共查询到20条相似文献,搜索用时 0 毫秒
1.
Oryza sativa polyamine oxidase 1 back-converts tetraamines, spermine and thermospermine, to spermidine 总被引:1,自引:0,他引:1
Taibo Liu Dong Wook Kim Masaru Niitsu Thomas Berberich Tomonobu Kusano 《Plant cell reports》2014,33(1):143-151
Key message
Oryza sativa polyamine oxidase 1 back-converts spermine (or thermospermine) to spermidine. Considering the previous work, major path of polyamine catabolism in rice plant is suggestive to be back-conversion but not terminal catabolism.Abstract
Rice (Oryza sativa) contains seven genes encoding polyamine oxidases (PAOs), termed OsPAO1 to OsPAO7, based on their chromosomal number and gene ID number. We previously showed that three of these members, OsPAO3, OsPAO4 and OsPAO5, are abundantly expressed, that their products localize to peroxisomes and that they catalyze the polyamine back-conversion reaction. Here, we have focused on OsPAO1. The OsPAO1 gene product shares a high level of identity with those of Arabidopsis PAO5 and Brassica juncea PAO. Expression of OsPAO1 appears to be quite low under physiological conditions, but is markedly induced in rice roots by spermine (Spm) or T-Spm treatment. Consistent with the above finding, the recombinant OsPAO1 prefers T-Spm as a substrate at pH 6.0 and Spm at pH 8.5 and, in both cases, back-converts these tetraamines to spermidine, but not to putrescine. OsPAO1 localizes to the cytoplasm of onion epidermal cells. Differing in subcellular localization, four out of seven rice PAOs, OsPAO1, OsPAO3, OsPAO4 and OsPAO5, catalyze back-conversion reactions of PAs. Based on the results, we discuss the catabolic path(s) of PAs in rice plant. 相似文献2.
Agmatine modulates polyamine content in hepatocytes by inducing spermidine/spermine acetyltransferase. 总被引:4,自引:0,他引:4
C Vargiu C Cabella S Belliardo C Cravanzola M A Grillo S Colombatto 《European journal of biochemistry》1999,259(3):933-938
Agmatine has been proposed as the physiological ligand for the imidazoline receptors. It is not known whether it is also involved in the homoeostasis of intracellular polyamine content. To show whether this is the case, we have studied the effect of agmatine on rat liver cells, under both periportal and perivenous conditions. It is shown that agmatine modulates intracellular polyamine content through its effect on the synthesis of the limiting enzyme of the interconversion pathway, spermidine/spermine acetyltransferase (SSAT). Increased SSAT activity is accompanied by depletion of spermidine and spermine, and accumulation of putrescine and N1-acetylspermidine. Immunoblotting with a specific polyclonal antiserum confirms the induction. At the same time S-adenosylmethionine decarboxylase activity is significantly increased, while ornithine decarboxylase (ODC) activity and the rate of spermidine uptake are reduced. This is not due to an effect on ODC antizyme, which is not significantly changed. All these modifications are observed in HTC cells also, where they are accompanied by a decrease in proliferation rate. SSAT is also induced by low oxygen tension which mimics perivenous conditions. The effect is synergic with that promoted by agmatine. 相似文献
3.
A Toninello L Dalla Via D Siliprandi K D Garlid 《The Journal of biological chemistry》1992,267(26):18393-18397
We present evidence that polyamine uptake into rat liver mitochondria is mediated by a specific polyamine uniporter. Polyamine transport is not mediated by the ornithine, lysine, or Ca2+ transporters of mitochondria. Polyamine transport is a saturable process, with apparent Km values of 0.13 mM for spermine, 0.26 mM for spermidine, and 1 mM for putrescine. These substrates are mutually competitive inhibitors, indicating a common transport system. Polyamine transport is strictly dependent on membrane potential and insensitive to medium pH, showing that these polycations are transported electrophoretically. Spermine, spermidine, and putrescine are taken up by rat liver mitochondria at rates that increase with increasing valence of the transported species. The activation enthalpies for transport were 24, 32, and 59 kJ/mol for putrescine, spermidine, and spermine, respectively. These values, which amount to about 12 kJ/mol per charge transferred, may be compared to a value of 76 kJ/mol observed for monovalent tetraethylammonium cation. Flux-voltage analysis is consistent with the hypothesis that the mitochondrial polyamine transporter catalyzes transport via a channel mechanism. 相似文献
4.
