首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SDS-polyacrylamide gel electrophoresis of total seed extracts revealed the presence of legumin-like polypeptides ranging in molecular weight from 42 kD to 89 kD in Lathyrus sativus and L. odoratus. The polypeptides of higher mol wt were however, absent in L. aphaca. Vicilin-like polypepides of mol wt 76, 54, 36, 33, 31, 20 and 17 kD were seen in L. sativus and L. odoratus and of mol wt 72, 58, 54, 52, 36, 33 and 20 kD in L. aphaca. Analysis of various seed protein fractions of L. sativus revealed the presence of a large number of albumin polypeptides varyingin mol wt range from 12.5 to 95 kD, when as glutelin (mol wt 18 to 80 kD) and prolamin (mol wt 25.5 and 26 kD) fraction polypeptides were relatively fewer. On the basis of similarities in seed polypeptide profiles, L. sativus and L. odoratus seem to be closely related, whereas L. aphaca appears to be distantly related.  相似文献   

2.
NaCl对大麦幼苗根系蛋白质和游离氨基酸含量的影响   总被引:16,自引:0,他引:16  
大麦幼苗在200mmol/LNaCl处理6d过程中,根中蛋白水麦活性下降,可溶性蛋白含量在处理1、2、4d下降,6d时有所提高。多数游离氨基酸相对含量及其总量呈上升势,胁迫1、2、6d时,总量较对照分别上升64.20%、56.69%和1.69%,其中Pro、Glu、Ala和Thr较为突出,盐胁迫下根系质膜和液泡膜结合慢白含量上升。可溶性蛋经SDS-PAGE电泳和扫描分析,在盐胁迫1、2、6d中25  相似文献   

3.
Summary Soluble proteins of pea seed were investigated by quantitative immunological methods. Vicilin, legumin, pea seed lectin (PEA), 26 albumins and a globulin (B1) were detected and observed during seed development, germination and under different extraction and fractionation procedures. Vicilin and legumin were found to be immunologically distinctly different. Legumin was found to be comprised of two similar proteins, Legumin species I and II. Vicilin, but no legumin, was detected in the embryonic axis.Three albumins, B1 and PEA were found to be synthesized after the onset of legumin synthesis.Among the pea lines investigated, one line exhibited distinct differences with respect to the albumins and PEA.Some observations indicate that PEA might interact with other seed proteins of pea.  相似文献   

4.
This study was aimed at the characterization of the major storage proteins in Arabidopsis thaliana. Two major protein fractions, i.e., the fraction Ⅰ and Ⅱ proteins, were isolated from the extract of mature seeds of this plant by molecular seive gel filtration chromatography. Various polyacrylarnide gel electrophoretic techniques were used to study the properties and polypeptide compositions of these two protein fractions. In was shown that during the SDS gel electrophoresis, fraction Ⅰ protein was separated into 6 major bands with the mol. was. of 34, 31, 29, 28 and 19-20 kD, respectively, whereas Fraction Ⅱ protein migrated as 3 low mol. wt. bands (10-12 kD) on the same gel. Non-denaturing native gel electrophoresis revealed that fraction Ⅰ was a neutral protein and Fraction Ⅱ was a positively charged basic protein with an isoelectric point (pI) higher than 8.8. Fraction I protein was further separated into at least 16 polypeptides in isoelectric focusing/SDS two-dimensional gel electrophoresis, i.e. each SDS band contained 3-4 polypeptides with the same mol. wt. but different pis. This suggested a more complex polypeptide composition of this protein. The properties of fraction Ⅰ and Ⅱ proteins were in good accordance with that of the 12s and 1.7s storage globulins in seeds of many other dicotyledonous plants, and therefore had been characterized as the two major seed storage proteins in this species. These two storage globulins were shown to be accumulated within a defined period during the late stage of seed development (12-14 DAF) and became predominant protein components in mature seeds. In the mean time, a few points in relation to the polypeptide composition and subunit molecular configuration of the 12s globulin were noted.  相似文献   

