首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dollar spot caused by Sclerotinia homoeocarpa F. T. Bennett is the most economically important turf disease on golf courses in North America. Dollar spot resistance in a creeping bentgrass cultivar would greatly reduce the frequency, costs, and environmental impacts of fungicide application. Little work has been done to understand the genetics of resistance to dollar spot in creeping bentgrass. Therefore, QTL analysis was used to determine the location, number and effects of genomic regions associated with dollar spot resistance in the field. To meet this objective, field inoculations using a single isolate were performed over 2 years and multiple locations using progeny of a full sib mapping population ‘549 × 372’. Dollar spot resistance seems to be inherited quantitatively and broad sense heritability for resistance was estimated to be 0.88. We have detected one QTL with large effect on linkage group 7.1 with LOD values ranging from 3.4 to 8.6 and explaining 14–36% of the phenotypic variance. Several smaller effect QTL specific to rating dates, locations and years were also detected. The association of the tightly linked markers with the LG 7.1 QTL based on 106 progeny was further examined by single marker analysis on all 697 progeny. The high significance of the QTL on LG 7.1 at a sample size of 697 (P < 0.0001), along with its consistency across locations, years and ratings dates, indicated that it was stable over environments. Markers tightly linked to the QTL can be utilized for marker-assisted selection in future bentgrass breeding programs.  相似文献   

2.
The dollar spot disease, incited by Sclerotinia homoeocarpa F.T. Bennet, is one of the most important diseases of creeping bentgrass (Agrostis stolonifera L.) on golf courses. An understanding of the inheritance of dollar spot resistance could enhance genetic improvement efforts in creeping bentgrass. The objectives of this study were to evaluate the response of two creeping bentgrass crosses to two different isolates of S. homoeocarpa, determine gene action and identify number of loci involved in resistance to individual fungal isolates. Parental clones, pseudo F2, pseudo F3, BC1 and BC2 progenies from two crosses were established in a field trial in a randomized complete block split‐plot design in the fall of 2002. Progeny of each generation (subplots) were inoculated with each of two isolates of S. homoeocarpa (main plots) applied at a rate of 0.25 g/m2 of prepared inoculum and evaluated for dollar spot disease. Minimum loci calculations averaged 1.0–2.6. Midparent heterosis calculations were not significant. Backcross population means were closest to the recurrent parent. Generation mean analysis supports a simple additive‐dominance model for both crosses and both isolates, although there was also some evidence of epistatic gene action depending on the cross and the isolate. These results confirm previous research that dollar spot disease is quantitatively inherited and indicate that there may be a few genes interacting in a mainly additive fashion to confer dollar spot disease resistance in creeping bentgrass.  相似文献   

3.
Creeping bentgrass (Agrostis stolonifera L.) is one of the most adapted bentgrass species for use on golf course fairways and putting greens because of its high tolerance to low mowing height. It is a highly outcrossing allotetraploid species (2n=4x=28, A2 and A3 subgenomes). The first linkage map in this species is reported herein, and it was constructed based on a population derived from a cross between two heterozygous clones using 169 RAPD, 180 AFLP, and 39 heterologous cereal and 36 homologous bentgrass cDNA RFLP markers. The linkage map consists of 424 mapped loci covering 1,110 cM in 14 linkage groups, of which seven pairs of homoeologous chromosomes were identified based on duplicated loci. The numbering of all seven linkage groups in the bentgrass map was assigned according to common markers mapped on syntenous chromosomes of ryegrass and wheat. The number of markers linked in coupling and repulsion phase was in a 1:1 ratio, indicating disomic inheritance. This supports a strict allotetraploid inheritance in creeping bentgrass, as suggested by previous work based on chromosomal pairing and isozymes. This linkage map will assist in the tagging and eventually in marker-assisted breeding of economically important quantitative traits like disease resistance to dollar spot (Sclerotinia homoeocarpa F.T. Bennett) and brown patch (Rhizoctonia solani Kuhn).  相似文献   

