共查询到20条相似文献,搜索用时 15 毫秒
1.
K Yamada K Yamakawa Y Terada K Kawaguchi A Sugaya T Sugiyama N Toyoda 《Hormones et métabolisme》1999,31(9):508-513
Depletion of GLUT4, the primary glucose transporter protein in adipose tissue and skeletal muscle, is reported to contribute to insulin resistance in pregnancy or diabetes. To examine this phenomenon, the expression of GLUT4 protein was assessed by Western blotting in streptozotocin-induced diabetic pregnant rats. In adipose tissue, relative to control, it was decreased by 30% in the normal pregnant group (p<0.001), by 37% in the diabetic nonpregnant group (p<0.01) and by 65% in the diabetic pregnant group (p<0.001). On the other hand, no significant variation was evident among the groups in skeletal muscle. To assess the mechanisms responsible for depletion of GLUT4 protein in adipose tissue, we quantitated levels of GLUT4 mRNA with a RNase protection assay. It was decreased by 44% in the normal pregnant group (p<0.05) and by 55% in the diabetic pregnant group (p<0.05), but not altered in the diabetic nonpregnant group. These results suggest that the depletion of GLUT4 protein in adipose tissue is a factor contributing to insulin resistance in pregnancy or diabetes, especially when the two states exist in combination. 相似文献
2.
3.
Exercise training increases glucose transporter protein GLUT-4 in skeletal muscle of obese Zucker (fa/fa) rats 总被引:7,自引:0,他引:7
The present study examined the level of GLUT-4 glucose transporter protein in gastrocnemius muscles of 36 week old genetically obese Zucker (fa/fa) rats and their lean (Fa/-) littermates, and in obese Zucker rats following 18 or 30 weeks of treadmill exercise training. Despite skeletal muscle insulin resistance, the level of GLUT-4 glucose transporter protein was similar in lean and obese Zucker rats. In contrast, exercise training increased GLUT-4 protein levels by 1.7 and 2.3 fold above sedentary obese rats. These findings suggest endurance training stimulates expression of skeletal muscle GLUT-4 protein which may be responsible for the previously observed increase in insulin sensitivity with training. 相似文献
4.
Oral administration of vanadate is an effective treatment for diabetes in animal models. However, vanadate exerts these effects at high doses and several toxic effects are produced. Low doses of vanadate are relatively safe but are unable to elicit any antidiabetic effect. The present study explored the prospect of using low doses of vanadate in combination with Trigonella seed powder (TSP) to evaluate their antidiabetic effect in alloxan-diabetic rats. Alloxan-diabetic rats were treated with insulin, vanadate, TSP and vanadate and TSP in combination for 3 weeks. The effect of these antidiabetic compounds was examined on general physiological parameters and distribution of glucose transporter (GLUT4) in skeletal muscle by immunoblotting and immunohistochemistry. Treatment of alloxan-diabetic rats with insulin, vanadate, TSP and vanadate in combination with TSP revived normoglycemia and restored the disturbances in the distribution of GLUT4 in skeletal muscle. TSP treatment was only partially effective in the restoration of diabetic alterations. The treatment of diabetic rats with combined doses of vanadate and TSP was most effective in the normalization of plasma glucose levels and correction of altered GLUT4 distribution. 相似文献
5.
Effect of prolonged intermittent hypoxia and exercise training on glucose tolerance and muscle GLUT4 protein expression in rats 总被引:6,自引:1,他引:5
Chiu LL Chou SW Cho YM Ho HY Ivy JL Hunt D Wang PS Kuo CH 《Journal of biomedical science》2004,11(6):838-846
We compared the chronic effect of intermittent hypoxia and endurance training on the glucose tolerance and GLUT4 protein expression in rat skeletal muscle. Thirty-two Sprague-Dawley rats were matched for weight and assigned to one of the following four groups: control, endurance training, hypoxia, or hypoxia followed by endurance training. Hypoxic treatment consisted of breathing 14% O2 for 12 h/day under normobaric conditions, and the training protocol consisted of making animals swim 2 times for 3 h/day. At the end of the 3rd week, an oral glucose tolerance test (OGTT) was performed 16 h after treatments. At the end of the 4th week, GLUT4 protein, mRNA, and glycogen storage in skeletal muscle were determined. Endurance training significantly improved OGTT results. Glycogen content and GLUT4 protein expression in the plantaris and red gastrocnemius, but not in the soleus or white gastrocnemius muscles, were also elevated. Chronic intermittent hypoxia also improved OGTT results, but did not alter GLUT4 protein expression. Additionally, hypoxia followed by exercise training produced significant increases in GLUT4 protein and mRNA in a greater number of muscles compared to endurance training alone. Both exercise training and hypoxia significantly reduced body mass, and an additive effect of both treatments was found. In conclusion, chronic intermittent hypoxia improved glucose tolerance in the absence of increased GLUT4 protein expression. This treatment facilitated the exercise training effect on muscle GLUT4 expression and glycogen storage. These new findings open the possibility of utilizing intermittent hypoxia, with or without exercise training, for the prevention and clinical treatment of type 2 diabetes or insulin resistance. 相似文献
6.