5.
Gruis D  Schulze J  Jung R 《The Plant cell》2004,16(1):270-290
The role(s) of specific proteases in seed protein processing is only vaguely understood; indeed, the overall role of processing in stable protein deposition has been the subject of more speculation than direct investigation. Seed-type members of the vacuolar processing enzyme (VPE) family were hypothesized to perform a unique function in seed protein processing, but we demonstrated previously that Asn-specific protein processing in developing Arabidopsis seeds occurs independently of this VPE activity. Here, we describe the unexpected expression of vegetative-type VPEs in developing seeds and test the role(s) of all VPEs in seed storage protein accumulation by systematically stacking knockout mutant alleles of all four members (alphaVPE, betaVPE, gammaVPE, and deltaVPE) of the VPE gene family in Arabidopsis. The complete removal of VPE function in the alphavpe betavpe gammavpe deltavpe quadruple mutant resulted in a total shift of storage protein accumulation from wild-type processed polypeptides to a finite number of prominent alternatively processed polypeptides cleaved at sites other than the conserved Asn residues targeted by VPE. Although alternatively proteolyzed legumin-type globulin polypeptides largely accumulated as intrasubunit disulfide-linked polypeptides with apparent molecular masses similar to those of VPE-processed legumin polypeptides, they showed markedly altered solubility and protein assembly characteristics. Instead of forming 11S hexamers, alternatively processed legumin polypeptides were deposited primarily as 9S complexes. However, despite the impact on seed protein processing, plants devoid of all known functional VPE genes appeared unchanged with regard to protein content in mature seeds, relative mobilization rates of protein reserves during germination, and vegetative growth. These findings indicate that VPE-mediated Asn-specific proteolytic processing, and the physiochemical property changes attributed to this specific processing step, are not required for the successful deposition and mobilization of seed storage protein in the protein storage vacuoles of Arabidopsis seeds.  相似文献   

6.
Summary Legumin and vicilin were purified from seeds of Vicia faba L. var. Scuro, characterized in different electrophoretic systems, and used to produce polyclonal antibodies in rabbits. Two-dimensional electrophoretic studies showed a wide range of heterogeneity in the subunits of both legumin and vicilin. Legumin was found to be composed of 29 disulphide-linked subunit pairs with different molecular weight and/or isoelectric point. Western blot analysis of legumin of several mutants revealed molecular polymorphism based on a corresponding gene family. Three different -major legumin patterns were found, and inheritance studies showed that the 34.3-kD legumin polypeptide is the product of one locus, Lg-1, which is the first legumin genetic locus described in Vicia faba. Vicilin was found to be composed of as many as 59 subunits distributed in a molecular weight range of 65.7 to 42.8 kD (major polypeptides) and 37.2 to 15.2 kD (minor polypeptides), with different isoelectric points. A model is proposed that explains the possible formation of the minor subunits and the major subunits of 48.2 and 46 kD molecular weight (MW) from proteolytic cleavages and/or glycosilation of precursor polypeptides. Ten different vicilin electrophoretic patterns were observed among the analyzed accessions, which showed large molecular polymorphism that proved to be under genetic control.Contribution no. 55 from the Center of Vegetable Breeding, Portici, Italy  相似文献   

7.
In addition to the marked reduction in legumin synthesis and legumin mRNA levels reported earlier (Chandler, Higgins, Randall, Spencer 1983 Plant Physiol 71: 47-54), pulse labeling of S-deficient Pisum sativum L. seeds showed that a high relative level of total vicilin (vicilin plus convicilin) synthesis was maintained throughout the entire phase of protein accumulation, whereas in nondeficient seeds vicilin synthesis is largely confined to the first half of this phase. Fractionation of pulse-labeled proteins on Na-dodecylsulfate-polyacrylamide gels showed that the synthesis of the Mr 50,000 family of vicilin polypeptides was increased and greatly extended in S-deficient seeds whereas that of convicilin was slightly reduced. Other changes apparent from pulse-labeling experiments include a depression, to different degrees, in the synthesis of three major albumin polypeptides.