4.
Creeping bentgrass (Agrostis stolonifera, allotetraploid 2n = 4x = 28) is one of the major cool-season turfgrasses. It is widely used on golf courses due to its tolerance to low mowing and aggressive growth habit. In this study, we investigated genome relationships of creeping bentgrass relative to the Triticeae (a consensus map of Triticum aestivum, T. tauschii, Hordeum vulgare, and H. spontaneum), oat, rice, and ryegrass maps using a common set of 229 EST-RFLP markers. The genome comparisons based on the RFLP markers revealed large-scale chromosomal rearrangements on different numbers of linkage groups (LGs) of creeping bentgrass relative to the Triticeae (3 LGs), oat (4 LGs), and rice (8 LGs). However, we detected no chromosomal rearrangement between creeping bentgrass and ryegrass, suggesting that these recently domesticated species might be closely related, despite their memberships to different Pooideae tribes. In addition, the genome of creeping bentgrass was compared with the complete genome sequence of Brachypodium distachyon in Pooideae subfamily using both sequences of the above-mentioned mapped EST-RFLP markers and sequences of 8,470 publicly available A. stolonifera ESTs (AgEST). We discovered large-scale chromosomal rearrangements on six LGs of creeping bentgrass relative to B. distachyon. Also, a total of 24 syntenic blocks based on 678 orthologus loci were identified between these two grass species. The EST orthologs can be utilized in further comparative mapping of Pooideae species. These results will be useful for genetic improvement of Agrostis species and will provide a better understanding of evolution within Pooideae species.  相似文献   

5.
High-resolution genetic maps are essential for fine mapping of complex traits, genome assembly, and comparative genomic analysis. Single-nucleotide polymorphisms (SNPs) are the primary molecular markers used for genetic map construction. In this study, we identified 13,362 SNPs evenly distributed across the Japanese flounder (Paralichthys olivaceus) genome. Of these SNPs, 12,712 high-confidence SNPs were subjected to high-throughput genotyping and assigned to 24 consensus linkage groups (LGs). The total length of the genetic linkage map was 3,497.29 cM with an average distance of 0.47 cM between loci, thereby representing the densest genetic map currently reported for Japanese flounder. Nine positive quantitative trait loci (QTLs) forming two main clusters for Vibrio anguillarum disease resistance were detected. All QTLs could explain 5.1–8.38% of the total phenotypic variation. Synteny analysis of the QTL regions on the genome assembly revealed 12 immune-related genes, among them 4 genes strongly associated with V. anguillarum disease resistance. In addition, 246 genome assembly scaffolds with an average size of 21.79 Mb were anchored onto the LGs; these scaffolds, comprising 522.99 Mb, represented 95.78% of assembled genomic sequences. The mapped assembly scaffolds in Japanese flounder were used for genome synteny analyses against zebrafish (Danio rerio) and medaka (Oryzias latipes). Flounder and medaka were found to possess almost one-to-one synteny, whereas flounder and zebrafish exhibited a multi-syntenic correspondence. The newly developed high-resolution genetic map, which will facilitate QTL mapping, scaffold assembly, and genome synteny analysis of Japanese flounder, marks a milestone in the ongoing genome project for this species.  相似文献   

6.
Genetic control of fruit vitamin C contents   总被引:1,自引:0,他引:1       下载免费PDF全文
An F(1) progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL) linked to the vitamin C (l-ascorbate [l-AA]) contents of fruit skin and flesh (cortex) tissues. We identified up to three highly significant QTLs for both the mean l-AA and the mean total l-AA contents of fruit flesh on both parental genetic linkage maps, confirming the quantitative nature of these traits. These QTLs account for up to a maximum of 60% of the total population variation observed in the progeny, and with a maximal individual contribution of 31% per QTL. QTLs common to both parents were identified on linkage groups (LGs) 6, 10, and 11 of the Malus reference map, while each parent also had additional unique QTLs on other LGs. Interestingly, one strong QTL on LG-17 of the Telamon linkage map colocalized with a highly significant QTL associated with flesh browning, and a minor QTL for dehydroascorbate content, supporting earlier work that links fruit l-AA contents with the susceptibility of hardfruit to postharvest browning. We also found significant minor QTLs for skin l-AA and total l-AA (l-AA + dehydroascorbate) contents in Telamon. Currently, little is known about the genetic determinants underlying tissue l-AA homeostasis, but the presence of major, highly significant QTL in both these apple genotypes under field conditions suggests the existence of common control mechanisms, allelic heterozygosity, and helps outline strategies and the potential for the molecular breeding of these traits.  相似文献   