5.
Fiorillo A Federico R Polticelli F Boffi A Mazzei F Di Fusco M Ilari A Tavladoraki P 《The FEBS journal》2011,278(5):809-821
Polyamine oxidases are FAD-dependent enzymes catalyzing the oxidation of polyamines at the secondary amino groups. Zea mays PAO (ZmPAO) oxidizes the carbon on the endo-side of the N5-nitrogen of spermidine (Spd) and spermine (Spm). The structure of ZmPAO revealed that the active site is formed by a catalytic tunnel in which the N5 atom of FAD lies in close proximity to the K300 side chain, the only active-site residue conserved in all PAOs. A water molecule, (HOH309), is hydrogen-bound to the amino group of K300 and mutation of this residue results in a 1400-fold decrease in the rate of flavin reduction. The structural studies on the catalytically impaired ZmPAO-K300M mutant described here show that substrates are bound in an 'out-of-register' mode and the HOH309 water molecule is absent in the enzyme-substrate complexes. Moreover, K300 mutation brings about a 60 mV decrease in the FAD redox potential and a 30-fold decrease in the FAD reoxidation rate, within a virtually unaltered geometry of the catalytic pocket. Taken together, these results indicate that the HOH309-K300 couple plays a major role in multiple steps of ZmPAO catalytic mechanism, such as correct substrate binding geometry as well as FAD reduction and reoxidation kinetics. 相似文献
6.
Niiranen K Pietilä M Pirttilä TJ Järvinen A Halmekytö M Korhonen VP Keinänen TA Alhonen L Jänne J 《The Journal of biological chemistry》2002,277(28):25323-25328
We have generated mouse embryonic stem cells with targeted disruption of spermidine/spermine N(1)-acetyltransferase (SSAT) gene. The targeted cells did not contain any inducible SSAT activity, and the SSAT protein was not present. The SSAT-deficient cells proliferated normally and appeared to maintain otherwise similar polyamine pools as did the wild-type cells, with the possible exception of constantly elevated (about 30%) cellular spermidine. As expected, the mutated cells were significantly more resistant toward the growth-inhibitory action of polyamine analogues, such as N(1),N(11)-diethylnorspermine. However, this resistance was not directly attributable to cellular depletion of the higher polyamines spermidine and spermine, as the analogue depleted the polyamine pools almost equally effectively in both wild-type and SSAT-deficient cells. Tracer experiments with [C(14)]-labeled spermidine revealed that SSAT activity is essential for the back-conversion of spermidine to putrescine as radioactive N(1)-acetylspermidine and putrescine were readily detectable in N(1),N(11)-diethylnorspermine-exposed wild-type cells but not in SSAT-deficient cells. Similar experiments with [C(14)]spermine indicated that the latter polyamine was converted to spermidine in both cell lines and, unexpectedly, more effectively in the targeted cells than in the parental cells. This back-conversion was only partly inhibited by MDL72527, an inhibitor of polyamine oxidase. These results indicated that SSAT does not play a major role in the maintenance of polyamine homeostasis, and the toxicity exerted by polyamine analogues is largely not based on SSAT-induced depletion of the natural polyamines. Moreover, embryonic stem cells appear to operate an SSAT-independent system for the back-conversion of spermine to spermidine. 相似文献
7.
8.
G Poli E Chiarpotto E Gravela 《Bollettino della Società italiana di biologia sperimentale》1981,57(11):1209-1215
In isolated rat liver cells in which lipid peroxidation is stimulated by CCl4, a strong inhibition of S-adenosylmethionine decarboxylase (SAMD) activity occurs. Some purified aldehydes, which are produced during lipid peroxidation, are able to inhibit SAMD activity in Yoshida hepatoma cells. The most active aldehyde is hydroxypentenal (HPE). It inhibits by 50% SAMD activity at 0.5 mM concentration in entire hepatoma cells, or in hepatoma cell sap, and at 0.1 mM concentration in partially purified hepatoma cell sap fractions. 相似文献
9.
10.
