首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conformational changes induced by binding of divalent cations to calregulin   总被引:3,自引:0,他引:3  
Scatchard analysis of equilibrium dialysis studies have revealed that in the presence of 3.0 mM MgCl2 and 150 mM KCl, calregulin has a single binding site for Ca2+ with an apparent dissociation constant (apparent Kd) of 0.05 microM and 14 binding sites for Zn2+ with apparent Kd(Zn2+) of 310 microM. Ca2+ binding to calregulin induces a 5% increase in the intensity of intrinsic fluorescence and a 2-3-nm blue shift in emission maximum. Zn2+ binding to calregulin causes a dose-dependent increase of about 250% in its intrinsic fluorescence intensity and a red shift in the emission maximum of about 11 nm. Half-maximal wavelength shift occurs at 0.4 mol of Zn2+/mol of calregulin, and 100% of the wavelength shift is complete at 2 mol of Zn2+/mol of calregulin. In the presence of Zn2+ and calregulin the fluorescence intensity of the hydrophobic fluorescent probe 8-anilino-1-napthalenesulfonate (ANS) was enhanced 300-400% with a shift in emission maximum from 500 to 480 nm. Half-maximal Zn2+-induced shift in ANS emission maximum occurred at 1.2 mol of Zn2+/mol of calregulin, and 100% of this shift occurred at 6 mol of Zn2+/mol of calregulin. Of 12 cations tested, only Zn2+ and Ca2+ produced changes in calregulin intrinsic fluorescence, and none of these metal ions could inhibit the Zn2+-induced red shift in intrinsic fluorescence emission maximum. Furthermore, none of these cations could inhibit or mimic the Zn2+-induced blue shift in ANS emission maximum. These results suggest that calregulin contains distinct and specific ligand-binding sites for Ca2+ and Zn2+. While Ca2+ binding results in the movement of tryptophan away from the solvent, Zn2+ causes a movement of tryptophan into the solvent and the exposure of a domain with considerable hydrophobic character.  相似文献   

2.
Quantitative analyses were carried out on Tb3+ binding to porcine intestinal calcium-binding protein (CaBP). Tb3+ (emission at 547 nm) and intrinsic tyrosine (emission at 303 nm) fluorescences upon excitation at 260 nm increase almost in parallel with increasing Tb3+ concentration up to a molar ratio of 2 against the protein in the CaBP solution. The pH dependence profile of Tb3+ fluorescence of the Tb3+-CaBP complex suggests that some free carboxylate groups are involved in the binding, as also suggested for Ca2+ binding. The results of fluorometric titration of Tb3+ and intrinsic tyrosine fluorescences of the CaBP complex with Tb3+ or Ca2+ led us to conclude that Tb3+ and Ca2+ have two common binding sites for each CaBP molecule. An equilibrium dialysis experiment showed that the dissociation constants of the two Tb3+-binding sites are 0.29 and 3.51 microM. Tb3+ strongly inhibits 45Ca binding to one of the two Ca2+-binding sites in the CaBP. All of these and previous results indicate that each Tb3+ ion can bind to either of two high-affinity Ca2+-binding sites in porcine intestinal CaBP with an affinity different from that for Ca2+ ion. We discuss the localization of the Ca2+- and Tb3+-binding sites in the CaBP.  相似文献   