7.
Powdery mildew, caused by the ascomycete fungus Podosphaera leucotricha, is one of the most damaging diseases of apple worldwide. Polygenically determined resistance might contribute to a significant increase of resistance to this disease in new cultivars. A quantitative trait locus (QTL) analysis was performed in an F1 progeny derived from a cross between the apple cultivar Discovery and the apple hybrid TN10-8. Powdery mildew incidence was assessed during four years (five seasons) in spring and/or autumn in a French local orchard. Seven additive and/or dominant QTLs were detected over the five seasons, with effects (R 2) ranging from 7.5% to 27.4% of the progeny phenotypic variation. Two QTLs, on linkage groups (LGs) 2 and 13, were consistently identified and accounted together from 29% to 37% of the phenotypic variation according to the year of assessment. The other QTLs were identified during one (LGs 1, 14), two (LG10), or three (LGs 8, 17) seasons. Their instability indicated a changing genetic determinism according to the year of assessment, for which several hypotheses may be put forward. The QTLs on LGs 2 and 8 mapped close to clusters of resistance gene analogs (RGAs) and major genes for resistance to mildew or apple scab previously identified. The stable QTLs identified on LGs 2 and 13, together with the strong effect QTL located on LG 8, are of special interest for breeding purposes, especially if combined with other major resistance genes.  相似文献   

8.
Chokecherry (Prunus virginiana L.) (2n = 4x = 32) is a unique Prunus species for both genetics and disease resistance research due to its tetraploid nature and known variations in X-disease resistance. X-disease is a destructive disease of stone fruit trees, causing yield loss and poor fruit quality. However, genetic and genomic information on chokecherry is limited. In this study, simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers were used to construct genetic linkage maps and to identify quantitative trait loci (QTLs) associated with X-disease resistance in chokecherry. A segregating population (101 progenies) was developed by crossing an X-disease-resistant chokecherry line (RC) with a susceptible chokecherry line (SC). A total of 498 DNA markers (257 SSR and 241 AFLP markers) were mapped on the two genetic maps of the two parental lines (RC and SC). The map of RC contains 302 markers assigned to 14 linkage groups covering 2,089 cM of the genome. The map of SC has 259 markers assigned to 16 linkage groups covering 1,562.4 cM of the genome. The average distance between two markers was 6.9 cM for the RC map and 6.0 cM for the SC map. One QTL located on linkage group 15 on the map of SC was found to be associated with X-disease resistance. Genetic linkage maps and the identified QTL linked to X-disease resistance will further facilitate genetic research and breeding of X-disease resistance in chokecherry and other Prunus species.  相似文献   

9.
Allotetraploid (2n = 4x = 32) white clover (Trifolium repens L.) is the most commonly cultivated legume component of temperate pastures, sown in swards with a companion grass species. Genetic control of growth performance of white clover on saline land is highly important for dairy industries, due to increasing soil salinity problems. The objective of this study was to identify quantitative trait loci (QTLs) for salinity tolerance in terms of vegetative growth under stress. Two parental genetic maps consisting of 213 and 159 marker loci and spanning 1,973.0 and 1,837.6 cM, respectively, were constructed using simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers from a two-way pseudo-test cross F1 population derived from pair-crossing of the Haifa2 and LCL2 genotypes. A total of 8 unique genomic regions on 8 linkage groups (LGs) of the Haifa2 parental map and 6 unique regions on 5 LGs in the LCL2 parental map were associated with plant growth under salt stress and relative growth under stress, as compared to control conditions. The results of this study indicate that salt tolerance in white clover is controlled by multiple QTLs, some at common locations, but each of limited magnitude. Location of these QTLs provides the genetic basis and potential for pyramiding of salt tolerance genes in breeding improvement.  相似文献   

