首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Feng  Juanjuan  Zhu  Haiyong  Zhang  Meng  Zhang  Xuexian  Guo  Liping  Qi  Tingxiang  Tang  Huini  Wang  Hailin  Qiao  Xiuqin  Zhang  Bingbing  Shahzad  Kashif  Xing  Chaozhu  Wu  Jianyong 《Molecular biology reports》2020,47(2):1275-1282
Molecular Biology Reports - The cytoplasmic male sterility (CMS) system is a useful tool for commercial hybrid cotton seed production. Two main CMS systems, CMS-D8 and CMS-D2, have been recognized...  相似文献   

4.
5.
棉花晋A细胞质雄性不育系的细胞形态学观察   总被引:2,自引:0,他引:2  
棉花晋A细胞质雄性不育系雄性败育的主要时期是在造孢细胞增殖--小孢子母细胞形成时期.造孢细胞和小孢子母细胞退化导致雄性不育的主要细胞学特征是造孢细胞不能进行正常的有丝分裂,胞内常含有n个微核,小孢子母细胞细胞质液泡化,并且认为绒毡层的退化与小孢子母细胞败育密切相关.  相似文献   

6.
Cytoplasmic male sterility (CMS) is associated with a mitochondrial mutation that causes an inability to produce fertile pollen. The fertility of CMS plants is restored in the presence of a nuclear-encoded fertility restorer (Rf) gene. In Lead Rice-type CMS, discovered in the indica variety 'Lead Rice', fertility of the CMS plant is restored by the single nuclear-encoded gene Rf2 in a gametophytic manner. We performed map-based cloning of Rf2, and proved that it encodes a protein consisting of 152 amino acids with a glycine-rich domain. Expression of Rf2 mRNA was detected in developing and mature anthers. An RF2-GFP fusion was shown to be targeted to mitochondria. Replacement of isoleucine by threonine at amino acid 78 of the RF2 protein was considered to be the cause of functional loss in the rf2 allele. As Rf2 does not encode a pentatricopeptide repeat protein, unlike a majority of previously identified Rf genes, the data from this study provide new insights into the mechanism for restoring fertility in CMS.  相似文献   

7.
In the present paper are summarized our results on obtaining tobacco male sterile forms through interspecific hybridization. The wild species Nicotiana velutina, N. benthamiana, N. maritima, N. paniculata were used as cytoplasm donors and N. tabacum as the donor of the nucleus. Completely sterile hybrids from these combinations were obtained whose sterility was overcome through the use of tissue culture. Stem parenchyma grown in vitro on MS medium was used for inducing callus, and for organogenesis and rooting. The regenerants obtained were mixoploid. Male sterile plants were obtained in BC1P2 progenies from the combinations between N. velutina × N. tabacum, N. benthamiana × N. tabacum and in R2 progenies from N. maritima × N. tabacum and N. paniculata × N. tabacum. The observed male sterility was preserved in BC1P2-BC7P2 progenies and was identified as cytoplasmic male sterility (CMS) because it was inherited only throuth the female parent.  相似文献   

8.
The Rf3 gene restores the pollen fertility disturbed by S male sterile cytoplasm. In order to develop molecular markers tightly linked to Rf3, we used amplified fragment length polymorphism (AFLP) technique with near isogenic lines (NILs) and bulk segregant analysis (BSA). A BC1F1 population from a pair of NILs with different Rf3 locus was constructed and 528 primer combinations was screened. A linkage map was constructed around the Rf3 locus, which was mapped on the distal region of chromosome 2 long arm with the help of SSR marker UMC2184. The closest marker E7P6 was 0.9 cM away from Rf3. Marker E3P1, 2.4 cM from Rf3, and E12M7, 1.8 cM from Rf3, were converted into a codominant CAPS and a dominant SCAR marker, and designated as CAPSE3P1 and SCARE12M7, respectively. These markers are useful for marker-assisted selection and map-based cloning of the Rf3 gene.  相似文献   

9.
mtDNA was isolated from cytoplasmic male sterility (CMS) line P3A and its maintainer P3B of kenaf (Hibiscus cannabinus L.). The atp9 gene and its two flanking sequences were obtained using homology cloning and high-efficiency thermal asymmetric interlaced PCR methods. The coding sequences showed only two base pairs difference between the CMS and its maintainer, and shared a homology of over 87 % with atp9 genes from other species in GenBank. However, when comparing the flanking sequences, a 47-bp deletion was characterized at the 3′ flanking sequence of atp9 in the CMS line. Quantitative PCR analysis indicated that the expression level of atp9 in the CMS line was 0.937-fold that of its maintainer. Furthermore, the respiratory rate of anthers in the CMS line was markedly lower than that of its maintainer. The results indicated that the 47-bp deletion at the 3′ flanking sequence of atp9 and/or down-regulated expression of the atp9 gene in the CMS line might be closely related to CMS in kenaf. To confirm whether the 47-bp deletion was specific to cytoplasm of male sterile lines, another 21 varieties were used for further analysis. The results showed that the 47-bp deletion was specific to male sterile cytoplasm (MSC) of kenaf. Based on these, a specific molecular marker was developed to distinguish the MSC from male fertile cytoplasm of kenaf.  相似文献   