The level of the mRNAs for seven major seed proteins was followed throughout development of control and sulfur-deficient seeds. In all cases, the changes in each mRNA closely reflected the pattern of synthesis of its corresponding polypeptide seen by pulse labeling. S-deficient seeds showed an elevated level of Mr 50,000 vicilin mRNA which remained high throughout seed formation, whereas legumin mRNA levels were greatly reduced at all stages of development.

When S-deficient plants were given an adequate supply of sulfate midway through seed development, there was a shift toward the protein synthesis profile characteristic of healthy plants. The synthesis of legumin and two albumins rapidly increased and the synthesis of Mr 50,000 vicilin declined more slowly. Similar responses were seen in detached, S-deficient seeds supplied directly with adequate sulfate.

  相似文献   

8.
It was shown previously that when peas (Pisum sativum L.) are grown with suboptimal sulfur supply the level of legumin (the more S-rich of the two major seed storage proteins) in the mature seed is selectively reduced (Randall, Thomson, Schroeder, 1979 Aust J Plant Physiol 6: 11-24). This paper reports a study of the cellular mechanisms involved in regulating legumin synthesis under these conditions. Pulse and pulse-chase labeling experiments were carried out with excised, immature cotyledons from normal and S-deficient plants. Legumin was isolated from cotyledon extracts by immunochromatography, and the proportion of legumin synthesis relative to total protein synthesis was determined. Results showed that reduced legumin accumulation could largely be accounted for by a greatly reduced level of legumin synthesis (80-88% reduction) rather than by a major increase in legumin breakdown.

Legumin mRNA levels were assayed by two methods. In vitro translation of polysomal RNA from cotyledons of normal and S-deficient plants indicated a reduction of 60 to 70% in synthesis of legumin-related products by preparations from S-deficient plants. A legumin cDNA clone was constructed, characterized, and used to measure the levels of legumin mRNA in polysomal and total RNA preparations from developing cotyledons. Legumin mRNA levels were reduced by 90% in preparations from S-deficient plants.

When restored to an adequate S supply, S-deficient plants (or pods taken from such plants) recovered normal levels of legumin synthesis (in vivo and in vitro) and of legumin mRNA. These results indicate that reduced legumin accumulation under conditions of S deficiency is primarily a consequence of reduced levels of legumin mRNA.

  相似文献   

9.
In contrast to wild-type seeds of Arabidopsis thaliana and to seeds deficient in (aba) or insensitive to (abi3) abscisic acid (ABA), maturing seeds of recombinant (aba,abi3) plants fail to desiccate, remain green, and lose viability upon drying. These double-mutant seeds acquire only low levels of the major storage proteins and are deficient in several low mol wt polypeptides, both soluble and bound, and some of which are heat stable. A major heat-stable glycoprotein of more than 100 kilodaltons behaves similarly; during seed development, it shows a decrease in size associated with the abi3 mutation. In seeds of the double mutant from 14 to 20 days after pollination, the low amounts of various maturation-specific proteins disappear and many higher mol wt proteins similar to those occurring during germination are induced, but no visible germination is apparent. It appears that in the aba,abi3 double mutant seed development is not completed and the program for seed germination is initiated prematurely in the absence of substances protective against dehydration. Seeds may be made desiccation tolerant by watering the plants with the ABA analog LAB 173711 or by imbibition of isolated immature seeds, 11 to 15 days after pollination, with ABA and sucrose. Whereas sucrose stimulates germination and may protect dehydration-sensitive structures from desiccation damage, ABA inhibits precocious germination and is required to complete the program for seed maturation and the associated development of desiccation tolerance.  相似文献   

