首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control of macrophage capacity for apoptotic cell clearance by soluble mediators such as cytokines, prostaglandins and lipoxins, serum proteins, and glucocorticoids may critically determine the rate at which inflammation resolves. Previous studies suggested that macrophage capacity for clearance of apoptotic neutrophils was profoundly altered following binding of CD44 antibodies. We have used a number of different approaches to further define the mechanism by which CD44 rapidly and specifically augment phagocytosis of apoptotic neutrophils. Use of Fab' fragments unequivocally demonstrated a requirement for cross-linking of macrophage surface CD44. The molecular mechanism of CD44-augmented phagocytosis was shown to be opsonin-independent and to be distinct from the Mer/protein S pathway induced by glucocorticoids and was not functional for clearance of apoptotic eosinophils. CD44-cross-linking also altered macrophage migration and induced cytoskeletal re-organisation together with phosphorylation of paxillin and activation of Rac2. Investigation of signal transduction pathways that might be critical for CD44 augmentation of phagocytosis revealed that Ca(2+) signalling, PI-3 kinase pathways and altered cAMP signalling were not involved, but did implicate a key role for tyrosine phosphorylation events. Finally, although CD44 antibodies were able to augment phagocytosis of apoptotic neutrophils by murine peritoneal and bone marrow-derived macrophages, we did not observe a difference in the clearance of neutrophils following induction of peritonitis with thioglycollate in CD44-deficient animals. Together, these data demonstrate that CD44 cross-linking induces a serum opsonin-independent mechanism of macrophage phagocytosis of apoptotic neutrophils that is associated with reduced macrophage migration and cytoskeletal reorganisation.  相似文献   

2.
Clearance of apoptotic cells by phagocytosis plays an important role in the resolution of an inflammatory response. Macrophages interacting with extracellular matrix (ECM) proteins upregulate their phagocytic capacity. Cigarette smoke contains highly reactive carbonyls that modify proteins which directly/indirectly affects cellular function. We observed, in vitro, that human macrophages interacting with carbonyl or cigarette smoke modified ECM proteins dramatically down regulated their ability to phagocytose apoptotic neutrophils. We also show that this interaction with carbonyl-adduct modified ECM proteins led to increased macrophage adhesion in vitro. We hypothesise that changes in the ECM environment as a result of cigarette smoking affect the ability of macrophages to remove apoptotic cells. Moreover, we postulate that this decreased phagocytic activity was as a result of sequestration of receptors involved in the uptake of apoptotic cells towards that of recognition of carbonyl adducts on the modified ECM proteins leading to increased macrophage adhesion.  相似文献   

3.
Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes   总被引:6,自引:0,他引:6  
Phagocyte recognition, uptake, and nonphlogistic degradation of neutrophils and other leukocytes undergoing apoptosis promote the resolution of inflammation. This study assessed the effects of anti-inflammatory glucocorticoids on this leukocyte clearance mechanism. Pretreatment of "semimature" 5-day human monocyte-derived macrophages (M phi) for 24 h with methylprednisolone, dexamethasone, and hydrocortisone, but not the nonglucocorticoid steroids aldosterone, estradiol, and progesterone, potentiated phagocytosis of apoptotic neutrophils. These effects were specific in that the potentiated phagocytosis of apoptotic neutrophils was completely blocked by the glucocorticoid receptor antagonist RU38486, and glucocorticoids did not promote 5-day M phi ingestion of opsonized erythrocytes. Similar glucocorticoid-mediated potentiation was observed with 5-day M phi uptake of alternative apoptotic "targets" (eosinophils and Jurkat T cells) and in uptake of apoptotic neutrophils by alternative phagocytes (human glomerular mesangial cells and murine M phi elicited into the peritoneum or derived from bone marrow). Importantly, methylprednisolone-mediated enhancement of the uptake of apoptotic neutrophils did not trigger the release of the chemokines IL-8 and monocyte chemoattractant protein-1. Furthermore, longer-term potentiation by methylprednisolone was observed in maturing human monocyte-derived M phi, with greater increases in 5-day M phi uptake of apoptotic cells being observed the earlier glucocorticoids were added during monocyte maturation into M phi. We conclude that potentiation of nonphlogistic clearance of apoptotic leukocytes by phagocytes is a hitherto unrecognized property of glucocorticoids that has potential implications for therapies aimed at promoting the resolution of inflammatory diseases.  相似文献   