3.
T M Laue  R Lu  U C Krieg  C T Esmon  A E Johnson 《Biochemistry》1989,28(11):4762-4771
The calcium dependence of the structures of bovine blood coagulation factor Va and its subunits (Vh and Vl) has been examined spectroscopically in order to characterize the conformational changes which accompany the binding of Ca2+ to Vh and Vl to form factor Va. The far-UV CD spectra of the isolated subunits indicate that the secondary structures of both Vh and Vl are predominantly beta-sheet (greater than 45%), with little alpha-helix content (less than 15%). No change in the far-UV CD spectrum was observed when factor Va was formed by the addition of Ca2+ to an equimolar mixture of Vl and Vh. Hence, no detectable change in secondary structure occurs during the formation of factor Va. In contrast, the addition of Ca2+ to an equimolar mixture of Vh and Vl caused a small (2%) increase in the total intrinsic fluorescence intensity and a blue shift in the emission spectrum that resulted from a tertiary structural change and/or the association of nonpolar surfaces at the subunit interface. This fluorescence change correlated closely with the appearance of functional factor Va, since the rate of the spectral change was the same as the rate of recovery of cofactor activity, and since both were half-maximal near 50 microM Ca2+. This fluorescence change required both subunits, was reversed by the addition of EDTA, and was observed only with metal ions that can substitute for Ca2+ in reconstituting factor Va activity from Vh and Vl (Mn2+ and Tb3+; not Mg2+). When a sample containing ANS (8-anilino-1-naphthalenesulfonate) and an equimolar mixture of calcium-free Vh and Vl was titrated with Ca2+, the ANS emission intensity decreased by about 30%, most likely because the association of Vl and Vh caused nonpolar regions at the subunit-subunit interface to become inaccessible for ANS binding. The calcium dependence of this spectral change yielded a Kd of 51 +/- 2 microM, and the rate of the decrease in ANS fluorescence occurred at nearly the same rate as the recovery of factor Va activity. Thus, both intrinsic and extrinsic fluorescence data, as well as other data, indicate that the calcium binding site in factor Va has an apparent Kd of 50 microM under our conditions and that the calcium-mediated binding between Vl and Vh involves hydrophobic interactions between the subunits.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
We have examined the calcium-binding properties and metal ion-dependent conformational changes of proteolytically modified derivatives of factor IX that lack gamma-carboxyglutamic acid (Gla) residues. Equilibrium dialysis experiments demonstrated that a Gla-domainless factor IX species retained a single high affinity calcium ion-binding site (Kd = 85 +/- 5 microM). Ca2+ binding to this site was accompanied by a decrease in intrinsic fluorescence emission intensity (Kd = 63 +/- 15 microM). These spectral changes were reversed upon the addition of EDTA. Titration with Sr2+ resulted in little change in fluorescence intensity below 1 mM, while titration with Tb3+ caused fluorescence changes similar to those observed with Ca2+. Tb3+ and Ca2+ appear to bind to the same site because tryptophan-dependent terbium emission was reduced by the addition of Ca2+. Similar results were obtained with a Gla-domainless factor IX species lacking the activation peptide. Gla domain-containing factor IX species exhibited fluorescence changes similar to those of the Gla-domainless proteins at low Ca2+, but an additional structural transition was found at higher Ca2+ concentrations (apparent Kd greater than 0.8 mM). Thus, the conformations of factor IX proteins are nucleated and/or stabilized by calcium binding to a high affinity site which does not contain Gla residues. The binding of Ca2+ to lower affinity Gla domain-dependent metal ion-binding sites elicits an additional conformational change. The strong similarities between these results and those obtained with protein C (Johnson, A. E., Esmon, N. L., Laue, T. M. & Esmon, C. T. (1983) J. Biol. Chem. 258, 5554-5560), coupled with the remarkable sequence homologies of the vitamin K-dependent proteins, suggest that the high affinity Gla-independent Ca2+-binding site may be a common feature of vitamin K-dependent proteins.  相似文献   

5.
Direct binding assay and fluorescence studies revealed that S-100a protein binds 2 mol of Tb3+/mol of protein at pH 6.6. The protein binds Tb3+ much more tightly than Ca2+, and the upper limit of the observed Kd value for Tb3+ is 3.5 x 10(-6) M. The Tb3+-binding site on the protein must be close to a tyrosine residue, as indicated by fluorescence excitation and emission spectra, where energy transfer from tyrosine is noted. Addition of Tb3+ resulted in a conformational change in the protein, as revealed by u.v.-difference spectroscopy and c.d. studies. Far-u.v. c.d. studies indicated the helical content to decrease from approx. 39% to 35% in the presence of Tb3+. From u.v.-difference-spectroscopy results the single tryptophan and the tyrosine chromophores in S-100a protein are blue-shifted (i.e. exposed to the solvent) in the presence of Tb3+ and the observed conformational changes are similar to those induced by Ca2+, suggesting that Tb3+ can be employed as a Ca2+ analogue in spectral studies with S-100a protein.  相似文献   

