首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although transgenic crops expressing either Cry1Ab or Cry1Ac, both derived from Bacillus thuringiensis (Bt), have been used commercially, the evolution of insects resistance to these CRY proteins has become a challenge. Thus, it has been proposed that co-expression of two Bt proteins with different modes of action may delay the development of resistance to Bt. However, few Bt proteins have been identified as having different modes of action from those of Cry1Ab or Cry1Ac. In this study, transgenic lines of maize over-expressing either Cry1Ie or Cry1Ac gene have been developed. Several independent transgenic lines with one copy of the foreign gene were identified by Southern blot analysis. Bioassays in the laboratory showed that the transgenic plants over-expressing Cry1Ie were highly toxic against the wild-type cotton bollworm (Heliothis armigera), producing mortality levels of 50 % after 6 days of exposure. However, the mortality caused by these plants was lower than that caused by the Cry1Ac transgenic plants (80 %) and MON810 plants expressing Cry1Ab (100 %), which both exhibited low toxicity toward the Cry1Ac-resistant cotton bollworm. In contrast, three transgenic maize lines expressing Cry1Ie induced higher mortality against this pest and were also highly toxic to the Asian corn borer (Ostrinia furnacalis) in the field. These results indicate that the Cry1Ie protein has a different mode of action than the Cry1Ab and Cry1Ac proteins. Therefore, the use of transgenic plants expressing Cry1Ie might delay the development of Bt-resistant insects in the field.  相似文献   

2.
The crystal proteins, or §-endotoxins, of Bacillus thuringiensis are specifically lethal to Lepidopteran insects. We utilized a truncated and modified portion of a cloned crystal protein gene to construct a chimeric gene capable of expression in plant cells. Using an Agrobacterium tumefaciens binary vector system, we then transferred the chimeric toxin gene into tobacco (Nicotiana tabacum cv Havana 425) cells and regenerated recombinant plants. One to several copies per cell of the toxin gene are routinely present in the recombinant plants. Hybridization experiments demonstrated that these plants had a new RNA species of the size expected for the truncated toxin mRNA, and a polypeptide having the mobility expected for the truncated toxin was detected by immunoblotting. Significant variation was found in the levels of toxin-specific RNA expression between different recombinants, but the levels of hybridizing RNA in transformants correlated with the level of toxicity demonstrated against Manduca sexta (tobacco hornworm), and other Lepidopteran insects. The recombinant genes were transmitted to progeny and resistance to insects was maintained, thus demonstrating that the introduction of toxin genes into plants may be a practical method of providing protection against certain insect pests.  相似文献   

3.
Summary The insecticidal cry (crystal) genes from Bacillus thuringiensis (Bt) have been used for insect control both as biopesticides and in transgenic plants. Discovery of new insecticidal genes is of importance for delaying the development of resistance in target insects. The diversity of Bt strains facilitates isolation of new types of cry and vip (vegetative insecticidal protein) genes. PCR is a useful technique for quick and simultaneous screening of Bt strains for classification and prediction of insecticidal activities. PCR together with other methods of analysis such as RFLP, gene sequence determination, electrophoretic, immunological and chromatographic analysis of Cry proteins and insect bioassays for evaluation of toxicity have been employed for identification of new insecticidal proteins. Some other new approaches have also been devised. Many Bt strains with novel insecticidal genes have been found. A desired combination of Cry proteins can be assembled via site-specific recombination vectors into a recipient Bt strain to create a genetically improved biopesticide. For better pest control, the cry genes have been transferred to plants. Stacking of more than one insecticidal gene is required for resistance management in transgenic crops. Modification of Cry proteins through protein engineering for increasing the toxicity and/or the insecticidal spectrum is also a promising approach, but requires detailed understanding of the structure and function of these proteins and analysis of toxin-receptor interactions. More research into this area will provide useful insights for the design of toxins for management of insect resistance. Insecticidal genes from other bacteria and plants are also being examined for their potential for deployment in transgenic crops. Stringent implementation of resistance management is needed for maintaining the efficacy of Bt transgenic crops and deriving maximum economic and environmental benefit.  相似文献   

4.

Background

RNA silencing is an important mechanism for regulation of endogenous gene expression and defense against genomic intruders in plants. This natural defense system was adopted to generate virus-resistant plants even before the mechanism of RNA silencing was unveiled. With the clarification of that mechanism, transgenic antiviral plants were developed that expressed artificial virus-specific hairpin RNAs (hpRNAs) or microRNAs (amiRNAs) in host plants. Previous works also showed that plant-mediated RNA silencing technology could be a practical method for constructing insect-resistant plants by expressing hpRNAs targeting essential genes of insects.