4.
Phosphatidylserine (PS) and oxidized PS species have been identified as key ligands on apoptotic cells important for their recognition and removal (efferocytosis) by phagocytes, a requisite step for resolution of inflammation. We have recently demonstrated that lysophosphatidylserine (lyso-PS) generated and retained on neutrophils following short term activation of the NADPH oxidase in vitro and in vivo enhanced their clearance via signaling through the macrophage G-protein-coupled receptor G2A. Here, we investigated the signaling pathway downstream of G2A. Lyso-PS, either made endogenously in apoptosing neutrophils or supplied exogenously in liposomes along with lyso-PS(neg) apoptotic cells, signaled to macrophages in a G2A-dependent manner for their enhanced production of prostaglandin E2 (PGE2) via a calcium-dependent cytosolic phospholipase A2/cyclooxygenase-mediated mechanism. Subsequent signaling by PGE2 via EP2 receptors activated macrophage adenylyl cyclase and protein kinase A. These events, in turn, culminated in enhanced activity of Rac1, resulting in an increase in both the numbers of macrophages efferocytosing apoptotic cells and the numbers of cells ingested per macrophage. These data were surprising in light of previous reports demonstrating that signaling by PGE2 and adenylyl cyclase activation are associated with macrophage deactivation and inhibition of apoptotic cell uptake. Further investigation revealed that the impact of this pathway, either the enhancement or inhibition of efferocytosis, was exquisitely sensitive to concentration effects of these intermediaries. Together, these data support the hypothesis that lyso-PS presented on the surface of activated and dying neutrophils provides a tightly controlled, proresolution signal for high capacity clearance of neutrophils in acute inflammation.  相似文献   

5.
Glucocorticoids promote macrophage phagocytosis of leukocytes undergoing apoptosis. Prereceptor metabolism of glucocorticoids by 11beta-hydroxysteroid dehydrogenases (11beta-HSDs) modulates cellular steroid action. 11beta-HSD type 1 amplifies intracellular levels of active glucocorticoids in mice by reactivating corticosterone from inert 11-dehydrocorticosterone in cells expressing the enzyme. In this study we describe the rapid (within 3 h) induction of 11beta-HSD activity in cells elicited in the peritoneum by a single thioglycolate injection in mice. Levels remained high in peritoneal cells until resolution. In vitro experiments on mouse macrophages demonstrated that treatment with inert 11-dehydrocorticosterone for 24 h increased phagocytosis of apoptotic neutrophils to the same extent as corticosterone. This effect was dependent upon 11beta-HSD1, as 11beta-HSD1 mRNA, but not 11beta-HSD2 mRNA, was expressed in these cells; 11-dehydrocorticosterone was ineffective in promoting phagocytosis by Hsd11b1(-/-) macrophages, and carbenoxolone, an 11beta-HSD inhibitor, prevented the increase in phagocytosis elicited in wild-type macrophages by 11-dehydrocorticosterone. Importantly, as experimental peritonitis progressed, clearance of apoptotic neutrophils was delayed in Hsd11b1(-/-) mice. These data point to an early role for 11beta-HSD1 in promoting the rapid clearance of apoptotic cells during the resolution of inflammation and indicate a novel target for therapy.  相似文献   

6.
Phagocytosis of apoptotic cells   总被引:1,自引:0,他引:1  
Removal of apoptotic cells by phagocytes plays an important role in many biological processes, including embryological development and tissue remodelling. In addition, it has become apparent that one of the key mechanisms for the successful resolution of inflammation is the orchestrated clearance of apoptotic inflammatory cells by phagocytes (e.g., macrophages and dendritic cells) and other cells known to have phagocytic capacity (e.g., hepatocytes, endothelial cells, epithelial cells, etc.). Furthermore, phagocytosis of apoptotic cells is an active and highly regulated process that not only serves to remove potentially histotoxic cells from the inflammatory milieu, but also directs the phenotype of the phagocytic cell to be anti-inflammatory. Convincing evidence has been presented that reduced or dysregulated phagocytosis of apoptotic cells contributes to the development and propagation of inflammatory disorders. Conversely, enhanced phagocytosis of apoptotic cells may be exploited for therapeutic gain. Indeed, powerful anti-inflammatory drugs such as the glucocorticoids have been shown to augment clearance of apoptotic cells which may contribute to their therapeutic effectiveness. In this chapter, we describe methods for studying phagocytosis of apoptotic cells.  相似文献   