6.
The interaction between 1-anilino-8-naphthalenesulfonate (ANS) and yeast phosphoglycerate kinase (ATP:3-phospho-D-glycerate 1-phosphotransferase, EC 2.7.2.3) and the use of ANS as a probe for studying the structure and function of phosphoglycerate kinase has been investigated. The interaction has been studied by kinetic methods, equilibrium dialysis, and fluorometric titrations. ANS inhibits the activity of the enzyme. More than one inhibitor site exists. ANS is competitive with MgATP and noncompetitive with 3-phosphoglycerate at the first detected inhibitor binding site. The Ki value is 1-2 mM. Several ANS molecules bind to the enzyme. By fluorometric titrations the first detected site has a dissociation constant that is in the same range as Ki or bigger. When ANS interacts with phosphoglycerate kinase its fluorescence is increased and a blue shift occurs. ANS appears to bind to a strongly hydrophobic site. The fluorescence is sensitive to the addition of substrates. ADP, ATP, or combinations of Mg2+ and nucleotide decreases the fluorescence as does free Mg2+. 3-Phosphoglycerate, on the other hand, increases the fluorescence giving evidence for conformational changes upon 3-phosphoglycerate binding.  相似文献   

7.
A new low molecular weight calcium binding protein, designated 12-kDa CaBP, has been isolated from chicken gizzard using a phenyl-Sepharose affinity column followed by ion-exchange and gel filtration chromatographies. The isolated protein was homogeneous and has a molecular weight of 12,000 based on sodium dodecyl sulfate-gel electrophoresis. The amino acid composition of this protein is similar to but distinct from other known low molecular weight Ca2+ binding proteins. Ca2+ binding assays using Arsenazo III (Sigma) indicated that the protein binds 1 mol of Ca2+/mol of protein. The 12-kDa CaBP underwent a conformational change upon binding Ca2+, as revealed by uv difference spectroscopy and circular dichroism studies in the aromatic and far-ultraviolet range. Addition of Ca2+ to the 12-kDa CaBP labeled with 2-p-toluidinylnaphthalene-6-sulfonate (TNS) resulted in a sevenfold increase in fluorescence intensity, accompanied by a blue shift of the emission maximum from 463 to 445 nm. Hence, the probe in the presence of Ca2+ moves to a more nonpolar microenvironment. Like calmodulin and other related Ca2+ binding proteins, this protein also exposes a hydrophobic site upon binding calcium. Fluorescence titration with Ca2+ using TNS-labeled protein revealed the presence of a single high affinity calcium binding site (kd approximately 1 x 10(-6) M).  相似文献   

