首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
This review discusses the analytical applications of monoclonal antibodies specific for enzymes. One important, but not well-studied, application of these monoclonal antibodies is their use in immobilizing enzymes on solid supports. This method is based on binding the enzymes to an immobilized antibody through the antigen binding site of the antibody. Enzymes immobilized this way retain much of their activity. The utility of immobilized enzyme reactors prepared by immobilizing the enzymes through antibodies is demonstrated by using them in the determination of acetylcholine and choline in brain tissue extracts. Currently available methods for immobilizing antibodies and enzymes are reviewed. Other issues discussed in this review include the problems and advantages of immobilized enzyme reactors, especially when used in conjunction with HPLC. In addition, the applications of monoclonal antibodies for the detection and measurement of enzymes and their isoforms are summarized.  相似文献   

2.
Peptide display on solvent-exposed surfaces of engineered enzymes allows them to respond to anti-peptide antibodies by detectable changes in their enzymatic activity, offering a new principle for biosensor development. In this work, we show that multiple peptide insertion in the vicinity of the Escherichia coli beta-galactosidase active site dramatically increases the enzyme responsiveness to specific anti-peptide antibodies. The modified enzymes HD7872A and HT7278CA, carrying eight and 12 copies respectively of a foot-and-mouth disease peptide per enzyme molecule, show antibody-mediated activation factors higher than those previously observed in the first generation enzymatic sensors, for HT7278CA being close to 400%. The analysis of the signal transduction process with multiple inserted proteins strongly suggests a new, non-exclusive mechanism of enzymatic regulation in which the target proteins might be stabilised by the bound antibody, extending the enzyme half-life and consequently enhancing the signal-background ratio. In addition, the tested sensors are differently responsive to sera from immune farm animals, depending on the antigenic similarity between the B-cell epitopes in the immunising virus and those in the peptide used as sensing element on the enzyme surface. Altogether, these results point out the utility of these enzymatic biosensors for a simple diagnosis of foot-and-mouth disease in an extremely fast homogeneous assay.  相似文献   

3.
量子点是一种具有独特光学性质的半导体纳米材料,表面带有功能基团的水溶性量子点可与抗体偶联,作为荧光探针用于多种生物学研究。根据量子点表面所修饰的物质不同,偶联方法可分为共价偶联与非公价偶联两大类。本研究主要对量子点与抗体的偶联方法进行简单介绍。  相似文献   

4.
In this communication we describe a microfiltration assay to identify monoclonal antibodies that interfere with the activity of enzymes. This method is quick and sensitive to small changes in the activity of the enzyme and does not require highly purified enzyme or large quantities of antibodies. It has been applied to identify anti-protein kinase C antibodies which would have been impossible to identify by classical assays such as enzyme-linked immunosorbent assay.  相似文献   

5.
6.
The ubiquitin-related modifier SUMO regulates a wide range of cellular processes by post-translational modification with one, or a chain of SUMO molecules. Sumoylation is achieved by the sequential action of several enzymes in which the E2, Ubc9, transfers SUMO from the E1 to the target mostly with the help of an E3 enzyme. In this process, Ubc9 not only forms a thioester bond with SUMO, but also interacts with SUMO noncovalently. Here, we show that this noncovalent interaction promotes the formation of short SUMO chains on targets such as Sp100 and HDAC4. We present a crystal structure of the noncovalent Ubc9-SUMO1 complex, showing that SUMO is located far from the E2 active site and resembles the noncovalent interaction site for ubiquitin on UbcH5c and Mms2. Structural comparison suggests a model for poly-sumoylation involving a mechanism analogous to Mms2-Ubc13-mediated ubiquitin chain formation.  相似文献   

7.