7.
Although AMPK plays well-established roles in the modulation of energy balance, recent studies have shown that AMPK activation has potent anti-inflammatory effects. In the present experiments, we examined the role of AMPK in phagocytosis. We found that ingestion of Escherichia coli or apoptotic cells by macrophages increased AMPK activity. AMPK activation increased the ability of neutrophils or macrophages to ingest bacteria (by 46 ± 7.8 or 85 ± 26%, respectively, compared to control, P<0.05) and the ability of macrophages to ingest apoptotic cells (by 21 ± 1.4%, P<0.05 compared to control). AMPK activation resulted in cytoskeletal reorganization, including enhanced formation of actin and microtubule networks. Activation of PAK1/2 and WAVE2, which are downstream effectors of Rac1, accompanied AMPK activation. AMPK activation also induced phosphorylation of CLIP-170, a protein that participates in microtubule synthesis. The increase in phagocytosis was reversible by the specific AMPK inhibitor compound C, siRNA to AMPKα1, Rac1 inhibitors, or agents that disrupt actin or microtubule networks. In vivo, AMPK activation resulted in enhanced phagocytosis of bacteria in the lungs by 75 ± 5% vs. control (P<0.05). These results demonstrate a novel function for AMPK in enhancing the phagocytic activity of neutrophils and macrophages.  相似文献   

8.
Neutrophil infiltration is the first step in eradication of bacterial infection, but neutrophils rapidly die after killing bacteria. Subsequent accumulation of macrophage lineage cells, such as alveolar macrophages (AMs), is essential to remove dying neutrophils, which are a source of injurious substances. Macrophage lineage cells can promote tissue repair, by producing potential growth factors including hepatocyte growth factor (HGF). However, it remains elusive which factor activates macrophage in these processes. Intratracheal instillation of Pseudomonas aeruginosa caused neutrophil infiltration in the airspace; subsequently, the numbers of total AMs and neutrophil ingested AMs were increased. Bronchoalveolar lavage (BAL) fluid levels of monocyte chemoattractant protein (MCP)-1/CC chemokine ligand-2 (CCL2), a potent macrophage-activating factor, were increased before the increases in the number of AM ingesting neutrophils and HGF levels in BAL fluid. Immunoreactive MCP-1 proteins were detected in alveolar type II epithelial cells and AMs only after P. aeruginosa infection. The administration of anti-MCP-1/CCL2 Abs reduced the increases in the number of AM-ingesting neutrophils and HGF levels in BAL fluid, and eventually aggravated lung tissue injury. In contrast, the administration of MCP-1/CCL2 enhanced the increases in the number of AM ingesting neutrophils and HGF levels in BAL fluid, and eventually attenuated lung tissue injury. Furthermore, MCP-1/CCL2 enhanced the ingestion of apoptotic neutrophils and HGF production by a mouse macrophage cell line, RAW 267.4, in a dose-dependent manner. Collectively, MCP-1/CCL2 has a crucial role in the resolution and repair processes of acute bacterial pneumonia by enhancing the removal of dying neutrophils and HGF production by AMs.  相似文献   

9.

Introduction

Apoptosis has been reported to occur in the intervertebral disc. Elsewhere in the body, apoptotic cells are cleared from the system via phagocytosis by committed phagocytes such as macrophages, reducing the chance of subsequent inflammation. These cells, however, are not normally present in the disc. We investigated whether disc cells themselves can be induced to become phagocytic and so have the ability to ingest and remove apoptotic disc cells, minimising the damage to their environment.