8.
beta 1-Bungarotoxin has only one tryptophan residue, namely Trp-19 in the phospholipase A2 subunit. The environment of Trp-19 was studied by intrinsic fluorescence and solute quenching. The native protein showed an emission peak at 330 nm. About 90% of the fluorescent tryptophan was accessible to quenching by either acrylamide or KI but not to CsCl. A red-shift in the emission peak occurred between 2.0 M- and 4.0 M-guanidinium chloride, and the helix-coil transition of the polypeptide backbone occurred between 4.0 M- and 6.0 M-guanidinium chloride. These results suggested that Trp-19 was in a less polar medium but near a positive charge. The local conformation around Trp-19 could be disturbed by binding of Tb3+ or Ca2+ or Sr2+ to the toxin molecule. Tb3+ a tervalent lanthanide ion, effectively substituted for Ca2+ in stimulating the phospholipase A2 activity of beta 1-bungarotoxin. Upon the binding of Tb3+ to the toxin, the Tb3+ fluorescence in the 450-650 nm region was enhanced. This resulted from the energy transfer from Trp-19 to Tb3+. The distance between the energy-transfer pair was estimated to be 0.376-0.473 nm at pH 7.6 and 0.486-0.609 nm at pH 6.3. Assuming that there were two Tb3+-binding sites on the toxin molecule, at pH 7.6 the association constants of the high-affinity and the low-affinity sites were determined to be 3.82 x 10(3) M-1 and 2.85 x 10(2) M-1 respectively. At between pH 6.0 and 7.0 Tb3+ bound to the high-affinity site decreased greatly but did not disappear entirely. Both Ca2+ and Sr2+ competed with Tb3+ at the high-affinity sites, but Sr2+ could not substitute for Ca2+ in stimulating the phospholipase A2 activity.  相似文献   

9.
K Chiba  T Mohri 《Biochemistry》1989,28(7):2995-2999
Effects of phospholipids (PL's) and lyso-PL's on the conformation of the porcine intestinal calcium-binding protein (CaBP) were studied fluorometrically with 1-(dimethylamino)naphthalene-5-sulfonyl-(DNS-) labeled CaBP. The fluorescence intensity of DNS-labeled CaBP was much higher in the presence of excess EGTA than in its Ca2+-bound state. In the absence of free Ca2+ (with 1 mM EGTA) the fluorescence of the labeled CaBP was greatly enhanced by addition of lysophosphatidylcholine (lyso-PC), lysophosphatidylserine (lyso-PS), or lysophosphatidylinositol (lyso-PI). With addition of 25 microM Ca2+ the enhancement of the fluorescence by these lyso-PL's was depressed; especially that due to lyso-PC became small. Lysophosphatidylethanolamine (lyso-PE), phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidylethanolamine (PE), and mono- and dipalmitoylglycerols had no or much less effect on the fluorescence in the presence and absence of Ca2+. Lyso-PC attenuated in a concentration-dependent manner the quenching of the fluorescence of the DNS-CaBP by high temperatures and increase of ionic strength in the presence of EGTA. Lyso-PL's generally protected the CaBP from digestion with proteases in the presence of EGTA. These experimental results suggest that particular lyso-PL's have Ca2+-sensitive interaction with the porcine CaBP and induce conformation change of the CaBP molecules.  相似文献   

10.
In the present report, we demonstrate that Tb3+ binds to protein kinase C and serves as a luminescent reporter of certain cationic metal-binding sites. Tb3+ titration of 50 nM protein kinase C results in a 20-fold enhancement of Tb3+ luminescence which is half-maximal at 12 microM Tb3+. A Kd of approximately 145 nM was determined for Tb3+ binding to the enzyme. The excitation spectrum of bound Tb3+ exhibits a peak at 280 nm characteristic of energy transfer from protein tryptophan or tyrosine residues. The luminescence of this complex can be markedly decreased by other metals, including Pb2+ (IC50 = 25 microM), La3+ (IC50 = 50 microM), Hg2+ (IC50 = 300 microM), Ca2+ (IC50 = 6 mM), and Zn2+ (IC50 greater than 10 mM), and chelation of Tb3+ by 2 mM EGTA. Tb3+ binding to protein kinase C is correlated with its inhibition of protein kinase activity (IC50 = 8 microM), r = 0.99) and phorbol ester binding (IC50 = 15 microM, r = 0.98). Tb3+ inhibition of protein kinase C activity cannot be overcome by excess Ca2+, but can be partially overcome with excess phosphatidylserine or by chelation of Tb3+ with EGTA. Tb3+ noncompetitively inhibits phorbol ester binding by decreasing the maximal extent of binding without significantly altering binding affinity. The results suggest that the Tb3(+)-binding site is at or allosterically related to the enzyme's phosphatidylserine-binding site, but is distinct from the phorbol ester-binding domain and the Ca2(+)-binding site that regulates enzyme activity.  相似文献   