10.
S W Chang  G Jung 《Génome》2008,51(2):128-136
Speckled snow mold, caused by the basidiomycete Typhula ishikariensis Imai, is one of the most prominent winter diseases on perennial grasses and cereal crops in the northern hemisphere. The first linkage map of T. ishikariensis was constructed using a population of 93 sibling monokaryons derived from a single dikaryotic hybrid isolate that was created by a hyphal fusion of two monokaryotic parental isolates. The parental isolates were produced from a pathogenic dikaryotic isolate collected from a golf course in Wisconsin. The two parents exhibit significant differences in the production of aerial mycelium and sclerotia, and in their aggressiveness on creeping bentgrass (Agrostis stolonifera L.). A total of 251 loci were mapped, comprising 89 inter-simple sequence repeat (ISSR) and 160 random amplified polymorphic DNA (RAPD) markers along with 2 phenotype-based mating-type (MAT) loci. The MAT loci were mapped on linkage groups (LGs) 1 and 7. The markers were evenly distributed over 7 LGs, covering 436 cM with an average marker interval of 2.2 cM. Seven chromosomes were cytologically observed using germ tube bursting methods with acetocarmine staining. This reference linkage map of T. ishikariensis should provide a framework for the mapping of quantitatively controlled traits such as fungal growth, survival, and virulence/avirulence under low temperatures. The map should also be utilized for studying the genome organization of the cold-loving plant-pathogenic Typhula spp. and for comparative genome analysis among fungal taxa.  相似文献   

11.
The improvement of fruit quality is an important objective in citrus breeding. Using an F1 segregating population from a cross between citrus cultivars ‘Harehime’ (‘E647’—‘Kiyomi’ [Citrus unshiu Marcow. ‘Miyagawa Wase’ × Citrus sinensis (L.) Osbeck ‘Trovita’] × ‘Osceola’—a cultivar of clementine [Citrus clementina hort. ex Tanaka] × ‘Orland’ [Citrus paradisi Macfad. ‘Duncan’ × Citrus tangerina hort. ex Tanaka] × ‘Miyagawa Wase’) and ‘Yoshida’ ponkan (Citrus reticulata Blanco ‘Yoshida’), a SNP-based genetic linkage map was constructed and quantitative trait locus (QTL) mapping of four fruit-quality traits (fruit weight, sugar content, peel puffing, and water rot) was performed. The constructed genetic linkage map of ‘Harehime’ consisted of 442 single nucleotide polymorphisms (SNPs) on 9 linkage groups (LGs) and covered 635.8 cM of the genome, while that of ‘Yoshida’ ponkan consisted of 332 SNPs on 9 LGs and covered 892.9 cM of its genome. We identified four QTLs associated with fruit weight, one QTL associated with sugar content, three QTLs associated with peel puffing, and one QTL associated with water rot. For these QTL regions, we estimated the haplotypes of the crossed parents and verified the founding cultivars that these QTLs were originated from and their inheritance in descendant cultivars using pedigree information. QTLs identified in this study provide useful information for marker-assisted breeding of citrus in Japan.  相似文献   

