptera. All species show consistent tryptophan hydroxylase immunoreactivity with distribution patterns matching that of serotonin. The immuno-positive results of such an antibody in brains from diverse orders of insects suggest that specific tryptophan hydroxylase responsible for central serotonin synthesis is probably present in the brains of all insects. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported by grants from the National Natural Science Foundation of China (grant no. 30470546) and the Natural Science Foundation of Jilin Province (grant no. 20030550–7).  相似文献   

8.
Little is known of the biology of most insects that are endemic to prairie ecosystems of North America, with the exception of large and conspicuous species. In particular, species that are sequestered within plant tissues are commonly overlooked. In this paper, we assess the biodiversity of endophytic insects that inhabit stems of Silphium laciniatum L. and S. terebinthinaceum Jacquin (Asteraceae), endemic plants of tallgrass prairies. Endophytic herbivores, gall wasps Antistrophus rufus Gillette and A. minor Gillette (Hymenoptera: Cynipidae) and stem-boring larvae of the beetle Mordellistena aethiops Smith (Coleoptera: Mordellidae) were attacked by 10 species of natural enemies. We report new host plant associations for herbivores, and new host insect associations for parasitoids. The two plant species differed significantly in their densities of gall wasps and the vertical dispersion of galls within stems. Interactions within and between trophic levels attest to the biodiversity of endophytic insect communities, and the specialized nature of these insects suggests they are highly vulnerable to habitat conservation practices that involve destruction of dead vegetation.  相似文献   

9.
The alien moth Epiblema sugii (Lepidoptera: Tortricidae) induces stem galls on an invasive alien weed, Ambrosia trifida. During summer, along riverbanks in central Japan, the native insects Protaetia brevitarsis, P. orientalis submarumorea (Coleoptera: Scarabaeidae: Cetoniinae), and Camponotus vitiosus (Hymenoptera: Formicidae) feed on the sap exuded from the galls. The cetoniine beetles are highly aggregated among the galls and make wounds on the galls to facilitate sap exudation. Feeding on gall sap may be beneficial to the beetles due to the efficient intake of water and sugar, and the beetles’ inflicting wounds and feeding on the sap seem to have little effect on the gallers. This is a unique finding, where alien plant–galler interaction provides a feeding site for native insects.  相似文献   

10.
Sperm polymorphism describes the phenomenon of male ejaculates containing two or more distinct types of sperm. In insects, four types of sperm polymorphism are recognized in species from the orders Diptera, Hemiptera, Hymenoptera, Lepidoptera and Coleoptera. The present study describes dimorphic sperm of the ground beetle Scarites terricola (Coleoptera: Carabidae) as a novel type of sperm polymorphism in insects. Sperm from the spermatophore and male seminal vesicles are examined at the light‐microscopic level, and both display marked dimorphism. One type has sperm formed into bundles, in which the head of numerous spermatozoa are ‘glued’ together, with tails free‐moving. The other type are free as single spermatozoa and have a disproportionately large‐sized head and an elongated tail. Both types are motile in Ringer's solution. The adaptive and phylogenetic importance of these findings is discussed.  相似文献   

11.
Flower visiting beetles possess numerous structural adaptations of their mouthparts to adhere and ingest pollen grains. Using a Cryo-SEM approach the examination of the mouthparts in rapidly frozen Cetonia aurata (Scarabaeidae) indicates a previously unknown technique of pollen uptake in Coleoptera. Cryo-SEM micrographs of the mouthparts reveal a fluid covering the bristles on the buccal surface. In this way the bristles of the galeae form a wet brush which represents the primary organ of pollen uptake. The fluid improves adhesion of pollen to bristles lacking any specialized adhering surface or highly sculptured cuticle as present in other pollen feeding Coleoptera. The well developed mola region of the otherwise non-biting mandibles of C. aurata indicates that these beetles open pollen grains mechanically before ingestion. Examination of gut content demonstrated that crushed and intact pollen occur in all regions. The Cryo-SEM method represents a new approach to study functional morphology including the interaction of microstructures and fluids on cuticular surfaces of insects. Handling editor: Gimme Walter  相似文献   