10.
This is the first characterization of proteins from storage parenchyma of cotyledons of mature dormant recalcitrant horse chestnut (Aesculus hippocastanum L.) seeds and evaluation the cell protein-synthesizing capacity. It was established that the content of protein in cotyledons did not exceed 0.5% of tissue fresh weight. Soluble proteins (the proteins of the postmitochondrial supernatant or cytosol) comprised the bulk (up to 90%) of total proteins. Protein of subcellular structures (20000 g-pellet) comprised 5–7% of total protein. Cotyledon proteins were heterogenous in their charges and molecular weights of subunits. Cotyledon protein was easily extracted with a salt (1 M NaCl); they comprised 90% of water-soluble albumin-like proteins. The proportion of globulins was insignificant; it did not exceed 5%. Most water-soluble proteins (more than 80%) were tolerant to heat denaturing. Among these heat-stable proteins, two major groups of polypeptides dominated: an electrophoretically homogeneous component with a mol wt of 24–25 kD and a complex group from three to five polypeptides with mol wts in the range between 6 and 12 kD. Native heat-stable proteins had disulfide bonds. Four fractions of heat-stable proteins were obtained by ammonium sulfate fractionation; three of them were alike in their polypeptide composition and contained major components with mol wts of 24–25 and 5–12 kD. It was established that the active translational machinery functioned in the cells of storage parenchyma in cotyledons of mature dormant horse chestnut seeds. During each stage of stratification, cotyledon fragments incorporated 35S-methionine into TCA-insoluble material more actively than axial organs. We discuss cotyledon protein composition, their function as a storage organ, and a possible role of heat-stable proteins.  相似文献   

11.
12.
Cotyledons of developing pea seeds (pisum sativum L.) were labeled with radioactive amino acids and glucosamine, and extracts were prepared and separated into fractions rich in endoplasmic reticulum (ER) or protein bodies, The time-course of synthesis of the polypeptides of legumin and vicilin and the site of their assembly into protein oligomers were studied using immunoaffinity gels and sucrose density gradients. When cotyledons were pulse-labeled (1-2 h), newly synthesized vicilin was present as a series of polypeptides with M(r) 60,000-65,000, and newly synthesized vicilin was present as series of polypeptides with M(r) 75,000, 70,000, 50,000, and 49,000. These radioactive polypeptides were found primarily in the ER (Chrispeels et al., 1982, J Cell Biol., 93:5- 14). During a subsequent chase period, newly synthesized reserve proteins were initially present in the protein bodies in the above-named polypeptides. Between 1 and 20 h later, radioactive legumin subunits (M(r) 40,000 and 19,000) and smaller vicilin polypeptides (M(r) 34,000, 30,000, 25,000, 18,000, 14,000, 13,000, and 12,000) appeared in the protein bodies. The appearance of these labeled polypeptides in the protein bodies was not the result of a slow transport from the ER (or cytoplasm). Newly synthesized legumin and vicilin polypeptides were assembled into oligomers of 8S and 7S, respectively, in the ER. They appeared in the protein bodies in these oligomeric forms before the appearance of the smaller polypeptides (M(r) less than 49,000). These results indicate that the smaller vicilin polypeptides (M(r) less than 49,000) arise delayed posttranslational processing of some or all of the larger vicilin polypeptides. The precursors of legumin are completely processed in the protein bodies 2-3 h after their synthesis. The processing of the vicilin precursors is much slower (6-20 h) and only a fraction of the precursor molecules are processed. As a result both large (M(r) more than 49,000) and small polypeptides of vicilin accumulate in the protein bodies, whereas legumin accumulates only as polypeptides of M(r) 40,000 and 19,000.  相似文献   