12.
Transgenic creeping bentgrass with delayed dollar spot symptoms   总被引:7,自引:0,他引:7  
Creeping bentgrass (Agrostis palustris Huds) is animportant turfgrass used on golf course greens and fairways. It is susceptibleto a number of fungal pathogens and requires considerable fungicide use fordisease control. Transgenic approaches may be useful in improving the level ofdisease resistance. We have generated transgenic creeping bentgrass plantsexpressing PR5K from Arabidopsis thaliana (L.) Henyh. PR5Kis a receptor protein kinase whose extracellular domain is homologous to thePR5family of pathogenesis-related proteins. In a field test of plants inoculatedwith the fungal pathogen dollar spot (Sclerotiniahomoeocarpa F.T. Bennett) four of the eight transgenic lines showeddelays in disease expression of 29 to 45 days, relative to the control plants.  相似文献   

13.
Breeding a model plant that encompasses individual traits thought to enhance yield potential, known as ideotype breeding, has traditionally focused on phenotypic selection of plants with desirable morphological traits. Broadening this breeding method to the molecular level through the use of molecular markers would avoid the environmental interactions associated with phenotypic selection. A population of 110 F5 recombinant inbred lines (RILs), derived from the cross between WO3391 and 'OAC Speedvale', was used to develop a genetic linkage map consisting of 105 random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR), and sequence-tagged site (STS) markers. The map has a total length of 641 cM distributed across 8 linkage groups (LGs). Five of them were aligned on the core linkage map of bean. Twenty-one quantitative trait loci (QTLs) were identified over three environments for eight agronomic and architectural traits previously defined for a bean (Phaseolus vulgaris L.) ideotype. The QTLs were mapped to seven LGs with several regions containing QTLs for multiple traits. At least one QTL was located for each trait and a maximum of four were associated with lodging. Total explained phenotypic variance ranged from 10.6% for hypocotyl diameter to 45.4% for maturity. Some of the QTLs identified will be useful for early generation selection of tall, upright, high-yielding lines in a breeding program.  相似文献   

14.
Ryegrass (Lolium spp.) is among the most important forage crops in Europe and Australia and is also a popular turfgrass in North America. Previous genetic analysis based on a three-generation interspecific (L. perenne x L. multiflorum) ryegrass population identified four quantitative trait loci (QTLs) for resistance to gray leaf spot (Magneporthe grisea) and four QTLs for resistance to crown rust (Puccinia coronata). The current analysis based on the same mapping population detected seven QTLs for resistance to leaf spot (Bipolaris sorokiniana) and one QTL for resistance to stem rust (Puccinia graminis) in ryegrass for the first time. Three QTLs for leaf spot resistance on linkage groups (LGs) 2 and 4 were in regions of conserved synteny to the positions of resistance to net blotch (Drechslera teres) in barley (Hordeum vulgare). One ryegrass genomic region spanning 19 cM on LG 4, which contained three QTLs for resistance to leaf spot, gray leaf spot, and stem rust, had a syntenic relationship with a segment of rice chromosome 3, which contained QTLs for resistance to multiple diseases. However, at the genome-wide comparison based on 72 common RFLP markers between ryegrass and cereals, coincidence of QTLs for disease resistance to similar fungal pathogens was not statistically significant.  相似文献   

15.

Background and Aims

The Asian genus Vigna, to which four cultivated species (rice bean, azuki bean, mung bean and black gram) belong, is suitable for comparative genomics. The aims were to construct a genetic linkage map of rice bean, to identify the genomic regions associated with domestication in rice bean, and to compare these regions with those in azuki bean.

Methods

A genetic linkage map was constructed by using simple sequence repeat and amplified fragment length polymorphism markers in the BC1F1 population derived from a cross between cultivated and wild rice bean. Using this map, 31 domestication-related traits were dissected into quantitative trait loci (QTLs). The genetic linkage map and QTLs of rice bean were compared with those of azuki bean.

Key Results

A total of 326 markers converged into 11 linkage groups (LGs), corresponding to the haploid number of rice bean chromosomes. The domestication-related traits in rice bean associated with a few major QTLs distributed as clusters on LGs 2, 4 and 7. A high level of co-linearity in marker order between the rice bean and azuki bean linkage maps was observed. Major QTLs in rice bean were found on LG4, whereas major QTLs in azuki bean were found on LG9.