Biodevices in which biomolecules such as enzymes and antibodies are immobilized on the surface of electrode materials are capable of converting chemical energy into electrical energy, and are expected to contribute to solving energy problems and developing medical measurements especially as biobatteries and biosensors. Device performance depends on the interface formed between the biomolecule layer and electrode material, and the interface is required to simultaneously achieve a highly efficient enzymatic reaction and electron transfer. However, when enzymes were immobilized on a material surface, the enzymes undergoes a structural change due to the interaction between the enzyme and the electrode surface, making it difficult to maximize the function of the enzyme molecule on the material surface. In this study, we postulate that the structural change of the enzyme would be reduced and the electrochemical performance improved by making the contact area between the enzyme and the electrode extremely small and adsorbing it as a point. Therefore, we aimed to develop a high-power biodevice that retains enzyme structure and activity by interposing gold nanoparticles (AuNPs) between the enzyme and the electrode. The enzymatic and electrochemical properties of pyrroloquinoline quinone-dependent glucose dehydrogenase adsorbed on AuNPs of 5–40 nm diameter were investigated. We found that the characteristics differed among the particles, and the enzyme adsorbed on 20 nm AuNPs showed the best electrochemical characteristics.

  相似文献   

8.
Histochemical assessment of selected carbohydrate sequences on Langerhans cells of human oral mucosa was made by combined use of enzyme digestion and immunostain-ing with monoclonal antibodies against specific carbohydrate structures. In both frozen sections and epithelial sheets without the enzyme pretreatment, mucosal Langerhans cells, identified by positive staining with anti-CD1a and HLA-DR antibodies, did not express any carbohydrate antigens on their surface. In contrast, following neuraminidase pretreatment of both types of material, the fucosylated type 2 chain (LeX) became detectable on Langerhans cells, indicating that sialic acid is the terminal residue of this sequence. Other enzymes were ineffective in this apparent unmasking, and the staining patterns of the other related carbohydrate sequences (Ley. Lea, Leb) remained unaffected by pretreatment with any of the enzymes used. These findings suggest that the mucosal Langerhans cells possess a unique carbohydrate chain, the sialyl fucosylated type 2 sequence (sialyl LeX antigen).  相似文献   

9.
A large number of different proteins or protein domains have been investigated as possible scaffolds to engineer antibody-like molecules. We have previously shown that the TEM-1 beta-lactamase can accommodate insertions of random sequences in two loops surrounding its active site without compromising its activity. From the libraries that were generated, active enzymes binding with high affinities to monoclonal antibodies raised against prostate-specific antigen, a protein unrelated to beta-lactamase, could be isolated. Antibody binding was shown to affect markedly the enzyme activity. As a consequence, these enzymes have the potential to be used as signaling molecules in direct or competitive homogeneous immunoassay. Preliminary results showed that beta-lactamase clones binding to streptavidin could also be isolated, indicating that some enzymes in the libraries have the ability to recognize proteins other than antibodies. In this paper, we show that, in addition to beta-lactamases binding to streptavidin, beta-lactamase clones binding to horse spleen ferritin and beta-galactosidase could be isolated. Affinity maturation of a clone binding to ferritin allowed obtaining beta-lactamases with affinities comprised between 10 and 20 nM (Kd) for the protein. Contrary to what was observed for beta-lactamases issued from selections on antibodies, enzyme complexation induced only a modest effect on enzyme activity, in the three cases studied. This kind of enzyme could prove useful in replacement of enzyme-conjugated antibodies in enzyme-linked immunosorbant assays (ELISA) or in other applications that use antibodies conjugated to an enzyme.  相似文献   

10.
G di Prisco  L Casola 《Biochemistry》1975,14(21):4679-4683
Structural differences between crystalline mitochondrial and nuclear glutamate dehydrogenases from ox liver have been detected by immunological techniques. Antisera prepared against each enzyme precipitate both glutamate dehydrogenases; upon immunodiffusion, the antiserum against the nuclear enzyme gives a line of incomplete identity with the two antigens, whereas the antiserum against the mitochondrial enzyme gives a line of complete identity. Fractionation of the antibodies contained in each antiserum by means of an immunoadsorbent, to which the nuclear or the mitochondrial enzyme has been covalently linked, shows that nuclear glutamate dehydrogenase (GDH) contains specific antigenic determinants as well as determinants common to the mitochondrial enzyme, whereas the latter appears to have no antigenic portions which are not present in the nuclear antigen, in accord with the results of immunodiffusion. The antibodies against determinants common to both enzymes precipitate and inhibit them, whereas the specific anti-nuclear GDH antibodies precipitate but do not inhibit the nuclear antigen.  相似文献   