Effect of detraining on GLUT-4 protein in human skeletal muscle 总被引:2,自引:0,他引:2
7.
8.
A Casla A Rovira J A Wells G L Dohm 《Biochemical and biophysical research communications》1990,171(1):182-188
We have studied skeletal muscle glucose uptake by perfused hindquarter preparations from rats treated with thyroxine. Basal glucose uptake (in the absence of insulin) was approximately 2 fold higher in muscle of hyperthyroid rats compared to controls. Insulin (10(-7) M) stimulated glucose uptake 4.0 and 6.8 fold in the 10 day and 30 day controls rats, respectively. Maximal glucose uptake (10(-7) M insulin) was not different in control and hyperthyroid rats and thus insulin responsiveness in the hyperthyroid animals was reduced to 2.5 fold stimulation. The abundance of the insulin-sensitive glucose transporter protein (muscle/fat, GLUT-4), measured by Western blot analysis using polyclonal antisera, was higher in skeletal muscle from both groups of hyperthyroid rats. These studies indicate that thyroid hormones increase basal glucose uptake in skeletal muscle and this is due, at least in part, to an increment of GLUT-4 isoform. Increased expression of muscle glucose transporter proteins may be responsible for the increased peripheral glucose utilization seen in hyperthyroidism. 相似文献
9.
Otani K Han DH Ford EL Garcia-Roves PM Ye H Horikawa Y Bell GI Holloszy JO Polonsky KS 《The Journal of biological chemistry》2004,279(20):20915-20920
The experiments in this study were undertaken to determine whether inhibition of calpain activity in skeletal muscle is associated with alterations in muscle metabolism. Transgenic mice that overexpress human calpastatin, an endogenous calpain inhibitor, in skeletal muscle were produced. Compared with wild type controls, muscle calpastatin mice demonstrated normal glucose tolerance. Levels of the glucose transporter GLUT4 were increased more than 3-fold in the transgenic mice by Western blotting while mRNA levels for GLUT4 and myocyte enhancer factors, MEF 2A and MEF 2D, protein levels were decreased. We found that GLUT4 can be degraded by calpain-2, suggesting that diminished degradation is responsible for the increase in muscle GLUT4 in the calpastatin transgenic mice. Despite the increase in GLUT4, glucose transport into isolated muscles from transgenic mice was not increased in response to insulin. The expression of protein kinase B was decreased by approximately 60% in calpastatin transgenic muscle. This decrease could play a role in accounting for the insulin resistance relative to GLUT4 content of calpastatin transgenic muscle. The muscle weights of transgenic animals were substantially increased compared with controls. These results are consistent with the conclusion that calpain-mediated pathways play an important role in the regulation of GLUT4 degradation in muscle and in the regulation of muscle mass. Inhibition of calpain activity in muscle by overexpression of calpastatin is associated with an increase in GLUT4 protein without a proportional increase in insulin-stimulated glucose transport. These findings provide evidence for a physiological role for calpains in the regulation of muscle glucose metabolism and muscle mass. 相似文献
10.