Method

Bovine nucleus pulposus cells from caudal intervertebral discs were grown in culture and exposed to both latex particles (which are ingested by committed phagocytes) and apoptotic cells. Their response was monitored via microscopy, including both fluorescent and video microscopy, and compared with that seen by cell lines of monocytes/macrophages (THP-1 and J774 cells), considered to be committed phagocytes, in addition to a nonmacrophage cell line (L929 fibroblasts). Immunostaining for the monocyte/macrophage marker, CD68, was also carried out.

Results

Disc cells were able to ingest latex beads at least as efficiently, if not more so, than phagocytic THP-1 and J774 cells. Disc cells ingested a greater number of beads per cell than the committed phagocytes in a similar time scale. In addition, disc cells were able to ingest apoptotic cells when cocultured in monolayer with a UV-treated population of HeLa cells. Apoptotic disc cells, in turn, were able to stimulate phagocytosis by the committed macrophages. CD68 immunostaining was strong for THP-1 cells but negligible for disc cells, even those that had ingested beads.

Conclusion

In this study, we have shown that intervertebral disc cells are capable of behaving as competent phagocytes (that is, ingesting latex beads) and apoptotic cells. In terms of number of particles, they ingest more than the monocyte/macrophage cells, possibly due to their greater size. The fact that disc cells clearly can undergo phagocytosis has implications for the intervertebral disc in vivo. Here, where cell death is reported to be common yet there is normally no easy access to a macrophage population, the endogenous disc cells may be encouraged to undergo phagocytosis (for example, of neighbouring cells within cell clusters).  相似文献   

10.
The yield as well as phenotypic and functional parameters of canine peripheral blood monocyte-derived macrophages were analyzed. The cells that remained adherent to Teflon after 10 days of culture had high phagocytic activity when inoculated with Leishmania chagasi. Flow cytometric analysis demonstrated that more than 80% of cultured cells were positive for the monocyte/macrophage marker CD14.  相似文献   

11.
The infection of sea bass (Dicentrarchus labrax L.) by intraperitoneal (i.p.) injection of the agent of fish pasteurellosis Photobacterium damselae subsp. piscicida resulted in the apoptosis of peritoneal neutrophils and macrophages. All the eight virulent and none of the two non-virulent strains tested exhibited apoptogenic activity. A secreted bacterial protein(s) is a likely candidate as the factor(s) responsible for this activity, since no apoptosis was induced by i.p. injected UV-killed virulent strains and the virulent culture supernatants exhibited a thermo-labile apoptogenic activity identical to that of live bacteria. The apoptotic process was characterized by the occurrence of DNA fragmentation detected by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) staining and DNA electrophoresis, and of typical ultrastructural alterations namely cell shrinkage, chromatin condensation, nuclear fragmentation and production of blebs with shedding of apoptotic bodies. In the apoptotic process induced by lethal doses of virulent bacteria or culture supernatants both peritoneal macrophages and neutrophils were extensively affected, the majority of these cells being apoptotic and reaching values around 10(7)per peritoneal cavity for each cell type at 24h post-injection. Moreover, the number of non-apoptotic macrophages was always below the initial number in the resting peritoneal cavity. Since macrophages are key cells in the elimination of both bacteria and apoptotic moribund cells and apoptotic bodies, the induction by Ph. damselae subsp. piscicida of simultaneous macrophage and neutrophil apoptosis results, on the one hand, in the destruction of the two phagocytic cell types involved in the restriction of multiplication of the bacteria and, on the other hand, in the uncontrolled progression of the apoptotic process towards secondary necrosis and eventual lysis of high numbers of moribund neutrophils and of neutrophilic apoptotic bodies, with the consequent extensive release of their highly cytotoxic components. Abundant apoptotic cells were also seen in sections of head-kidney from fish dying from experimental pasteurellosis. In contrast, no apoptosis was seen in vitro after the treatment with virulent culture supernatants of sea bass head-kidney macrophage cultures or after the treatment ex vivo of peritoneal exudate leukocytes with virulent bacteria or culture supernatants. The apoptotic process described here appears as a novel and very powerful microbial pathogenic strategy.  相似文献   