12.
The flowerbud-feeding weevil Anthonomus santacruzi Hustache (Coleoptera: Curculionidae) was released in South Africa in 2008 for the biological control of the invasive tree Solanum mauritianum Scopoli (Solanaceae). The weevil was widely deployed throughout KwaZulu-Natal province, which supports large S. mauritianum infestations, and has become well established in its warmer coastal regions. The aim of this study was to provide field evidence that climate is constraining the weevil’s distribution in South Africa. Solanum mauritianum populations were sampled at 23 sites across an altitudinal gradient in KwaZulu-Natal to determine A. santacruzi densities in relation to food availability and climatic variables. Despite significantly higher amounts of floral material on S. mauritianum at the higher altitude inland sites, A. santacruzi numbers were significantly higher at the lower altitude coastal sites. There was thus a significant negative relationship between A. santacruzi numbers and altitude and significant positive relationships between A. santacruzi numbers and both temperature and humidity. Neither rainfall nor food availability influenced A. santacruzi numbers, although lower amounts of floral material at the coastal sites may well have been caused by higher weevil densities at these sites. Anthonomus santacruzi was absent at only three sites, all at higher altitudes, further demonstrating that conditions in coastal or low-altitude regions are favourable for establishment and population proliferation. Future release efforts in KwaZulu-Natal, but also in other South African provinces, should thus be focused on coastal regions and inland regions that are below 1000 m above sea level.  相似文献   

13.
Diving beetles (Coleoptera: Dytiscidae) are carnivorous in both the larval and adult stages; larvae are exclusively predatory, whereas adults also scavenge for food. They are known to prey on zooplankton, insects, gastropods, fish, amphibians and reptiles. However, there have been no previous reports detailing direct predation on adult Gordioida by Dytiscidae in the field. This study represents the first observation of a diving beetle larva, Cybister brevis Aubé (Coleoptera: Dytiscidae), predating on an adult horsehair worm (Gordioida: Chordodidae). This might be the first report of predation on horsehair worms by insects.  相似文献   

14.
Wolbachia is a genus of intracellular bacteria typically found within the reproductive systems of insects that manipulates those systems of their hosts. While current estimates of Wolbachia incidence suggest that it infects approximately half of all arthropod species, these estimates are based almost entirely on terrestrial insects. No systematic survey of Wolbachia in aquatic insects has been performed. To estimate Wolbachia incidence among aquatic insect species, we combined field‐collected samples from the Missouri River (251 samples from 58 species) with a global database from previously published surveys. The final database contained 5,598 samples of 2,687 total species (228 aquatic and 2,459 terrestrial). We estimate that 52% (95% CrIs: 44%–60%) of aquatic insect species carry Wolbachia, compared to 60% (58%–63%) of terrestrial insects. Among aquatic insects, infected orders included Odonata, Coleoptera, Trichoptera, Ephemeroptera, Diptera, Hemiptera, and Plecoptera. Incidence was highest within aquatic Diptera and Hemiptera (69%), Odonata (50%), and Coleoptera (53%), and was lowest within Ephemeroptera (13%). These results indicate that Wolbachia is common among aquatic insects, but incidence varies widely across orders and is especially uncertain in those orders with low sample sizes such as Ephemeroptera, Plecoptera, and Trichoptera.  相似文献   