13.
The fraction of heat-stable dehydrins cytosolic proteins from mature recalcitrant seeds of horse chestnut (Aesculus hippocastanum L.) was studied in the period of their dormancy and germination in order to identify and characterize stress-induced dehydrin-like polypeptides. In our experiments, in tissues of dormant seeds, dehydrin was identifies by immunoblotting as a single bright band with a mol wt of about 50 kD. Low-molecular-weight heat-stable proteins with mol wts of 25 kD and below 16 kD, which were abundant in this fraction, did not cross-react with the antibody. Dehydrin was detected in all parts of the embryo: in the cells of axial organs, cotyledon storage parenchyma, and petioles of cotyledonary leaves. This indicates the absence of tissue-specificity in distribution of these proteins in the horse chestnut seeds. Dehydrins were detected among heat-stable proteins during the entire period of stratification and also radicle emersion. During radicle emergence, not only the fraction of heat-stable proteins was reduced but also the proportion of dehydrins in it decreased. In vitro germination of axes excised at different terms of stratification also resulted in dehydrin disappearance. When growth of excised axes was retarded by treatments with ABA, cycloheximide, or α-amanitin, dehydrins did not disappeared from the fraction of heat-stable proteins. When excised axes were germinated in vitro in the presence of compounds, which did not affect their growth or stimulated it (dehydrozeatin, glucose), this resulted in dehydrin disappearance. This means that dehydrin metabolism is closely related to the process of germination. Dehydrin in the horse chestnut seeds could cross-react with the antibody against ubiquitin, which can indicate the involvement of ubiquitination in the process of dehydrin degradation during germination via the proteasome system. The analysis of total proteins of the homogenate from horse chestnut seeds revealed, along with a 50-kD heat-stable dehydrin, one more component with a mol wt of 80 kD, which was located in the fraction of heat-sensitive proteins and was named as a dehydrin-like protein. It was demonstrated that dehydrins in horse chestnut seeds represented only a very small fraction of heat-stable cytosolic proteins. The role and function of major heat-stable proteins in horse chestnut seeds are yet to be studied.  相似文献   

14.
Lectin has been isolated and purified from Lathyrus sativus using ammonium sulphate precipitation followed by affinity chromatography. The molecular weight as determined by HPLC was found to be 42kD. The lectin is a tetramer, consisting of two types of subunits of which the heavier subunit consists of 2 polypeptides of mol wt of about 21 kD and 16 kD while the smaller subunits consists of two polypeptides of about 5kD as revealed by SDS-PAGE. The most potent sugar inhibitor of the Lathyrus lectin was found to be α-methyl D-mannoside. The N-terminal amino acid sequence was similar to that of pea lectin sequence.  相似文献   

15.
Free and starch-bound lysophosphatidylcholine (LPC) in germinating barley was isolated and quantified during the first 8 days of germination. During the first 4 days the starch-bound LPC remained at a relatively constant level (ca 0.4,μmol/seed) and then declined during the next 2 days to ca 0.1 μmol/seed. There appeared to be no further loss of this starch-bound lipid on further germination. The decrease in the content of starch-bound LPC is not due to the action of phospholipase C and/or D on the starch lipid because there was no corresponding accumulation of starchbound lysophosphatidic acid or monoacylglycerol. The free LPC remained relatively constant at 0.02 to 0.04 μmol/seed during the entire germination period indicating that the LPC released from the starch during days 5 and 6 is further metabolized. Amylase activity was also measured in the germinating seed and increased 20-fold between days 2 and 4 which just precedes the rapid decline in starch-bound LPC. The starch content of the seed however declined to ca one third of the original value by day 5. LPC represents 65–70 % of the starch-bound lipid phosphorus in the dry seed. Through days 5 and 6 when the loss of LPC is most rapid there is no marked change in this percentage. After 8 days, however, the LPC is only ca 30%. of the starch-bound lipid phosphorus. Ofthe two major populations of starch-bound LPC, the one bearing a linoleyl group appears to decline more rapidly during days 4–6 than does that carrying a palmitoyl group. The role of starch-bound LPC in barley development and germination is discussed.  相似文献   