11.
Regulation of the flow of mass and energy through cellular metabolic networks is fundamental to the operation of all living organisms. Such metabolic fluxes are determined by the concentration of limiting substrates and by the amount and kinetic properties of the enzymes. Regulation of the amount of enzyme can be exerted, on a long-term scale, at the level of gene and protein expression. Enzyme regulation by post-translational modifications (PTMs) and noncovalent binding of allosteric effectors are shorter-term mechanisms that modulate enzyme activity. PTMs, in particular protein phosphorylation, are increasingly being recognized as key regulators in many cellular processes, including metabolism. For example, about half of the enzymes in the Saccharomyces cerevisiae metabolic network have been detected as phosphoproteins, although functional relevance has been demonstrated only in a few cases. Direct regulation of enzymes by PTMs provides one of the fastest ways for cells to adjust to environmental cues and internal stimulus. This review charts the so far identified metabolic enzymes undergoing reversible PTMs in the model eukaryote S. cerevisiae and reviews their underlying mechanistic principles - both at the individual enzyme level and in the context of the entire metabolic network operation.  相似文献   

12.
A methodology that allows an estimation of the number of antigenic determinants that remain exposed or accessible on a protein antigen after conformational changes, evolution, or integration in a membrane matrix has been developed. We have observed that a protein antigen, used as an immunogen, will stimulate the production of antibodies directed specifically against the exposed antigenic determinants of its surface, and then the maximum number of antibody molecules that can simultaneously bind to this antigen corresponds to the total covering of its surface. Surface modifications are shown to occur on Escherichia coli alkaline phosphatase upon noncovalent binding of inorganic phosphate and upon Zn2+ removal. The homology between pig intestinal and kidney brush border membrane aminopeptidases has been studied. When probed with anti-intestinal aminopeptidase (free form) the surfaces of both enzymes have been shown to bear six identical antigenic determinants, two of which are located in the area that is masked upon integration into the membranes. A technique to determine precisely the number of determinants rendered inaccessible by integration of aminopeptidases into the membranes is described. Two determinants out of the 12 of the “free intestinal aminopeptidase” surface are masked by integration in the membrane matrix. Thus, the methodology presented should be a valuable tool in all processes of molecular biology that involve protein surface probing.  相似文献   

13.
Summary A new immuno-histochemical method, based on bivalency of antibodies, has been developed for the localization of enzymes in tissue section. Both monovalent and divalent antibodies act against a particular enzyme through their binding to inhibit the hydrolytic activity of this enzyme. However, only divalent antibodies so bound, are capable of further binding added soluble antigen. This additional binding was shown to occur by measuring both the binding of fluorescent labelled antigen and the increase in enzymatic activity concomitant with this binding. The increased activity is up to at least twice that in the original tissue section. These findings are consistent with the interpretation that divalent antibodies bind to antigenic determinants with only one of their binding sites and that their second binding site is then available to bind added soluble antigen. This technique can be used both qualitatively and quantitatively. Its use is demonstrated here with both the membrane bound enzyme aminopeptidase and the cytoplasmic enzymes lactate dehydrogenase I (B4) and V (A4).  相似文献   

14.
K Kvalnes-Krick  M S Jorns 《Biochemistry》1986,25(20):6061-6069
Sarcosine oxidase was purified to homogeneity from Corynebacterium sp. P-1, a soil organism isolated by a serial enrichment technique. The enzyme contains 1 mol of noncovalently bound flavin [flavin adenine dinucleotide (FAD)] plus 1 mol of covalently bound flavin [8 alpha-(N3-histidyl)-FAD] per mole of enzyme (Mr 168,000). The two flavins appear to have different roles in catalysis. The enzyme has an unusual subunit composition, containing four dissimilar subunits (Mr 100,000, 42,000, 20,000, and 6000). The same subunits are detected in Western blot analysis of cell extracts prepared in the presence of trichloroacetic acid, indicating that the subunits are a genuine property of the enzyme as it exists in vivo. The presence of both covalent and noncovalent flavin in a single enzyme is extremely unusual and has previously been observed only with a sarcosine oxidase from a soil Corynebacterium isolated in Japan. The enzymes exhibit many similarities but are distinguishable in electrophoretic studies. Immunologically, the enzymes are cross-reactive but not identical. The results indicate that the synthesis of a sarcosine oxidase containing both covalent and noncovalent flavin is not a particularly unusual event in corynebacteria.  相似文献   