12.
Efficient clearance of apoptotic cells by phagocytes (efferocytosis) is critical for normal tissue homeostasis and regulation of the immune system. Apoptotic cells are recognized by a vast repertoire of receptors on macrophage that lead to transient formation of phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] and subsequent cytoskeletal reorganization necessary for engulfment. Certain PI3K isoforms are required for engulfment of apoptotic cells, but relatively little is known about the role of lipid phosphatases in this process. In this study, we report that the activity of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a phosphatidylinositol 3-phosphatase, is elevated upon efferocytosis. Depletion of PTEN in macrophage results in elevated PtdIns(3,4,5)P(3) production and enhanced phagocytic ability both in vivo and in vitro, whereas overexpression of wild-type PTEN abrogates this process. Loss of PTEN in macrophage leads to activation of the pleckstrin homology domain-containing guanine-nucleotide exchange factor Vav1 and subsequent activation of Rac1 GTPase, resulting in increased amounts of F-actin upon engulfment of apoptotic cells. PTEN disruption also leads to increased production of anti-inflammatory cytokine IL-10 and decreased production of proinflammatory IL-6 and TNF-α upon engulfment of apoptotic cells. These data suggest that PTEN exerts control over efferocytosis potentially by regulating PtdIns(3,4,5)P(3) levels that modulate Rac GTPase and F-actin reorganization through Vav1 exchange factor and enhancing apoptotic cell-induced anti-inflammatory response.  相似文献   

13.
Neutrophil influx to sites of mycobacterial infections is one of the first events of tuberculosis pathogenesis. However, the role of early neutrophil recruitment in mycobacterial infection is not completely understood. We investigated the rate of neutrophil apoptosis and the role of macrophage uptake of apoptotic neutrophils in a pleural tuberculosis model induced by BCG. Recruited neutrophils were shown to phagocyte BCG and a large number of neutrophils undergo apoptosis within 24 h. Notably, the great majority of apoptotic neutrophils were infected by BCG. Increased lipid body (lipid droplets) formation, accompanied by prostaglandin E(2) (PGE(2)) and TGF-beta1 synthesis, occurred in parallel to macrophage uptake of apoptotic cells. Lipid body and PGE(2) formation was observed after macrophage exposure to apoptotic, but not necrotic or live neutrophils. Blockage of BCG-induced lipid body formation significantly inhibited PGE(2) synthesis. Pre-treatment with the pan-caspase inhibitor zVAD inhibited BCG-induced neutrophil apoptosis and lipid body formation, indicating a role for apoptotic neutrophils in macrophage lipid body biogenesis in infected mice. In conclusion, BCG infection induced activation and apoptosis of infected neutrophils at the inflammatory site. The uptake of apoptotic neutrophils by macrophages leads to TGF-beta1 generation and PGE(2)-derived lipid body formation, and may have modulator roles in mycobacterial pathogenesis.  相似文献   

14.
The innate immune response to bovine Babesia bovis infection in vivo has not previously been established. We used assays measuring phagocytosis and oxidative burst to investigate the immune response because they are indicative of the innate antimicrobial capacity of monocytes and neutrophils. Monocyte and neutrophil phagocytosis is thought to be non-specific in nature and so the phagocytosis of either opsonised Zymosan or Escherichia coli was used to indicate the non-specific phagocytic capacity of monocytes and neutrophils ex vivo. The kinetics of both phagocytic and oxidative burst activity in monocytes and neutrophils were followed twice weekly from pre-inoculation (day 0) through to 31 days after inoculation. Peripheral blood monocytes were found to display a pronounced oxidative burst, but a suppressed capacity to phagocytose during a primary infection. On the other hand, neutrophils exhibited an increased phagocytic capacity and reduced oxidative activity during a primary infection. These findings identified considerable antimicrobial activity evident in peripheral blood monocytes and neutrophils from cattle exposed to B. bovis as a primary exposure. This elevated antimicrobial activity was coincident with the time that parasite numbers peaked in the circulation and occurred prior to parasite clearance. These results suggest that peripheral blood monocytes and neutrophils are active mediators in the innate immune response to a primary B. bovis.  相似文献   