11.
The mechanism of inhibition of Ca2+-transport activity of rabbit sarcoplasmic reticulum Ca 2+-ATPase (SERCA) by anisodamine (a drug isolated from a medicinal herb Hyoscyamuns niger L) was investigated by using ANS (1-anilino-8-naphthalenesulfonate) fluorescence probe, intrinsic fluorescence quenching and Ca 2+-transport activity assays. The number of ANS binding sites for apo Ca2+-ATPase was determined as 8, using a multiple-identical binding site model. Both anisodamine and Ca2+ at millimolar level enhanced the ANS binding fluorescence intensities. Only anisodamine increased the number of ANS molecules bound by SERCA from 8 to 14. The dissociation constants of ANS to the enzyme without any ligand, with 30 mM anisodamine and with 15 mM Ca 2 were found to be 53.0 microM, 85.0 microM and 50.1 microM, respectively. Both anisodamine and Ca2+ enhanced the ANS binding fluorescenc with apparent dissociation constants of 7.6 mM and 2.3 mM, respectively, at a constant concentration of the enzyme. Binding of anisodamine significantly decreased the binding capacity of Ca2+ with the dissociation constant of 9.5 mM, but binding of Ca2+ had no obvious effect on binding of anisodamine. Intrinsic fluorescence quenching and Ca2+-transport activity assays gave the dissociation constants of anisodamine to SERCA as 9.7 and 5.4 mM, respectively, which were consistent with those obtained from ANS-binding fluorescence changes during titration of SERCA with anisodamine and anisodamine + 15 mM Ca2+, respectively. The results suggest that anisodamine regulates Ca2+-transport activity of the enzyme, by stabilizing the trans-membrane domain in an expanded, inactive conformation, at least at its annular ring region.  相似文献   

12.
Two 12-residue peptides were synthesized by the solid-phase method as structural analogs of a Ca2+-binding loop of rabbit skeletal troponin C. The sequence of the analogs corresponds to the binding loop of the Ca2+-specific low affinity binding site II (residues 63-74) but with two amino acid substitutions. In one analog, Phe-72 was replaced by tyrosine. In the other Gly-66 was substituted by serine and Phe-72 by tyrosine. The intrinsic fluorescence of the peptides was enhanced upon addition of Tb3+ or large excess of Ca2+. From the enhancement of Tb3+ emission association constants in the range (2-3) X 10(5) M-1 and a binding stoichiometry of 1 were determined for Tb3+ binding to the peptides. Large excess of Ca2+ displaced Tb3+ from the Tb3+-peptide complexes and from these results apparent stability constants of 500-700 M-1 were deduced for Ca2+ binding. Preliminary proton nuclear magnetic resonance results on one of the peptides indicated that La3+ induced considerable perturbation of the amide proton resonances of several residues, including the aspartate at position 3, the tyrosine at position 10, and the two glutamates at the C-terminus. The results suggest involvement of these residues in cation coordination.  相似文献   