15.
Four monoclonal antibodies (McAbs) were generated against the soluble extracellular acid phosphatase (EC 3.1.3.2) (S-AcP) of Leishmania donovani. These were detected in the primary screen using an ELISA with promastigote culture supernatants as antigen. Three of the McAbs demonstrated bound S-AcP from such culture supernatants in an enzyme activity binding assay. All immunoprecipitated metabolically labeled S-AcP but none showed any binding to the promastigote surface by indirect immunofluorescence. Moreover, none reacted with Triton X-100 solubilized plasma membranes by immunoprecipitation or Western blotting. These results demonstrated that the McAbs did not recognize the surface membrane bound acid phosphatase, but were specific for the extracellular soluble enzyme. Further, none of the antibodies immunoprecipitated any of the five human acid phosphatase isozymes or reacted with them in Western blots or the enzyme activity binding assay. Therefore, they are specific for the parasite-derived enzyme. One of these was used to affinity purify sufficient L. donovani S-AcP to immunize a rabbit and generate a specific, polyvalent antiserum. This polyvalent antibody immunoprecipitated S-AcP activity but did not cross-react with the surface membrane acid phosphatase, indicating that these two parasite enzymes are separate gene products.  相似文献   

16.
Abstract

Enzymes are one of the foundations and regulators for all major biological activities in living bodies. Hence, enormous efforts have been made for enhancing the efficiency of enzymes under different conditions. The use of nanomaterials as novel carriers for enzyme delivery and regulating the activities of enzymes has stimulated significant interests in the field of nano-biotechnology for biomedical applications. Since, all types of nanoparticles (NPs) offer large surface to volume ratios, the use of NPs as enzyme carriers affect the structure, performance, loading efficiency, and the reaction kinetics of enzymes. Hence, the immobilization of enzymes on nanomatrices can be used as a useful approach for direct delivery of therapeutic enzymes to the targeted sites. In other words, NPs can be used as advanced enzyme delivery nanocarriers. In this paper, we present an overview of different binding of enzymes to the nanomaterials as well as different types of nanomatrix supports for immobilization of enzymes. Afterwards, the enzyme immobilization on nanomaterials as a potential system for enzyme delivery has been discussed. Finally, the challenges associated with the enzyme delivery using nano matrices and their future perspective have been discussed.

Communicated by Ramasamy H. Sarma  相似文献   

17.
A novel method for the preparation of highly active immobilized enzymes is described. It is based on the binding of enzymes to suitable carriers via monoclonal antibodies, which bind to the enzyme with high affinity without affecting its catalytic activity. The applicability of the method forwarded has been illustrated by the preparation of two samples of highly active immobilized carboxypeptidase A (CPA) preparations as follows: A mouse monoclonal antibody (mAb 100)to CPA that binds to the enzyme with a high-affinity constant without affecting its catalytic activity was prepared, purified, and characterized. Covalent binding of this monoclonal antibody to Eupergit C (EC) or noncovalent binding to Sepharose-protein A (SPA)yielded the conjugated carriers EC-mAb and SPA.mAb, respectively, which reacted specifically with CPA to give the immobilized enzyme preparations EC-mAb.CPA and SPA.mAb.CPA displaying full catalytic activity and improved stability. At pH 7.5 and a temperature range of 4-37 degrees C an apparent binding constant of approximately 10(8)M(-1) characterizing the interaction of CPA with EC-mAb and SPA.mAb, was obtained. To compare the properties of EC-mAb.CPA and SPA.mAb.CPA with those of immobilized CPA preparations obtained by some representative techniques of covalent binding of the enzyme with a corresponding carrier, the following immobilized CPA preparations were obtained and their properties investigated: EC-CPA (I), a preparation obtained by direct binding of EC with CPA; EC-NH-GA-CPA (II), a derivative obtained by covalent binding of CPA to aminated EC via glutaraldehyde; EC-NH-Su-CPA (III), a CPA derivative obtained by binding the enzyme to aminated EC via a succinyl residue; and EC-HMD-GA-CPA (IV), obtained by binding the enzyme via glutaraldehyde to a hexamethylene diamine derivative of EC. Full enzymic activity for all of the bound enzyme, such as that recorded for the immobilized CPA preparations EC-mAb.CPA and SPA.mAb.CPA, was not detected in any of the insoluble covalently bound enzyme preparations.  相似文献   