15.
Ingestion of aged or irradiated apoptotic neutrophils actively suppresses stimulation of macrophages (Mphi). Many bacterial pathogens can also provoke apoptosis in neutrophils, but little is known about how such apoptotic cells influence Mphi activation. We found that neutrophils undergoing apoptosis induced by UV irradiation, Escherichia coli, or Staphylococcus aureus could either stimulate or inhibit Mphi activation. In contrast to Mphi that had ingested irradiated apoptotic neutrophils, Mphi that had phagocytosed bacteria-induced apoptotic neutrophils exhibited markedly increased production of the proinflammatory cytokine TNF-alpha, but not the anti-inflammatory cytokine TGF-beta. Moreover, ingestion of bacteria, but not UV-induced apoptotic neutrophils, caused increased expression of FcgammaRI on Mphi, and this effect was not provoked directly by bacteria associated with the apoptotic neutrophils. Instead, we found that a link between pathogen-induced apoptotic neutrophils and up-regulation of the heat shock proteins HSP60 and HSP70, and we also observed that recombinant HSP60 and HSP70 potentiated LPS-stimulated production of TNF-alpha in Mphi. The opposing macrophage responses to neutrophils undergoing apoptosis induced in different ways may represent a novel mechanism that regulates the extent of the immune response to invading microbes in two steps: first by aiding the functions of Mphi at an early stage of infection, and subsequently by deactivating those cells through removal of uninfected apoptotic neutrophils. HSP induction in neutrophils may provide the danger signals required to generate a more effective macrophage response.  相似文献   

16.
There is growing evidence that apoptotic neutrophils have an active role to play in the regulation and resolution of inflammation following phagocytosis by macrophages and dendritic cells. However, their influence on activated blood monocytes, freshly recruited to sites of inflammation, has not been defined. In this work, we examined the effect of apoptotic neutrophils on cytokine production by LPS-activated monocytes. Monocytes stimulated with LPS in the presence of apoptotic neutrophils for 18 h elicited an immunosuppressive cytokine response, with enhanced IL-10 and TGF-beta production and only minimal TNF-alpha and IL-1beta cytokine production. Time-kinetic studies demonstrated that IL-10 production was markedly accelerated in the presence of apoptotic neutrophils, whereas there was a sustained reduction in the production of TNF-alpha and IL-1beta. This suppression of proinflammatory production was not reversible by depletion of IL-10 or TGF-beta or by addition of exogenous IFN-gamma. It was demonstrated, using Transwell experiments, that monocyte-apoptotic cell contact was required for induction of the immunosuppressive monocyte response. The response of monocytes contrasted with that of human monocyte-derived macrophages in which there was a reduction in IL-10 production. We conclude from these data that interaction between activated monocytes and apoptotic neutrophils creates a unique response, which changes an activated monocyte from being a promoter of the inflammatory cascade into a cell primed to deactivate itself and other cells.  相似文献   

17.
Macrophage, neutrophil, and eosinophil colony cells from bone marrow culture in semisolid agar medium were studied for membrane C3 and IgG receptors. The capacity of these cells to bind either erythrocytes-19S antibody-complement (EAC) or erythrocyte-7S antibody (EA7S) complexes was measured using the rosette method. Whereas macrophage and neutrophil colony cells showed receptors for both C3 and IgG, eosinophil colony cells appear to bear only IgG receptors. Studies correlating colony age and the presence of receptors showed that 60 to 70% of the cells from 3-day-old macrophage colonies were reactive for EAC and EA7S contrasting with 80 to 90% of the cells from 6- to 12-day-old colonies. Neutrophils behaved somewhat differently: EAC and EA7S reactive cells were seen in colonies after 4 or 5 days in culture and comprised only 50 to 60% of the colony population. Eosinophilic colonies showed 50 to 60% EA7S reactive cells after 6 to 7 days in culture, but no EAC reactive cells were found among these colonies at any time. The characteristics and properties of the receptors detected on colony cells were similar to those on macrophages and neutrophils from normal peritoneal fluid or bone marrow. Most macrophage colony cells were actively phagocytic whereas neutrophils and eosinophilic colony cells failed to show phagocytosis under the same conditions.  相似文献   