Methodology/Principal findings

In this study, we chose aphid Myzus persicae of order Hemiptera as a target insect. To screen for aphid genes vulnerable to attack by plant-mediated RNA silencing to establish plant aphid resistance, we selected nine genes of M. persicae as silencing targets, and constructed their hpRNA-expressing vectors. For the acetylcholinesterase 2 coding gene (MpAChE2), two amiRNA-expressing vectors were also constructed. The vectors were transformed into tobacco plants (Nicotiana tabacum cv. Xanti). Insect challenge assays showed that most of the transgenic plants gained aphid resistance, among which those expressing hpRNAs targeting V-type proton ATPase subunit E-like (V-ATPaseE) or tubulin folding cofactor D (TBCD) genes displayed stronger aphicidal activity. The transgenic plants expressing amiRNAs targeting two different sites in the MpAChE2 gene exhibited better aphid resistance than the plants expressing MpAChE2-specific hpRNA.

Conclusions/Significance

Our results indicated that plant-mediated insect-RNA silencing might be an effective way to develop plants resistant to insects with piercing-sucking mouthparts, and both the selection of vulnerable target genes and the biogenetic type of the small RNAs were crucial for the effectiveness of aphid control. The expression of insect-specific amiRNA is a promising and preferable approach to engineer plants resistant to aphids and, possibly, to other plant-infesting insects.  相似文献   

5.
Expression of antifreeze proteins in transgenic plants   总被引:33,自引:0,他引:33  
The quality of frozen fruits and vegetables can be compromised by the damaging effects of ice crystal growth within the frozen tissue. Antifreeze proteins in the blood of some polar fishes have been shown to inhibit ice recrystallization at low concentrations. In order to determine whether expression of genes of this type confers improved freezing properties to plant tissue, we have produced transgenic tobacco and tomato plants which express genes encoding antifreeze proteins. Theafa3 antifreeze gene was expressed at high steady-state mRNA levels in leaves from transformed plants, but we did not detect inhibition of ice recrystallization in tissue extracts. However, both mRNA and fusion proteins were detectable in transgenic tomato tissue containing a chimeric gene encoding a fusion protein between truncated staphylococcal protein A and antifreeze protein. Furthermore, ice recrystallization inhibition was detected in this transgenic tissue.  相似文献   

6.
7.
8.
Bacillus thuringiensis is a Gram-positive bacterium, widely used in agriculture as a biological pesticide. The biocidal activity mainly resides in a parasporal protein inclusion body, or crystal. The inclusion is composed of one or more types of δ-endotoxins (Cry and Cyt proteins). Cry proteins are selectively toxic to different species from several invertebrate phyla: arthropods (mainly insects), nematodes, flatworms and protozoa. The mode of action of the insecticidal proteins is still a matter of investigation; generally, the active toxin is supposed to bind specific membrane receptors on the insect midgut brush-border epithelium, leading to intestinal cell lysis and subsequent insect death by starvation or septicemia. The toxin-encoding cry genes have been extensively studied and expressed in a large number of prokaryotic and eukaryotic organisms. The expression of such genes in transgenic plants has provided a powerful alternative for crop protection. Received 25 February 1997/ Accepted in revised form 15 August 1997  相似文献   

9.
Silencing of aphid genes by dsRNA feeding from plants   总被引:4,自引:0,他引:4  

Background

RNA interference (RNAi) is a valuable reverse genetics tool to study gene function in various organisms, including hemipteran insects such as aphids. Previous work has shown that RNAi-mediated knockdown of pea aphid (Acyrthosiphon pisum) genes can be achieved through direct injection of double-stranded RNA (dsRNA) or small-interfering RNAs (siRNA) into the pea aphid hemolymph or by feeding these insects on artificial diets containing the small RNAs.

Methodology/Principal Findings

In this study, we have developed the plant-mediated RNAi technology for aphids to allow for gene silencing in the aphid natural environment and minimize handling of these insects during experiments. The green peach aphid M. persicae was selected because it has a broad plant host range that includes the model plants Nicotiana benthamiana and Arabidopsis thaliana for which transgenic materials can relatively quickly be generated. We targeted M. persicae Rack1, which is predominantly expressed in the gut, and M. persicae C002 (MpC002), which is predominantly expressed in the salivary glands. The aphids were fed on N. benthamiana leaf disks transiently producing dsRNA corresponding to these genes and on A. thaliana plants stably producing the dsRNAs. MpC002 and Rack-1 expression were knocked down by up to 60% on transgenic N. benthamiana and A. thaliana. Moreover, silenced M. persicae produced less progeny consistent with these genes having essential functions.