18.
Methods of enzyme molecules covalent immobilization on the surface of liposomes are suggested. The methods permit more protein molecules to be bound than traditional methods of noncovalent immobilization by means of adsorption or incorporation. The liposome membranes preserve their integrity during immobilization. At the same tame, the enzyme bound with the liposome surface via the “spacer” groups completely preserves its ability to interact with a specific macromolecular compound.  相似文献   

19.
The design of beta-glycosidases with planed substrate specificity for biotechnological application has received little attention. This is mostly a consequence of the lack of data on the molecular basis of the beta-glycosidase specificity, namely data on the energy of the noncovalent interactions in the enzyme-transition state complex. In an attempt to fill this gap, site-directed mutagenesis and enzyme steady-state kinetic experiments with different substrates were conducted, using as model a digestive beta-glycosidase (glycoside hydrolase family 1) from Spodoptera frugiperda (Lepidoptera) (Sfbetagly50). The active site of this enzyme was modeled based on its sequence and on crystallographic data of similar enzymes. Energy of noncovalent interactions in transition state between Sfbetagly50 amino acids and glycone hydroxyls was determined. Sfbetagly50 residue E451 seems to be a key residue in determining beta-glycosidase preference for glucosides vs. galactosides based on the following data: (a) The energy of the noncovalent interaction between glycone equatorial hydroxyl 4 with E451 in the transition state is about 60% higher than its interaction with Q39. (b) The energy of the E451-hydroxyl 4 interaction decreases more than the Q39-hydroxyl 4 interaction when hydroxyl 4 is changed from equatorial to axial position. (c) A Sfbetagly50 mutant, where E451 was substituted by A, hydrolyzes galactosides faster than glucosides. It was also shown that glycone hydroxyl 6 interacts favorably with Q39, but not with E451, probably due to steric hindrance. These interactions result in the beta-glycosidase hydrolyzing fucosides (6-deoxygalactosides) faster than glucosides and galactosides.  相似文献   

20.
Dihydrofolate reductase (DHFR; EC 1.5.1.3) was purified to homogeneity from soybean seedlings by affinity chromatography on methotrexate-aminohexyl Sepharose, gel filtration on Ultrogel AcA-54, and Blue Sepharose chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme gave a single protein band corresponding to a molecular weight of 22,000. The enzyme is not a 140,000 Da heteropolymer as reported by others. Amino acid sequence-specific antibodies to intact human DHFR and also antibodies to CNBr-generated fragments of human DHFR bound to the plant enzyme on Western blots and cross-reacted significantly in immunoassays, indicating the presence of sequence homology between the two enzymes. The plant and human enzymes migrated similarly on nondenaturing polyacrylamide electrophoretic gels as monitored by activity staining with a tetrazolium dye. The specific activity of the plant enzyme was 15 units/mg protein, with a pH optimum of 7.4. Km values of the enzyme for dihydrofolate and NADPH were 17 and 30 microM, respectively. Unlike other eukaryotic enzymes, the plant enzyme showed no activation with organic mercurials and was inhibited by urea and KCl. The affinity of the enzyme for folate was relatively low (I50 = 130 microM) while methotrexate bound very tightly (KD less than 10(-10) M). Binding of pyrimethamine to the plant enzyme was weaker, while trimethoprim binding was stronger than to vertebrate DHFR. Trimetrexate, a very potent inhibitor of the human and bacterial enzymes showed weak binding to the plant enzyme. However, certain 2,4-diaminoquinazoline derivatives were very potent inhibitors of the plant DHFR. Thus, the plant DHFR, while showing similarity to the vertebrate and bacterial enzymes in terms of molecular weight and immunological cross-reactivity, can be distinguished from them by its kinetic properties and interaction with organic mercurials, urea, KCl and several antifolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号