18.
It is becoming evident that failure in the removal of dying cells causes and/or promotes the onset of chronic diseases. Impairment of phagocytosis of apoptotic cells can be due not only to genetic or molecular malfunctioning but also to external/environmental factors. Two of these environmental factors have been recently reported to down regulate the clearance of apoptotic cells: cigarette smoke and static magnetic fields. Cigarette smoke contains highly reactive carbonyls that modify proteins which directly/indirectly affects cellular function. Human macrophages interacting with carbonyl or cigarette smoke modified extracellular matrix (ECM) proteins dramatically down regulated their ability to phagocytose apoptotic neutrophils. It was postulated that changes in the ECM environment as a result of cigarette smoke affect the ability of macrophages to remove apoptotic cells. This decreased phagocytic activity was as a result of sequestration of receptors involved in the uptake of apoptotic cells towards that of recognition of carbonyl adducts on the modified ECM proteins leading to increased macrophage adhesion. Downregulation of the phagocytosis of apoptotic cells was also described when performed in presence of static magnetic fields (SMFs) of moderate intensity. SMFs have been reported to perturb distribution of membrane proteins and glycoproteins, receptors, cytoskeleton and trans-membrane fluxes of different ions, especially calcium [Ca2+]i, that in turn, interfere with many different physiological activities, including phagocytosis. The effects of cigarette smoke and SMF on the phagocytosis of dying cells will be here discussed.  相似文献   

19.
Macrophages in the lung are the primary cells being infected by Mycobacterium tuberculosis (Mtb) during the initial manifestation of tuberculosis. Since the adaptive immune response to Mtb is delayed, innate immune cells such as macrophages and neutrophils mount the early immune protection against this intracellular pathogen. Neutrophils are short-lived cells and removal of apoptotic cells by resident macrophages is a key event in the resolution of inflammation and tissue repair. Since anti-inflammatory activity is not compatible with effective immunity to intracellular pathogens, we therefore investigated how uptake of apoptotic neutrophils modulates the function of Mtb-activated human macrophages. We show that Mtb infection exerts a potent proinflammatory activation of human macrophages with enhanced gene activation and release of proinflammatory cytokines and that this response was augmented by apoptotic neutrophils. The enhanced macrophage response is linked to apoptotic neutrophil-driven activation of the NLRP3 inflammasome and subsequent IL-1β signalling. We also demonstrate that apoptotic neutrophils not only modulate the inflammatory response, but also enhance the capacity of infected macrophages to control intracellular growth of virulent Mtb. Taken together, these results suggest a novel role for apoptotic neutrophils in the modulation of the macrophage-dependent inflammatory response contributing to the early control of Mtb infection.  相似文献   

20.
Bcl-XL, a member of the Bcl-2 protein family, is able to suppress cell death induced by diverse stimuli in many cell types, including hematopoietic cells. Human granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that promotes the proliferation and maturation of neutrophils, eosinophils, and macrophages from bone marrow progenitors. We fused GM-CSF to Bcl-XL and examined the capacity of this chimera to bind human cells through the GM-CSF receptor and prevent apoptosis. We found that the chimeric protein increased the proliferation of human monocytes in culture from 24 h until at least 72 h. In the presence of different apoptotic agents, GM-CSF-Bcl-XL protected cells from induced cell death and promoted proliferation, whereas GM-CSF alone was completely inhibited. In the presence of cytarabine, GM-CSF-Bcl-XL was able also to promote the differentiation of the CD34+ myeloid precursor whereas Lfn-Bcl-XL, lacking the GM-CSF domain-stimulated cell proliferation and not differentiation. We conclude that recombinant GM-CSF-Bcl-XL binds the GM-CSF receptor on human monocyte/macrophage cells and bone marrow progenitors inducing differentiation and allowing Bcl-XL entry into cells where it blocks cell death and allows amplified cell proliferation. This fully human fusion protein has potential to prevent monocytopenia and represents a new strategy for engineering anti-apoptotic therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号