Insulin responsiveness in skeletal muscle is determined by glucose transporter (Glut4) protein level. 总被引:6,自引:0,他引:6 下载免费PDF全文
M Kern J A Wells J M Stephens C W Elton J E Friedman E B Tapscott P H Pekala G L Dohm 《The Biochemical journal》1990,270(2):397-400
Glucose transport in skeletal muscle is mediated by two distinct transporter isoforms, designated muscle/adipose glucose transporter (Glut4) and erythrocyte/HepG2/brain glucose transporter (Glut1), which differ in both abundance and membrane distribution. The present study was designed to investigate whether differences in insulin responsiveness of red and white muscle might be due to differential expression of the glucose transporter isoforms. Glucose transport, as well as Glut1 and Glut4 protein and mRNA levels, were determined in red and white portions of the quadriceps and gastrocnemius muscles of male Sprague-Dawley rats (body wt. approx. 250 g). Maximal glucose transport (in response to 100 nM-insulin) in the perfused hindlimb was 3.6 times greater in red than in white muscle. Red muscle contained approx. 5 times more total Glut4 protein and 2 times more Glut4 mRNA than white muscle, but there were no differences in the Glut1 protein or mRNA levels between the fibre types. Our data indicate that differences in responsiveness of glucose transport in specific skeletal muscle fibre types may be dependent upon the amount of Glut4 protein. Because this protein plays such an integral part in glucose transport in skeletal muscle, any impairment in its expression may play a role in insulin resistance. 相似文献
11.
dos Santos JM Benite-Ribeiro SA Queiroz G Duarte JA 《Cell biochemistry and function》2012,30(3):191-197
During the life span, phenotypic and structural modifications on skeletal muscle contribute to a reduction on glucose uptake either in basal state or triggered by insulin, but the underlying mechanisms for this decline are not entirely identified. A reduction in the expression of skeletal muscle glucose transporters (GLUTs), glucose transporter type 1 (GLUT1) and glucose transporter type 4 (GLUT4), has been associated to such phenomena, but unlike the case of insulin, only few studies have addressed the effect of age on muscle-contraction-induced glucose uptake. The aim of the study was to investigate the influence of age on GLUT1 and GLUT4 expression in skeletal muscle and its relation to the glucose uptake induced by muscle contraction. For this purpose, soleus muscle from Wistar rats aged 4, 10, 22 and 42 weeks were isolated and electrically stimulated (30 min, 10 Hz, 20 V, 0.2 ms). After stimulation, glucose uptake and GLUT1 and GLUT4 expression and localisation were evaluated. Muscle contraction caused an increase in glucose uptake in all studied groups. In addition, the absolute rates of glucose uptake were negatively correlated with age. The expression of GLUT4 was lower in older animals, whereas no relation between age and GLUT1 expression was found. Immunohistochemistry confirmed the ontogenic effect on GLUT4 expression and suggested an age-related modification on GLUT1 distribution within the muscle fibres; for instance, this protein seems to be present mainly out of the sarcoplasm. The present findings demonstrate that the ability of muscle contraction to increase glucose uptake is not influenced by age, whereas glucose uptake under basal conditions decreases with age. 相似文献
12.
Training and detraining had little effect on the activity of glycogen synthase, hexokinase, glycerol 3-phosphate dehydrogenase or total protein. The activity of 3-hydroxyacyl-CoA dehydrogenase increased markedly during training. After 5 weeks of detraining, the activity of 3-hydroxyacyl-CoA dehydrogenase was returning to pre-training values, whilst by 10-week detraining, the levels were increasing again. 相似文献
13.
Polymorphisms at the GLUT1 (HepG2) and GLUT4 (muscle/adipocyte) glucose transporter genes and non-insulin-dependent diabetes mellitus (NIDDM) 总被引:2,自引:0,他引:2
Marco G. Baroni Raymond S. Oelbaum Paolo Pozzilli Joseph Stocks Shu-Ri Li Vincenzo Fiore David J. Galton 《Human genetics》1992,88(5):557-561
Summary In order to determine the possible contribution of the GLUT1 (HepG2) glucose transporter gene to the inheritance of non-insulin-dependent diabetes mellitus (NIDDM), two restriction fragment length polymorphisms (RFLPs) and the related haplotypes at this locus were studied in 48 Italian diabetic patients and 58 normal subjects. Genotype frequencies for the XbaI polymorphism were significantly different between patients and controls (XbaI: 2 = 9.80, df= 2, P < 0.0079). A significant difference was also found in the allele frequencies between NIDDM patients and controls (2 =9.39, df = 1, P < 0.0022), whereas no differences were found for the StuI RFLP. No linkage disequilibrium was detected between the XbaI and StuI RFLPs in this sample. The analysis of the four haplotype frequencies (X1S1, X1S2, X2S1, X2S2) revealed a significant difference between diabetic patients and controls (2 = 14.26, df =3, P < 0.002). By comparing single haplotype frequencies, a significant difference between the two groups was found for the X1S1 and X2S2 haplotypes. A two-allele RFLP at the GLUT4 (muscle/adipocyte) glucose transporter gene, detected with the restriction enzyme KpnI, was also examined; no differences were found between patients and controls for this RFLP. The finding of an association between polymorphic markers at the GLUT1 transporter and NIDDM suggests that this locus may contribute to the inherited susceptibility to the disease in this Italian population. 相似文献
14.