15.
Water hyacinth (Eichhornia crassipes (Martius) Solms-Laubach) is a serious invasive weed in the Sacramento–San Joaquin River Delta of California. Three insects: Neochetina eichhorniae Warner and Neochetina bruchi Hustache (Coleoptera: Curculionidae) and Niphograpta (=Sameodes) albiguttalis (Warren) (Lepidoptera: Crambidae) were released during 1982–1987 at four locations for the biological control of water hyacinth. Observations in 1985 suggested that all three species had established. By 2002, water hyacinth populations in the Delta still required an aggressive chemical control campaign and the status of the biological control agents was in question. In late 2002, a field survey to determine the distribution and abundance of the released insects was performed. Water hyacinth plants were collected by boat in the main water channels and from land at smaller sloughs and examined for insects. In total, 27 sites with water hyacinth distributed across the Delta were examined of which 21 had weevils. Weevil abundance ranged from 0 to 10.9 weevils per plant, with an average of 0.93 (±0.47 SEM) adult weevils per plant. All weevils (n?=?518) were identified as N. bruchi. No N. eichhorniae were recovered and no larvae or evidence of larval feeding by N. albiguttalis were observed. A total of 322 weevils were examined for microsporidia and none was found infected, indicating an infection rate of less than 1%. These results suggest that N. bruchi may be the only established biological control agent of water hyacinth in the Delta and that infection by microsporidia does not appear to be limiting its population abundance.  相似文献   

16.
From 2002 to 2004 two sampling methods were combined to assess the population of insects known as vectors of rice yellow mottle virus (RYMV) in the three major irrigated rice ecosystems in the north of Cameroon (Lagdo, Maga, Yagoua) and in lowland rice fields. Samplings were conducted by means of sweep net and D-Vac (the sucking trap) fortnightly in 2002 and 2003 until mid-October in lowland rice fields while in the irrigated fields, samplings occurred between December and April. Simultaneously, rearing on death concerned insects was conducted in the laboratory to identify the parasitoid insect species. From samples obtained at the different sites: (1) the dominant structure of the RYMV insect vectors was analysed according to the rice phenology; (2) the diversity and the occurrence of potential major groups of predators and parasitoids were assessed. Among the RYMV insect vectors sampled: Chaetocnema pulla Chapuis (Coleoptera: Chrysomelidae), Chnootriba similis Mulsant (Coleoptera: Coccinellidae), Trichispa sericea Guerin-Meneville (Coleoptera: Chrysomelidae), Locris rubra Fabricius (Hemiptera: Cicadellidae), Oxya hyla Stål (Orthoptera: Acrididae) and Conocephalus longipennis (de Haan) (Orthoptera: Tettigoniidae) were the most encountered insect species during the rice growing seasons. When investigating the arthropods acting in the rice fields as predators, spiders (Araneae) came at the top position with a high concurrency of Pardosa spp. (>42%) at all sites. At the sites Maga and Yagoua, the carabid beetles species Abacetus crenulatus Dejean and Abacetus foveolatus Chaudoir were the most numerous whereas the Lagdo site was highly colonised by Clivina erythropyga Putzeys, Paederus sabaeus Erichson and Stenus ravus Puthz were the most abundant staphylinid beetles. The rearing of dead RYMV insect vectors gave results on the emergence of the following parasitoids: Eurytoma spp., Pediobius spp., Tetrastichus spp., Telenomus spp.  相似文献   

17.
Whirligig beetles, which are known for their rapid gliding on the water surface, have evolved a unique locomotor apparatus. External and internal thoracic structures of Orectochilus villosus (Orectochilini) are described in detail and documented with microcomputed tomography, computer‐based 3D reconstructions, and scanning electronic microscopy (SEM). The results are compared with conditions found in other genera of Gyrinidae and other groups of Coleoptera. The focus is on structures linked with locomotion, especially on the unusual flight apparatus, which differs strongly from that of other beetles. As in the other Orectochilini, the prothorax of Orectochilus displays characters typical for Gyrinidae, with triangular procoxae and forelegs transformed into elongated, sexually dimorphic grasping devices. The musculature of this segment is similar to the pattern found in other Coleoptera. Similar to all other extant Gyrinidae, the mesothorax is characterized by an extensive and flat mesoventrite, suitable for gliding on the water surface. As in Heterogyrinae and the other Gyrininae, the pterothoracic legs are transformed into paddle‐like structures, enabling the beetles to move with high speed on the surface film. The musculature of the mesothorax is reduced compared to other Coleoptera, but similar to what is found in the other Gyrininae. The metathoracic skeleton and musculature are simplified in Orectochilini compared to other Gyrininae and other groups of Coleoptera. In O. villosus, only 10 metathoracic muscles are preserved. 36 are present in an archostematan beetle, a condition probably close to the coleopteran ground plan. The metathoracic dorsal longitudinal bundles are absent in Gyrininae, muscles that play a role as indirect flight muscles in most other neopteran insects. The rest of the posteromotoric flight apparatus is distinctly modified, with a limited number of skeletomuscular elements taking over more functions. The large muscle M84 (IIIdvm7) M. noto–trochanteralis, for instance, functions as dominant wing levator, but is also responsible for the powerful and rapid backstroke of the hind legs. The presence of this muscle is a synapomorphy of Heterogyrinae and Gyrininae. The narrow metafurca in the latter group is likely linked to its large size. The elytra likely contribute to the control of the flight of the beetle, whereas they shield and inhibit the flight apparatus during swimming.  相似文献   