13.
Calcium is required for effective fibrin polymerization. The high affinity Ca2+ binding capacity of fibrinogen was directly localized to the gamma-chain by autoradiography of nitrocellulose membrane blots of fibrinogen subunits incubated with 45Ca2+. Terbium (Tb3+) competitively inhibited 45Ca2+ binding to fibrinogen during equilibrium dialysis, accelerated fibrin polymerization, and limited fibrinogen fragment D digestion by plasmin. The intrinsic fluorescence of Ca2+-depleted fibrinogen was maximally enhanced by Ca2+ and Tb3+, but not by Mg2+, at about 3 mol of cation/mol of fibrinogen. Protein-bound Tb3+ fluorescence at 545 nm was maximally enhanced by resonance energy transfer from tryptophan (excitation at 290 nm) at about 2 mol of Tb3+mol of fibrinogen and about 1 mol of Tb3+/mol of plasmic fragment D94 (Mr 94,000). Fibrinogen fragments D78 (Mr 78,000) and E did not show effective enhancement of Tb3+ fluorescence, suggesting that the Ca2+ site is located within gamma 303 to gamma 411, the peptide which is absent in fragment D78 but present in D94. When CNBr fragments of the carboxyamidated gamma-subunit were assayed for enhancement of Tb3+ fluorescence, peptide CBi (gamma 311-336) bound 1 mol of Tb3+/mol of CBi. Thus, the Ca2+ site is located within this peptide. The sequence between gamma 315 and gamma 329 is homologous to the calmodulin and parvalbumin Ca2+ binding sites.  相似文献   

14.
Chloroplast coupling factor 1 (CF1) contains a high-affinity binding site for 8-anilino-1-napthalene sulphonate (ANS,Kd = 5-6 microM). The binding of ANS to the enzyme is associated with a fluorescence enhancement and a blue-shift in the emission spectrum. ANS only slightly inhibits ATP hydrolysis by CF1. Adenine nucleotides and inorganic phosphate induce a fast ANS fluorescence quenching of about 50% which is due to a decrease in the affinity of the enzyme for ANS (Kd increases from 6 microM to 22 microM) and in the fluorescence quantum yield of the bound probe (by 33%) but not in the number of ANS sites (n = 1). Conversely, Mg and Ca ions induce a fluorescence enhancement of bound ANS. Inactivation of the enzyme enhances ANS fluorescence, eliminates the response to adenine nucleotides and inorganic phosphate but increases the response to divalent metals. The affinity of latent CF1 for ADP (Kd = 12 microM) is considerably higher than for ATP (Kd = 95 microM) in buffer containing EDTA. The Kd for inorganic phosphate is 140 microM. Mg increases the apparent affinity for ATP (Kd = 28 microM) but not for ADP or Pi. Binding of ATP to the tight-sites does not inhibit the ADP or Pi-induced fluorescence quenching but decreases the affinity for ADP (Kd = 34 microM) and for inorganic phosphate (Kd = 320 microM). These results suggest that the ADP and phosphate binding sites are different but not independent from the tight sites. Activation of a Mg-specific ATPase in CF1 by octyl glucoside decreases the affinity for ADP and inorganic phosphate by about threefold but increases the affinity for ATP. ATPase activation of CF1 also increases the Ki for ADP inhibition of ATP hydrolysis. ATPase activation also influences the ANS responses to Ca and Mg. Ca-ATPase activation increases the fluorescence enhancement and the apparent affinity for Ca whereas Mg-ATPase activation specifically increases the Mg-induced fluorescence enhancement. The fluorescence of CF1-bound ANS is enhanced by Dio-9 and quenched by phloridzin, quercetin, Nbf-Cl and FITC. Nbf-Cl and FITC completely inhibit the ADP-induced fluorescence quenching whereas Dio-9 inhibits the Mg-induced fluorescence enhancement. ANS does not relieve the quercetin or phloridzin inhibition of ATP hydrolysis indicating that these inhibitors do not compete with ANS for a common binding site. ANS may be used, therefore, as a sensitive probe to detect conformational changes in CF1 in response to activation or inactivation and to binding of substrates and of inhibitors.  相似文献   