We recently developed a procedure for immunoisolating insulin-responsive membrane vesicles that contain the muscle/fat glucose transporter isoform, GLUT 4, from rat adipocytes. Utilizing this methodology, we are analyzing the components of these vesicles to gain an understanding of how they are regulated by insulin. In this report we identify a phosphatidylinositol (PtdIns) 4-kinase as a constituent of glucose transporter vesicles (GTVs). This kinase has the biochemical and immunological properties of a type II PtdIns 4-kinase as classified by Endeman et al. (Endemann, G., Dunn, S. N., and Cantley, L. C. (1987) Biochemistry 26, 6845-6852). A monoclonal antibody, 4C5G, which specifically inhibits the type II PtdIns 4-kinase, suppresses 80% of the GTV-PtdIns 4-kinase activity. In addition, the GTVs-PtdIns 4-kinase is maximally activated by the nonionic detergent Triton X-100, at a concentration of 0.2% and is inhibited by adenosine with a Ki of approximately 20-30 microM. We find that the GTVs do not contain any PtdIns4P 5-kinase or diacylglycerol kinase activities, whereas these activities were detected in the plasma membrane. An analysis of the subcellular distribution of PtdIns 4-kinase activity in the rat adipocyte shows that there are similar levels of activity in GTVs, plasma membranes, and the high and low density microsomal fractions, whereas the mitochondria- and nuclei-containing fractions have less than 5% of the activity seen in other fractions. Low density microsomes were subfractionated by sucrose density gradient centrifugation and PtdIns 4-kinase activity was found to correlate closely with the distribution of membrane protein, indicating that the activity is equally distributed throughout this heterogenous population of membranes. PtdIns 4-kinase activity measured in GTVs, plasma membranes, and low density microsomes, was not affected by prior treatment of the intact adipocytes with 35 nM insulin. We postulate that while the GTV-PtdIns 4-kinase is not regulated by insulin, it may play a role in defining the fusogenic properties necessary to mediate membrane movement between the GTVs, plasma membranes, and microsomes. 相似文献
15.
Selective regulation of the perinuclear distribution of glucose transporter 4 (GLUT4) by insulin signals in muscle cells 总被引:1,自引:0,他引:1
Insulin regulates glucose transporter 4 (GLUT4) availability at the surface of muscle and adipose cells. In L6 myoblasts, stably expressed GLUT4myc is detected mostly in a perinuclear region. In unstimulated cells, about half of perinuclear GLUT4myc colocalizes with the transferrin receptor (TfR). Insulin stimulation selectively decreased the perinuclear colocalization of GLUT4myc with TfR determined by 3D-reconstruction of fluorescence images. Perinuclear GLUT4myc adopted two main distributions defined morphometrically as 'conical' and 'concentric'. Insulin rapidly reduced the proportion of cells with conical in favor of concentric perinuclear GLUT4myc distributions in association with the gain in surface GLUT4myc. Upon removal of insulin, the GLUT4myc perinuclear distribution and surface levels reversed in parallel. In contrast, hypertonicity (which like insulin elevates surface GLUT4myc) did not elicit perinuclear GLUT4myc redistribution. Insulin also caused redistribution of perinuclear vesicle-associated membrane protein-2 (VAMP2), without alteration of perinuclear TfR and VAMP3. Inhibitory mutants of phosphatidylinositol-3 kinase (Deltap85) or Akt substrate AS160 (AS160-4P) prevented insulin-mediated perinuclear GLUT4myc redistribution. Tetanus toxin expression did not prevent the perinuclear GLUT4myc redistribution, suggesting that redistribution is independent of GLUT4myc fusion with the plasma membrane. We propose that insulin causes selective, dynamic relocalization of perinuclear GLUT4myc and VAMP2 and perinuclear GLUT4myc redistribution is a direct target of insulin-derived signals. 相似文献
16.
Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice. 总被引:6,自引:0,他引:6
J W Ryder Y Kawano D Galuska R Fahlman H Wallberg-Henriksson M J Charron J R Zierath 《FASEB journal》1999,13(15):2246-2256
To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4-deficient and wild-type mice were studied after a 3 h swim exercise. In wild-type mice, insulin and swimming each increased 2-deoxyglucose uptake by twofold in extensor digitorum longus muscle. In contrast, insulin did not increase 2-deoxyglucose glucose uptake in muscle from GLUT4-null mice. Swimming increased glucose transport twofold in muscle from fed GLUT4-null mice, with no effect noted in fasted GLUT4-null mice. This exercise-associated 2-deoxyglucose glucose uptake was not accompanied by increased cell surface GLUT1 content. Glucose transport in GLUT4-null muscle was increased 1.6-fold over basal levels after electrical stimulation. Contraction-induced glucose transport activity was fourfold greater in wild-type vs. GLUT4-null muscle. Glycogen content in gastrocnemius muscle was similar between wild-type and GLUT4-null mice and was reduced approximately 50% after exercise. After 5 h carbohydrate refeeding, muscle glycogen content was fully restored in wild-type, with no change in GLUT4-null mice. After 24 h carbohydrate refeeding, muscle glycogen in GLUT4-null mice was restored to fed levels. In conclusion, GLUT4 is the major transporter responsible for exercise-induced glucose transport. Also, postexercise glycogen resynthesis in muscle was greatly delayed; unlike wild-type mice, glycogen supercompensation was not found. GLUT4 it is not essential for glycogen repletion since muscle glycogen levels in previously exercised GLUT4-null mice were totally restored after 24 h carbohydrate refeeding.-Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg-Henriksson, H., Charron, M. J., Zierath, J. R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice. 相似文献
17.
18.
Exploring the whereabouts of GLUT4 in skeletal muscle (review) 总被引:4,自引:0,他引:4
The glucose transporter GLUT4 is expressed in muscle, fat cells, brain and kidney. In contrast to other glucose transporters, GLUT4 in unstimulated cells is mostly intracellular. Stimuli such as insulin and muscle contractions then cause the translocation of GLUT4 to the cell surface. Questions related to GLUT4 storage compartments, trafficking to the surface membrane, and nature of the intracellular pools, have kept many groups busy for the past 20 years. Yet, one of the main questions in the field remains the universality of GLUT4 features. Can one extrapolate work done on fat cells to muscle or brain? Or vice-versa? Can one use cultures to predict GLUT4 behaviour in fully differentiated tissues? This review summarizes the authors' knowledge of GLUT4 biology in skeletal muscle, which is the predominant tissue for glucose homeostasis. The results are compared to those obtained with the fat cell system, and an attempt is made to assess the universality principle. 相似文献
19.
Small Rho family GTPases are important regulators of cellular traffic. Emerging evidence now implicates Rac1 and Rac-dependent actin reorganisation in insulin-induced recruitment of glucose transporter-4 (GLUT4) to the cell surface of muscle cells and mature skeletal muscle. This review summarises the current thinking on the regulation of Rac1 by insulin, the role of Rac-dependent cortical actin remodelling in GLUT4 traffic, and the impact of Rac1 towards insulin resistance in skeletal muscle. 相似文献
20.
Engineered muscle may eventually be used as a treatment option for patients suffering from loss of muscle function. The metabolic and contractile function of engineered muscle has not been well described; therefore, the purpose of this experiment was to study glucose transporter content and glucose uptake in engineered skeletal muscle constructs called myooids. Glucose uptake by way of 2-deoxyglucose and GLUT-1 and GLUT-4 transporter protein content was measured in basal and insulin-stimulated myooids that were engineered from soleus muscles of female Sprague-Dawley rats. There was a significant increase in the basal 2-deoxyglucose uptake of myooids compared with adult control (fivefold), contraction-stimulated (3.4-fold), and insulin-stimulated (threefold) soleus muscles (P = 0.0001, 0.0001, and 0.0001, respectively). In addition, there was a significant increase in the insulin-stimulated 2-deoxyglucose uptake of myooids compared with adult control soleus muscles in basal conditions (6.5-fold) and adult contraction-stimulated (4.5-fold) and insulin- stimulated (3.9-fold) soleus muscles (P = 0.0001, 0.0001, and 0.0001, respectively). There was a significant 30% increase in insulin-stimulated compared with basal 2-deoxyglucose uptake in the myooids. The myooid GLUT-1 protein content was 820% of the adult control soleus muscle, whereas the GLUT-4 protein content was 130% of the control soleus muscle. Myooid GLUT-1 protein content was 6.3-fold greater than GLUT-4 protein content, suggesting that the glucose transport of the engineered myooids is similar in several respects to that observed in both fetal and denervated skeletal muscle tissue. 相似文献