18.
We studied seasonal variations in the diet of the large-spotted genetGenetta tigrina Schreber, 1776 in the coastal dune forest of the Dwesa Nature Reserve, Eastern Cape Province, South Africa. The food items with the highest relative percentage occurrence were Coleoptera, Orthoptera and Mammalia. However, by volume they ate mostly grass then followed by Coleoptera and Orthoptera. Main prey items originated from the litter layer or low lying bushes, such as arachnids, insects, myriapods, and most mammals. The latter included ten rodent (main staple:Dendromus sp.), two golden mole and two shrew species, from 10–100 g mass. They were represented dependent on species density, but switching between seasons and habitats occupied. Birds appeared under-represented in the diet for a semi-arboreal carnivore, although this correlates with data from other studies. Remains of birds in the diet, however, peaked during winter and spring probably as a result of the main nesting period in spring. There were some variation in diet between habitats (riparian, forest and beach) and seasons. Our results show the South African large-spotted genet to have an opportunistic, generalist diet.  相似文献   

19.
Coleopteran insects comprise a highly successful taxon, representing more than 25% of eukaryotic species, many of which are economically important. One of these, the red flour beetle (Tribolium castaneum H.), is a major pest of stored grain and cereal products and is also an excellent genetic model for the Coleoptera. The Tribolium genome sequencing project was recently completed, the first for an agricultural insect pest species. This genome sequence and annotation, in combination with the tractability of Tribolium for genetic dissection and functional genomic analysis, makes it one of the most useful subjects for studies of insect development, genetics and physiology. Tribolium has a number of interesting physiological adaptations, including desiccation tolerance associated with specialized cryptonephridial organs for active rectal absorption of atmospheric water. The study of endocrine regulation of diuresis in this species has led to the identification of a number of osmoregulatory peptides, including the novel arginine‐vasopressin‐like peptide.  相似文献   

20.
Complex seasonal patterns of primary producers at the land-sea interface   总被引:1,自引:0,他引:1  
Cloern JE  Jassby AD 《Ecology letters》2008,11(12):1294-1303
Seasonal fluctuations of plant biomass and photosynthesis are key features of the Earth system because they drive variability of atmospheric CO2, water and nutrient cycling, and food supply to consumers. There is no inventory of phytoplankton seasonal cycles in nearshore coastal ecosystems where forcings from ocean, land and atmosphere intersect. We compiled time series of phytoplankton biomass (chlorophyll a) from 114 estuaries, lagoons, inland seas, bays and shallow coastal waters around the world, and searched for seasonal patterns as common timing and amplitude of monthly variability. The data revealed a broad continuum of seasonal patterns, with large variability across and within ecosystems. This contrasts with annual cycles of terrestrial and oceanic primary producers for which seasonal fluctuations are recurrent and synchronous over large geographic regions. This finding bears on two fundamental ecological questions: (1) how do estuarine and coastal consumers adapt to an irregular and unpredictable food supply, and (2) how can we extract signals of climate change from phytoplankton observations in coastal ecosystems where local‐scale processes can mask responses to changing climate?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号