15.
The binding and conformational properties of the divalent cation site required for H+,K(+)-ATPase catalysis have been explored by using Ca2+ as a substitute for Mg2+. 45Ca2+ binding was measured with either a filtration assay or by passage over Dowex cation exchange columns on ice. In the absence of ATP, Ca2+ was bound in a saturating fashion with a stoichiometry of 0.9 mol of Ca2+ per active site and an apparent Kd for free Ca2+ of 332 +/- 39 microM. At ATP concentrations sufficient for maximal phosphorylation (10 microM), 1.2 mol of Ca2+ was bound per active site with an apparent Kd for free Ca2+ of 110 +/- 22 microM. At ATP concentrations greater than or equal to 100 microM, 2.2 mol of Ca2+ were bound per active site, suggesting that an additional mole of Ca2+ bound in association with low affinity nucleotide binding. At concentrations sufficient for maximal phosphorylation by ATP (less than or equal to 10 microM), APD, ADP + Pi, beta,gamma-methylene-ATP, CTP, and GTP were unable to substitute for ATP. Active site ligands such as acetyl phosphate, phosphate, and p-nitrophenyl phosphate were also ineffective at increasing the Ca2+ affinity. However, vanadate, a transition state analog of the phosphoenzyme, gave a binding capacity of 1.0 mol/active site and the apparent Kd for free Ca2+ was less than or equal to 18 microM. Mg2+ displaced bound Ca2+ in the absence and presence of ATP but Ca2+ was bound about 10-20 times more tightly than Mg2+. The free Mg2+ affinity, like Ca2+, increased in the presence of ATP. Monovalent cations had no effect on Ca2+ binding in the absence of ATP but dit reduce Ca2+ binding in the presence of ATP (K+ = Rb+ = NH4 + greater than Na+ greater than Li+ greater than Cs+ greater than TMA+, where TMA is tetramethylammonium chloride) by reducing phosphorylation. These results indicate that the Ca2+ and Mg2+ bound more tightly to the phosphoenzyme conformation. Eosin fluorescence changes showed that both Ca2+ and Mg2+ stabilized E1 conformations (i.e. cytosolic conformations of the monovalent cation site(s)) (Ca.E1 and Mg.E1). Addition of the substrate acetyl phosphate to either Ca.E1 or Mg.E1 produced identical eosin fluorescence showing that Ca2+ and Mg2+ gave similar E2 (extracytosolic) conformations at the eosin (nucleotide) site. In the presence of acetyl phosphate and K+, the conformations with Ca2+ or Mg2+ were also similar. Comparison of the kinetics of the phosphoenzyme and Ca2+ binding showed that Ca2+ bound prior to phosphorylation and dissociated after dephosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The interaction of the lanthanide Tb3+ with washed, human platelets was examined. When bound to the platelet surface, the fluorescence of this Ca2+ analog was increased approximately 200-fold, most likely by a F?rster mechanism involving platelet surface protein aromatic residues. The binding of Tb3+ to the unactivated platelet was specific and saturable with an apparent approximate Kd of 195 microM. Both Ca2+ and La3+ effectively displaced Tb3+ from platelet surface sites, but neither cation did so completely. Plasmin treatment of the platelet surface reduced Tb3+ fluorescence by 68% at saturation without significantly affecting the approximate apparent Kd. Activating washed, aspirinated platelets with ADP induced a 78% increase in Tb3+ fluorescence at saturation. Tb3+ competed effectively and completely for platelet surface-bound 45Ca2+ with an approximate IC50 of 10 microM. These data indicate the potential utility of this fluorescent lanthanide in characterizing Ca2+-binding sites on the human platelet.  相似文献   

17.
Studies are in progress to characterize the nature of ligand interactions at peripheral anionic sites on mammalian brain AChE, including the beta-anionic or "accelerator" anionic sites where enzyme activity is increased upon Ca2+ binding. Terbium was studied as a fluorescence probe of Ca2+ binding sites in partially purified AChE from whole rat brain. Scatchard analysis of Tb3+ binding in low ionic strength (2 mM) Pipes buffer revealed at least two populations of sites: high affinity sites with Kd(app) approximately 7.6 microM and low-affinity sites with a Kd(app) approximately 49.6 microM. Low-affinity binding was selectively inhibited by 50 mM NaCl; high-affinity binding was completely inhibited by 2 mM CaCl2; and all the bound Tb3+ could be displaced by 1 mM EDTA. The heterogeneity of Tb3+ binding sites is consistent with the multiple, concentration-dependent effects of Tb3+ on enzyme activity.  相似文献   