Conclusions/Significance

Similar levels of gene silencing were achieved in our plant-mediated RNAi approach and published silencing methods for aphids. Furthermore, the N. benthamiana leaf disk assay can be developed into a screen to assess which genes are essential for aphid survival on plants. Our results also demonstrate the feasibility of the plant-mediated RNAi approach for aphid control.  相似文献   

10.
The fluxes of carbohydrates across the plasma membranes of higher-plant cells are catalysed mainly by monosaccharide and disaccharide-H+ symporters. cDNAs encoding these different transporters have been cloned recently and the functions and properties of the encoded proteins have been studied extensively in heterologous expression systems. Several of the proteins have been identified biochemically in these expression systems and their location in plants has been shown immunohistochemically or with transgenic plants which were transformed with reporter genes, expressed under the control of the promoters of individual transporter genes. In this paper we summarize the current knowledge on the molecular biology and biochemistry of higher-plant sugar transport proteins.  相似文献   

11.
12.
Proline-rich proteins contribute to cell wall structure of specific cell types and are involved in plant growth and development. In this study, a fiber-specific gene, GhPRP5, encoding a proline-rich protein was functionally characterized in cotton. GhPRP5 promoter directed GUS expression only in trichomes of both transgenic Arabidopsis and tobacco plants. The transgenic Arabidopsis plants with overexpressing GhPRP5 displayed reduced cell growth, resulting in smaller cell size and consequently plant dwarfs, in comparison with wild type plants. In contrast, knock-down of GhPRP5 expression by RNA interference in cotton enhanced fiber development. The fiber length of transgenic cotton plants was longer than that of wild type. In addition, some genes involved in fiber elongation and wall biosynthesis of cotton were up-regulated or down-regulated in the transgenic cotton plants owing to suppression of GhPRP5. Collectively, these data suggested that GhPRP5 protein as a negative regulator participates in modulating fiber development of cotton.  相似文献   

13.
The expression of chloramphenical acetyl transferase (CAT) protein driven by the wound-inducible promoter from the proteinase inhibitor II K (pin2) gene was examined in whole tobacco (Nicotiana tabacum L.) plants under field conditions. Mechanical wounding of the field-grown leaves caused an accumulation of CAT protein in these leaves which begins several hours after wounding and continues to accumulate for about 36 hours. When sections of leaves were assayed for accumulation of CAT protein following wounding, the CAT protein was found to accumulate in the apical portions of the leaves. When endogenous insects attacked the leaves of transgenic plants grown in the field, the plants responded by inducing CAT protein. The mesophyll cells of the leaf were the site of expression of the CAT protein rather than the mid-vein or major veins within the leaf blade, indicating that the wound-inducible pin2 promoter specifically directs the synthesis of novel genes in tissues preferentially consumed by larval insects.  相似文献   

14.
Experimental models of primary potato transgenic plants that express the cry3aM-licBM2 hybrid gene were created. The molecular analysis and biotests of the experimental models allow a new system of cry genes expression in plants to be proposed. This system is based on the expression of hybrid genes containing the reporter lichenase gene sequence and the use of a light-induced promoter ensuring preferential expression of the regulated genes only in green plant tissues (leaves), the target tissues for pests, as a regulatory element. In is shown that the presence of lichenase in hybrid proteins facilitates selection and analysis of the level of expression of hybrid proteins in transgenic plants. Judging by the properties of the reporter protein lichenase in hybrid proteins, it seems possible to use this reporter system for transgene monitoring in agrocenosis, because this system is fairly simple and precise and does not need considerable material and time expenses.  相似文献   

15.
As one of the largest gene families, F-box domain proteins have been found to play important roles in abiotic stress responses via the ubiquitin pathway. TaFBA1 encodes a homologous F-box protein contained in E3 ubiquitin ligases. In our previous study, we found that the overexpression of TaFBA1 enhanced drought tolerance in transgenic plants. To investigate the mechanisms involved, in this study, we investigated the tolerance of the transgenic plants to oxidative stress. Methyl viologen was used to induce oxidative stress conditions. Real-time PCR and western blot analysis revealed that TaFBA1 expression was up-regulated by oxidative stress treatments. Under oxidative stress conditions, the transgenic tobacco plants showed a higher germination rate, higher root length and less growth inhibition than wild type (WT). The enhanced oxidative stress tolerance of the transgenic plants was also indicated by lower reactive oxygen species (ROS) accumulation, malondialdehyde (MDA) content and cell membrane damage under oxidative stress compared with WT. Higher activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD), were observed in the transgenic plants than those in WT, which may be related to the upregulated expression of some antioxidant genes via the overexpression of TaFBA1. In others, some stress responsive elements were found in the promoter region of TaFBA1, and TaFBA1 was located in the nucleus, cytoplasm and plasma membrane. These results suggest that TaFBA1 plays an important role in the oxidative stress tolerance of plants. This is important for understanding the functions of F-box proteins in plants’ tolerance to multiple stress conditions.  相似文献   