John S. Heller Kuang Yu Chen Dimitri A. Kyriakidis Wang F. Fong E. S. Canellakis 《Journal of cellular physiology》1978,96(2):225-234
Extremely low concentrations of putrescine, spermidine and spermine added to the extracellular medium of cultures of mammalian cells inhibit the induction of ornithine decarboxylase activity despite 100- to 1,000-fold greater intracellular polyamine concentrations. The diamines, 1,2-diaminoethane, 1,3-diaminopropane, 1,5-diaminopentane, 1,7-diaminoheptane, 1,10-diaminodecane, 1,12-diaminododecane also inhibit ornithine decarboxylase at all concentrations tested (greater than 10?6 M). In contrast, 10?6 M to 10 ?3 M 1,8-diaminooctane, the alkyl analog of spermidine, enhances ornithine decarboxylase activity. The concentraton of putrescine required to inhibit the activity of ornithine decarboxylase by 50% is a characteristic of each cell line; however, it varies by as much as 1,000-fold among the five cell lines we have tested (L1210 leukemic, H35 hepatoma, N18 neuroblastoma, W256 carcinosarcoma and 3T3 fibroblasts). The antizyme to ornithine decarboxylase can be induced in all these cells by high (di)(poly)amine concentrations. Based on these and other experiments we suggest a working hypothesis: that the polyamines regulate ornithine decarboxylase activity through two different sites that may be interrelated; a sensitive membrane-mediated site that responds to minute fluctuations of extracellular polyamine levels and a coarse site which may be intracellular or membrane associated that responds to larger fluctuations of intracellular polyamine levels. The consequences of such a control mechanism operating within the whole organism are discussed. 相似文献
11.
The effect of purified aminoaldehydes produced by polyamine oxidation on the development in vitro of Plasmodium falciparum in normal and glucose-6-phosphate-dehydrogenase-deficient erythrocytes. 总被引:1,自引:0,他引:1
下载免费PDF全文

Purified aminoaldehydes produced by polyamine oxidation were toxic to the malarial parasite, Plasmodium falciparum, cultured in human erythrocytes. There was a profound effect on young ring forms, and, during maturation, parasites became more sensitive to the aldehydes. Oxidation of the aldehydes abolished the lethal effect. The plasmodia within glucose-6-phosphate-dehydrogenase (G6PD)-deficient erythrocytes were more sensitive to mono- and di-aldehydes than were parasites in normal erythrocytes. G6PD-deficient erythrocytes were also more sensitive to pretreatment with the dialdehyde produced by the oxidation of spermine. Pretreatment prevented further invasion by the parasites. 相似文献
12.
The enzyme spermidine/spermine N (1)-acetyltransferase (SSAT) catalyzes the transfer of acetyl groups from acetylcoenzyme A to spermidine and spermine, as part of a polyamine degradation pathway. This work describes the crystal structure of SSAT in complex with coenzyme A, with and without bound spermine. The complex with spermine provides a direct view of substrate binding by an SSAT and demonstrates structural plasticity near the active site of the enzyme. Associated water molecules bridge several of the intermolecular contacts between spermine and the enzyme and form a "proton wire" between the side chain of Glu92 and the N1 amine of spermine. A single water molecule can also be seen forming hydrogen bonds with the side chains of Glu92, Asp93, and the N4 amine of spermine. Site-directed mutation of Glu92 to glutamine had a detrimental effect on both substrate binding and catalysis and shifted the optimal pH for enzyme activity further into alkaline solution conditions, while mutation of Asp93 to asparagine affected both substrate binding and catalysis without changing the pH dependence of the enzyme. Considered together, the structural and kinetic data suggest that Glu92 functions as a catalytic base to drive an otherwise unfavorable deprotonation step at physiological pH. 相似文献
13.
When the diamines putrescine, cadaverine, cystamine and lanthionamine are oxidized by purified pig kidney diamine oxidase in the presence of NADH and either liver or yeast crystalline alcohol dehydrogenase, NADH is oxidized. Chromatographic evidence obtained in the case of putrescine and cystamine indicates the production of the respective hydroxy-amino compound. In the case of cystamine, the product of the reaction is mercapto-ethanol-cysteamine mixed disulfide which may represent a biological source for the production of mercaptoethanol used for other reactions. 相似文献
14.
The interaction of galactose oxidase with native and desialylated glycophorin A was studies by oxidizing human erythrocytes and globoside/phospholipid vesicles with the enzyme. Oxidation of the glycolipid was improved in the presence of vesicle-incorporationted glycophorin A. Although galactose oxidase is a very basic protein, it was not adsorbed on native human erythrocytes. Instead, neuraminidase-treated cells bound a substantial amount of galactose oxidase, but the enzyme seemed to be released into the buffer when desialylated glycoproteins had been oxidized.Abbreviation PBS
0.01 M sodium phosphate-0.15 M NaCl, pH 7.4 相似文献
15.