18.
The interaction of vanadate ions with the Ca-ATPase from sarcoplasmic reticulum vesicles was studied in a native and a fluorescein-labeled ATPase preparation (Pick, U., and Karlish, S. J. D. (1980) Biochim. Biophys. Acta 626, 255-261). Vanadate induced a fluorescence enhancement in a fluorescein-labeled enzyme, indicating that it shifts the equilibrium between the two conformational states of the enzyme by forming a stable E2-Mg-vanadate complex (E2 is the low affinity Ca2+ binding conformational state of the sarcoplasmic reticulum Ca-ATPase). Indications for tight binding of vanadate to the enzyme (K1/2 = 10 microM) in the absence of Ca2+ and for a slow dissociation of vanadate from the enzyme in the presence of Ca2+ are presented. The enzyme-vanadate complex was identified by the appearance of a time lag in the onset of Ca2+ uptake and by a slowing of the fluorescence quenching response to Ca2+. Ca2+ prevented the binding of vanadate to the enzyme. Pyrophosphate (Kd = 2 mM) and ATP (Kd = 25 microM) competitively inhibited the binding of vanadate, indicating that vanadate binds to the low affinity ATP binding site. Binding of vanadate inhibited the high affinity Ca2+ binding to the enzyme at 4 degrees C. Vanadate also inhibited the phosphorylation reaction by inorganic phosphate (Ki = 10 microM) but had no effect on the phosphorylation by ATP. It is suggested that vanadate binds to a special region in the low affinity ATP binding site which is exposed only in the E2 conformation of the enzyme in the absence of Ca2+ and which controls the rate of the conformation transition in the dephosphorylated enzyme. The implications of these results to the role of the low affinity ATP binding sites are discussed.  相似文献   

19.
Terbium, a trivalent lanthanide, effectively substituted for Ca2+ in calmodulin as judged by several criteria: intrinsic fluorescence spectra, altered mobilities on polyacrylamide gel electrophoresis, formation of a stable complex with troponin I or calcineurin, and stimulation of phosphodiesterase. Calmodulin harbors four Ca2+ binding domains; domains I and II contain no tyrosine, whereas domains III and IV each have one tyrosine. The binding of Tb3+ to calmodulin was followed by the increase of Tb3+ fluorescence at 545 nm upon binding to calmodulin. This fluorescence was elicited either by exciting Tb3+ directly at 222 nm or by exciting the calmodulin tyrosine at 280 nm with resulting energy transfer from tyrosine to Tb3+. Fluorescence generated by direct excitation measures binding of Tb3+ to any of the Ca2+ binding domains, whereas energy transfer through indirect excitation is effective only when Tb3+ is within 5 A of tyrosine, indicating that Tb3+ necessarily occupies a Ca2+ binding domain that contains tyrosine. A judicious use of the direct and indirect excitation could reveal the sequence of fill of the binding domains. Our results suggest these domains are filled in the following sequence: 1) domain I or II; 2) domains III and IV; and 3) domain II or I that has not been filled initially.  相似文献   

20.
Calmodulin, spin labeled at Tyr-99, has been titrated with the lanthanides La3+, Nd3+, Eu3+, Tb3+, Er3+ and Lu3+ as well as Ca2+ and Cd2+. The titration was monitored by EPR and changes in mobility of the spin label, due to binding into the labeled site and protein conformational change, were observed. Comparison of these titration curves with theoretical binding curves for the various calmodulin-metal species, show that different lanthanides have different high affinity sites. Three basic categories were observed, with Lu3+ and Er3+ behaving like Ca2+, Eu3+ and Tb3+ binding in the opposite order from Ca2+, and La3+ and Nd3+ different from either Ca2+ or Tb3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号