16.
The role of protein phosphorylation/ dephosphorylation in the redox regulation of mitochondrial functioning was investigated. Incubation of isolated mitochondria of maize (Zea mays L.) in the presence of γ-32P-ATP revealed phosphorylation of polypeptides with mol wt of 66, 60, 55, 48/50 doublet, 45, 29, 22, and 19 kD. The presence in the incubation medium of oxidized glutathione significantly reduced the level of protein phosphorylation. The addition of reduced glutathione diminished phosphorylation of proteins with mol wt of 60 and 48/50 kD and slightly increased phosphorylation of proteins with mol wt of 66, 55, and 45 kD. The reducing agent, sodium dithionite decreased phosphorylation of proteins with mol wt of 60, 45, 29, 22, and 19 kD but increased phosphorylation of 55 kD protein. The inhibitors of protein kinases and protein phosphatases significantly modified the effects of redox agents. For example, simultaneous action of an oxidant K3[Fe(CN)6] and NaF enhanced phosphorylation level compared to separate treatments with these agents. The combined application of sodium dithionite and NaF elevated phosphorylation level of 55 kD protein. Phosphoprotein with mol wt of about 66 kD was identified immunochemically as a heat shock protein (HSP 60). The results indicate the presence in mitochondria of redox-sensitive protein kinases and protein phosphatases. Differential changes in the pattern of mitochondrial phosphoproteins under the action of various redox agents suggest that phosphorylation is probably involved in the transduction of redox signal in plant mitochondria.  相似文献   

17.
18.
Summary Experiments were carried out on Vicia faba major involving (1) determination of the pattern of legumin accumulation during seed development, (2) protein purification from mature cotyledons, (3) the characterization of legumin mRNA, and (4) the chromosomal localization of the genes coding for legumins. In developing cotyledons the synthesis of legumin begins 28 days after petal desiccation (DAPD), and 4 days after initiation of vicilin synthesis. The two subunits (A and A) of legumin A appear 2 days earlier than those (B and B) of legumin B. While the accumulation of vicilin peaks on the 30th DAPD, that of legumin continues during further seed development, and the synthesis of legumin mRNA peaks on the 37th DAPD. Northern blot hybridizations using two DNA plasmids containing cDNA inserts with sequence homology to the A- and B-type legumin genes, respectively, indicated that legumin mRNAs extracted from cotyledons 36 DAPD band below the 18S RNA band. In addition, a faint band below that of the 25S RNA band can be observed in legumin mRNAs extracted from cotyledons at an earlier developmental stage (30 DAPD). By means of polyacrylamide gel electrophoresis in the presence or absence of SDS and 2-mercaptoethanol, two fractions could be eluted after zonal isoelectric precipitation of the globulins from mature seeds: one fraction contains mainly vicilin, the other, legumin. In situ hybridization showed that legumin genes are arranged in two clusters: the genes coding for legumin A are located in the longer arm of the one between the two shortest subtelocentric chromosome pairs whose centromere is in a less terminal position; those coding for legumin B are located in the non-satellited arm of the longer submetacentric pair.  相似文献   

19.
During 6 days of pea seed germination the depletion of legumin with mol. m. 390 000 from protein bodies was observed. SDS-PAGE indicated that the legumin subunits with mol. m. 41 700 and 21 000 were prevailing. Only the former of these, probably corresponding to α-subunit, was degraded rapidly during 6 days of germination. Water-soluble proteins (albumins) prepared from pea cotyledons were separated by preparative IEF into proteins with pI 7.1, 6.5, 6.0, 5.4, 5.0, and 4.6. During 6 days the components of albumin with pI 7.1, and 6.5 were dramatically depleted. Major fractions with pI 6.5, 6.0, and 5.4 were subjected to SDS-PAGE and their subunit composition was determined. Moreover, albumin of pea cotyledons was resolved into 13 components by SDS-PAGE. Mobilization of albumin began from the degradation of components with higher mol. m. during germination.  相似文献   

20.
Sequestration of pea reserve proteins by rough microsomes   总被引:1,自引:1,他引:0       下载免费PDF全文
Free polysomes, polysomes released from membranes, and rough microsomal vesicles isolated from developing cotyledons of Pisum sativum L. cv. Burpeeana were used to direct cell-free protein synthesis in a wheat germ system. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that the polypeptide products had molecular weights ranging from 12,000 to 74,000. Some of the polypeptides migrated during electrophoresis with the same mobility as polypeptides present in legumin and vicilin preparations. By the use of rabbit antibodies raised against pea reserve proteins it was established that polysomes released from membranes and rough microsomes directed the synthesis of polypeptides that were related to reserve proteins whereas free polysomes did not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号