Conclusions

This is the first report of a genetic linkage map and QTLs for domestication-related traits in rice bean. The inheritance of domestication-related traits was so simple that a few major QTLs explained the phenotypic variation between cultivated and wild rice bean. The high level of genomic synteny between rice bean and azuki bean facilitates QTL comparison between species. These results provide a genetic foundation for improvement of rice bean; interchange of major QTLs between rice bean and azuki bean might be useful for broadening the genetic variation of both species.  相似文献   

16.
Soybean cyst nematode (SCN) is a major soybean pest throughout the soybean growing regions in the world, including the USA. Soybean PI 90763 is an important SCN resistance source. It is resistant to several SCN populations including races 2, 3 and 5. But its genetics of resistance is not well known. The objectives of this study were to: (1) confirm quantitative trait loci (QTLs) for resistance to SCN race 3 in PI 90763 and (2) identify QTLs for resistance to SCN races 2 and 5. QTLs were searched in Hamilton × PI 90763 F2:3populations using 193 polymorphic simple sequence repeats (SSRs) covering 20 linkage groups (LGs). QTLs for resistance to SCN were identified on LGs A2, B1, E, G, J and L. The same QTL was suggested for resistance to different SCN races where their 1-LOD support intervals of QTL positions highly overlapped. The QTL on LG G was associated with resistance to races 2, 3 and 5. The QTL on LG B1 was associated with resistance to races 2 and 5. The QTL on LG J was associated with resistance to races 2 and 3. The QTLs on LGs A2 and L were associated with resistance to race 3. The QTL on LG E was associated with resistance to race 5. We conclude that LGs A2 and B1 may represent an important distinction between resistance to SCN race 3 and resistance to SCN races 2 and 5 in soybean.  相似文献   

17.
Stem rot caused by Sclerotinia sclerotiorum in many important dicotyledonous crops, including oilseed rape (Brassica napus), is one of the most devastating fungal diseases and imposes huge yield loss each year worldwide. Currently, breeding for Sclerotinia resistance in B. napus, as in other crops, can only rely on germplasms with quantitative resistance genes. Thus, the identification of quantitative trait locus (QTL) for S. sclerotiorum resistance/tolerance in this crop holds immediate promise for the genetic improvement of the disease resistance. In this study, ten QTLs for stem resistance (SR) at the mature plant stage and three QTLs for leaf resistance (LR) at the seedling stage in multiple environments were mapped on nine linkage groups (LGs) of a whole genome map for B. napus constructed with SSR markers. Two major QTLs, LRA9 on LG A9 and SRC6 on LG C6, were repeatedly detected across all environments and explained 8.54–15.86% and 29.01%–32.61% of the phenotypic variations, respectively. Genotypes containing resistant SRC6 or LRA9 allele showed a significant reduction in disease lesion after pathogen infection. Comparative mapping with Arabidopsis and data mining from previous gene profiling experiments identified that the Arabidopsis homologous gene of IGMT5 (At1g76790) was related to the SRC6 locus. Four copies of the IGMT5 gene in B. napus were isolated through homologous cloning, among which, only BnaC.IGMT5.a showed a polymorphism between parental lines and can be associated with the SRC6. Furthermore, two parental lines exhibited a differential expression pattern of the BnaC.IGMT5.a gene in responding to pathogen inoculation. Thus, our data suggested that BnaC.IGMT5.a was very likely a candidate gene of this major resistance QTL.  相似文献   