16.
The orosomucoids (ORM) are ER-resisdent polypeptides encoded by ORM and ORMDL (ORM-like) genes. In humans, ORMDL3 was reported as genetic risk factor associated to asthma. In yeast, ORM proteins act as negative regulators of sphingolipid synthesis. Sphingolipids are important molecules regulating several processes including stress responses and apoptosis. However, the function of ORM/ORMDL genes in plants has not yet been reported. Previously, we found that temperature sensitive genetic male sterility (TGMS) rice lines controlled by tms2 contain a deletion of about 70 kb in chromosome 7. We identified four genes expressed in panicles, including an ORMDL ortholog, as candidates for tms2. In this report, we quantified expression of the only two candidate genes normally expressed in anthers of wild type plants grown in controlled growth rooms for fertile and sterile conditions. We found that only the ORMDL gene (LOC_Os07g26940) showed differential expression under these conditions. To better understand the function of rice ORMDL genes, we generated RNAi transgenic rice plants suppressing either LOC_Os07g26940, or all three ORMDL genes present in rice. We found that the RNAi transgenic plants with low expression of either LOC_Os07g26940 alone or all three ORMDL genes were sterile, having abnormal pollen morphology and staining. In addition, we found that both sphingolipid metabolism and expression of genes involved in sphingolipid synthesis were perturbed in the tms2 mutant, analogous to the role of ORMs in yeast. Our results indicated that plant ORMDL proteins influence sphingolipid homeostasis, and deletion of this gene affected fertility resulting from abnormal pollen development.  相似文献   

17.
18.
Two putative stress-related genes were isolated from sweet-potato and were designated as IbPRP1 and IbPRP2 (Ipomoea batatas proline-rich proteins 1 and 2). The deduced amino acid aligment of IbPRP1 and IbPRP2 shows that these two genes belong to the AAI_LTSS superfamily. Proteins in this family are known to play primary roles including defending plants from pathogens and insects, lipid transport between intracellular membranes, and nutrient storage. The mRNA expression of IbPRP1 and IbPRP2 were investigated and the results demonstrate that IbPRP2 has tissue-specific expression. Moreover, IbPRP1 and IbPRP2 may be involved in response to various stresses including drought, pathogen, and oxidative stress. In addition, when leaf disc test was performed, the IbPRP1 transgenic tobacco plants showed increase in tolerance to salt (100 mM, 200 mM, and 300 mM). Moreover, IbPRP1 and IbPRP2 may have some roles of transmembrane protein in sweetpotato when checked through GFP fusion cell localization and transmembrane analysis. All of these results indicate that IbPRP1 and IbPRP2 might play an important role in plant stress responses.  相似文献   

19.
20.
Transgenic resistance to insects has been demonstrated in plants expressing insecticidal genes such as δ -endotoxins from Bacillus thuringiensis (Bt), protease inhibitors, enzymes, secondary plant metabolites, and plant lectins. While transgenic plants with introduced Bt genes have been deployed in several crops on a global scale, the alternative genes have received considerably less attention. The protease inhibitor and lectin genes largely affect insect growth and development and, in most instances, do not result in insect mortality. The effective concentrations of these proteins are much greater than the Bt toxin proteins. Therefore, the potential of some of the alternative genes can only be realized by deploying them in combination with conventional host plant resistance and Bt genes. Genes conferring resistance to insects can also be deployed as multilines or synthetic varieties. Initial indications from deployment of transgenics with insect resistance in diverse cropping systems in USA, Canada, Argentina, China, India, Australia, and South Africa suggest that single transgene products in standard cultivar backgrounds are not a recipe for sustainable pest management. Instead, a much more complex approach may be needed, one which may involve deployment of a combination of different transgenes in different backgrounds. Under diverse climatic conditions and cropping systems of tropics, the success in the utilization of transgenics for pest management may involve decentralized national breeding programs and several small-scale seed companies. While several transgenic crops with insecticidal genes have been introduced in the temperate regions, very little has been done to use this technology for improving crop productivity in the harsh environments of the tropics, where the need for increasing food production is most urgent. There is a need to develop appropriate strategies for deployment of transgenics for pest management, keeping in view the pest spectrum involved, and the effects on nontarget organisms in the ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号