Jen-Kun Lin Chen-Cheng Lai 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1982,227(2):369-377
A fast and sensitive method for the determination of putrescine, spermidine, spermine and ammonia by high-performance liquid chromatography (HPLC) with dabsyl chloride is described. These compounds are converted to their chromophoric dabsyl derivatives and are separated by a normal-phase chromatographic column (μPorasil, 10 μm) with 2% acetone in chloroform as isocratic mobile phase. The sensitivity of the method is 20 pmoles. The present method was shown to be a straightforward procedure for estimating polyamines in various rat tissues.The chromophoric derivatives of polyamines are also well separated by thin-layer chromatography (TLC) on silica gel, and the combination of the HPLC and TLC procedures provides a reliable method for qualitative and quantitative analysis of polyamines. 相似文献
16.
A new fluorometric method is described for the rapid, sensitive analysis of spermidine and spermine in animal tissues. The polyamines added with N-3-aminopropylheptane-1, 7-diamine as internal standard were chromatographed on a silica-gel sintered-glass plate in a solvent system of n-BuOH-AcOH-Pyridine-H2O, and the chromatograms were developed with an acetone solution of fluorescamine. Determination, using a scanning fluorometer, was performed by measuring peak area ratio with respect to the internal standard. The precision and accuracy of the method were established, and the limits of determination were of the order of 100 pmoles. 相似文献
17.
Regulation of spermidine/spermine N1-acetyltransferase in L6 cells by polyamines and related compounds.
下载免费PDF全文

Exposure of rat L6 cells in culture to exogenous polyamines led to a very large increase in the activity of spermidine/spermine N1-acetyltransferase. Spermine was more potent than spermidine in bringing about this increase, but in both cases the elevated acetyltransferase activity increased the cellular conversion of spermidine into putrescine. The N1-acetyltransferase turned over very rapidly in the L6 cells, with a half-life of 9 min after spermidine and 18 min after spermine. A wide variety of synthetic polyamine analogues also brought about a substantial induction of spermidine/spermine N1-acetyltransferase activity. These included sym-norspermidine, sym-norspermine, sym-homospermidine, N4-substituted spermidine derivatives, 1,3,6-triaminohexane, 1,4,7-triaminoheptane and deoxyspergualin, which were comparable with spermidine in their potency, and N1N8-bis(ethyl)spermidine, N1N9-bis(ethyl)homospermidine, methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone) and 1,1'-[(methylethanediylidene)dinitrilo]bis(3-amino-guanidine ), which were even more active than spermidine. It is suggested that these polyamine analogues may bring about a decrease in cellular polyamines not only by inhibiting biosynthesis but by stimulating the degradation of spermidine into putrescine. 相似文献
18.
19.
20.
M Cervelli A Cona R Angelini F Polticelli R Federico P Mariottini 《European journal of biochemistry》2001,268(13):3816-3830
Two cDNAs encoding polyamine oxidase (PAO) isoforms (BPAO1 and BPAO2) and the corresponding gene copies were isolated from barley cultivar Aura. Gene organization is not conserved between these two nonallelic coding sequences. Both precursor proteins include a cleavable N-terminal leader of 25 amino acids. N-terminal sequencing of PAO purified from barley seedlings reveals a unique amino-acid sequence corresponding to the BPAO2 N-terminus as predicted from the corresponding cDNA. BPAO2 has been purified, characterized and compared to maize PAO (MPAO), the best characterized member of this enzyme class. The two proteins show different pH optima for catalytic activity, Km and Vmax values with spermidine and spermine as substrates. Molecular modelling of BPAO2 reveals the same global fold as in MPAO. However, substitution of the active site residue Phe403 by a tyrosine, provides a rationale for the different catalytic properties of the two enzymes. In barley leaves PAO-specific activity is higher in isolated mesophyll protoplasts than in the extracellular fluids, whereas in maize the reverse is true. The C-terminus of BPAO2 shows homology with the endoplasmic reticulum retention signal that might be responsible for the subcellular localization observed. We conclude that BPAO2 is a symplastic PAO in barley mesophyll cells. Production of BPAO2 mRNA and the corresponding protein is induced by light, and has a different pattern of accumulation in leaves and coleoptiles. 相似文献