18.
Dollar spot is the most economically important disease of amenity turfgrasses in the United States, yet little is known about the source of primary inoculum for this disease. With the exception of a few isolates from the United Kingdom, Sclerotinia homoeocarpa, the causal agent of dollar spot, does not produce spores. Consequently, it was assumed that overwintering of this organism in soil, thatch, and plant debris provides primary inoculum for dollar spot epidemics. Overwintering of S. homoeocarpa in roots and shoots of symptomatic and asymptomatic creeping bentgrass turfgrass was quantified over the course of a three-year field experiment. Roots did not consistently harbor S. homoeocarpa, whereas S. homoeocarpa was isolated from 30% of symptomatic shoots and 10% of asymptomatic shoots in the spring of two out of three years. The presence of stroma-like pathogen material on leaf blades was associated with an increase in S. homoeocarpa isolation and colony diameter at 48 hpi. Commercial seed has also been hypothesized to be a potential source of initial inoculum for S. homoeocarpa. Two or more commercial seed lots of six creeping bentgrass cultivars were tested for contamination with S. homoeocarpa using culture-based and molecular detection methods. A viable, pathogenic isolate of S. homoeocarpa was isolated from one commercial seed lot and contamination of this lot was confirmed with nested PCR using S. homoeocarpa specific primers. A sensitive nested PCR assay detected S. homoeocarpa contamination in eight of twelve (75%) commercial seed lots. Seed source, but not cultivar or resistance to dollar spot, influenced contamination by S. homoeocarpa. Overall, this research suggests that seeds are a potential source of initial inoculum for dollar spot epidemics and presents the need for further research in this area.  相似文献   

19.
Creeping bentgrass (Agrostis stolonifera L.) is a versatile, cross-pollinated, temperate and perennial turfgrass species. It occurs naturally in a wide variety of habitats and is also cultivated on golf courses, bowling greens and tennis courts worldwide. Isozymes and amplified fragment length polymorphisms (AFLPs) have been used to determine genetic diversity, and restriction fragment length polymorphisms (RFLPs) and random amplified polymorphic DNA (RAPDs) were used to construct a genetic linkage map of this species. In the current report, we developed and characterized 215 unique genomic simple sequence repeat (SSR) markers in creeping bentgrass. The SSRs reported here are the first available markers in creeping bentgrass to date. Eight hundred and eighteen alleles were amplified by 215 SSR loci, an average of 3.72 alleles per locus. Fifty-nine per cent of those alleles segregated in a 1:1 Mendelian fashion (P > 0.05). Twenty-two per cent had a distorted segregation ratio (P ≤ 0.05). These SSR markers will be useful for assessing genetic diversity in creeping bentgrass and will be important for the development of genetic linkage maps and identifying quantitative trait loci. These markers could enhance breeding programmes by improving the efficiency of selection techniques.  相似文献   

20.
Two populations (Pop) segregating quantitatively for resistance to downy mildew (DM), caused by Plasmopara viticola, were used to construct genetic maps and to carry out quantitative trait locus (QTL) analysis. Pop1 comprised of 174 F1 individuals from a cross of ‘Moscato Bianco’, a susceptible Vitis vinifera cultivar, and a resistant individual of Vitis riparia. Pop2 consisted of 94 progeny from a cross of two interspecific hybrids, ‘VRH3082 1-42’ and ‘SK77 5/3’, with resistance traits inherited from Vitis rotundifolia and Vitis amurensis, respectively. Resistance of progeny was measured in field and greenhouse conditions by visual evaluation of disease symptoms on leaves. Linkage maps of 1037.2 and 651 cM were built essentially with simple sequence repeat markers and were enriched with gene-derived single-strand conformational polymorphism and single-nucleotide polymorphism markers. Simple interval mapping and Kruskall–Wallis analysis detected a stable QTL involved in field resistance to DM on linkage group (LG) 7 of the Pop1 integrated map co-localized with a putative Caffeoyl-CoA O-methyltransferase-derived marker. Additional QTLs were detected on LGs 8, 12 and 17. We were able to identify genetic factors correlated with resistance to P. viticola with lower statistical significance on LGs 1, 6 and 7 of the Pop2 map. Finally, no common QTLs were found between the two crosses analyzed. A search of the grapevine genome sequence revealed either homologues to non-host-, host- or defense-signalling genes within the QTL intervals. These positional candidate genes may provide new information about chromosomal regions hosting phenotypic loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号