10.
Causes of cytoplasmic male sterility (CMS) in plants have beenstudied for two decades, and mitochondrial chimeric genes havebeen predicted to induce CMS. However, it is unclear what happensafter CMS-associated proteins accumulate in mitochondria. Inour previous study of microarray analysis, we found that 140genes are aberrantly regulated in anthers of CW-type CMS ofrice (Oryza sativa L.). In the present study, we investigatedDCW11, one of the down-regulated genes in CW-CMS encoding aprotein phosphatase 2C (PP2C). DCW11 mRNA was preferentiallyexpressed in anthers, with the highest expression in maturepollen. As predicted by the N-terminal sequence, DCW11 signalpeptide–green fluorescent protein (GFP) fusion proteinwas localized in mitochondria. Knockdown of DCW11 in wild-typerice by RNA interference caused a major loss of seed-set fertility,without visible defect in pollen development. Since this knockdownphenotype resembled that of CW-CMS, we concluded that the down-regulationof DCW11 is correlated with CW-CMS. This idea was supportedby the up-regulation of alternative oxidase 1a (AOX1a), whichis known to be regulated by mitochondrial retrograde signaling,in DCW11 knockdown lines. Down-regulation of DCW11 and up-regulationof AOX1a were also observed in two other types of rice CMS.Our result indicates that DCW11 could play a role as a mitochondrialsignal transduction mediator in pollen germination.  相似文献   

11.
Mitochondrial DNA from 1 fertile and 6 cytoplasmic male sterile (CMS) sunflower genotypes was studied. The CMS genotypes had been obtained either by specific crosses between different Helianthus species or by mutagenesis. CMS-associated restriction fragment length polymorphisms (RFLPs) were found in the vicinity of the atpA locus, generated by various restriction enzymes. The organization of the mitochondrial genes 26S rRNA, 18S + 5S rRNA and coxII was investigated by Southern blot analysis. These genes have similar structures in fertile and all studied sterile sources. Using the atpA probe, 5 from the 6 investigated CMS genotypes showed identical hybridization patterns to the Petiolaris CMS line, which is used in all commercial sunflower hybrids. Only 1 cytoplasm derived from an open pollination of Helianthus annuus ssp. texanus, known as ANT1, contained a unique mitochondrial DNA fragment, which is distinguishable from the fertile and sterile Petiolaris genotypes and from all investigated CMS genotypes. Male fertility restoration and male sterility maintenance of the ANT1 line are different from the Petiolaris CMS system, which is a confirmation that a novel CMS genotype in sunflower has been identified.  相似文献   

12.
Summary A new improved method for hybrid seed production was successfully tested. This method is based on using a cytoplasmic male sterile line possessing a lethal gene with action that can be easily inhibited and a female sterile pollenizer. The lethal gene ensures 100% purity of the F1 crop. The female sterile pollenizer provides a permanent abundant flowering with excess of pollen grains that leads to increased hybrid seed production without additional labour expenses. The described scheme is applicable for other crops as well.  相似文献   

13.
To reveal the allelic differentiations at the two genes for fertility restoration (Rf) on chromosomes 1 (Rf3) and 10 (Rf4), 15 chromosome single segment substitution lines (SSSLs) with the Rf3 locus and 18 SSSLs with the Rf4 locus were crossed with Bobai A (BbA), a cytoplasmic male sterility line with wild abortive type of cytoplasm (WA-CMS), respectively. Based on the pollen and seed fertility of the F1 hybrids, the Rf3 and Rf4 genes were each classified into four alleles, namely Rf3-1, Rf3-2, Rf3-3, and Rf3-4 for Rf3, and Rf4-1, Rf4-2, Rf4-3, and Rf4-4 for Rf4. Out of the 33 SSSLs, an SSSL W23-19-06-06-11 carrying the genotype Rf3-4Rf3-4/Rf4-4Rf4-4 possessed the strongest restoring ability for BbA. To determine the genetic effects of Rf3 and Rf4 for WA-CMS, one BC3F2 population possessing the genetic background of W23-19-06-06-11 was generated from the cross between W23-19-06-06-11 and BbA by backcrossing and marker-assisted selection. In the BC3F2 population, the plants carrying the Rf3Rf3/Rf4Rf4, Rf3Rf3/rf4rf4, and rf3rf3/Rf4Rf4 genotypes were selected and their phenotyping for pollen and spikelet fertility were evaluated. The result showed that under the genetic background of SSSL W23-19-06-06-11, the effect of Rf4 appeared to be slightly larger than that of Rf3 and their effects were additive for WA-CMS system. These studies will lead to the transfer of Rf genes into adapted cultivars through marker-assisted selection in active hybrid rice breeding programs.  相似文献   

14.
15.
16.
以油菜细胞质雄性不育系1193A和恢复系1193R2为亲本构建F2分离群体,并运用BSA法构建了可育和不育基因池。利用1521对SSR引物进行了多态性分析,结果表明有36对引物在亲本和基因池间都表现多态性,用F2单株验证表明有11对引物与恢复基因连锁,离恢复基因较近的2个标记CB10316和Bn GMS171分布在恢复基因Rf的两侧,遗传距离分别为3.9 c M和5.7 c M,可作为恢复系标记辅助育种的候选标记。  相似文献   

17.
18.
Molecular Breeding - Flowering time is an important agronomic trait, which is of great significance to the plant growth process. Salicylic acid (SA) is a key hormone that regulates plant growth and...  相似文献   

19.
植物细胞核雄性不育系具有易于恢复但保持困难的特点。根据广西南部冬季无霜冻的气候特点,在广西南宁进行了一年生陆地棉细胞核雄性不育系洞A的三年露地栽培。结果表明:二、三年生洞A在5月上旬开花、6月下旬吐絮,这是一年生洞A在相同环境条件下难以达到的;与一年生洞A相比,二、三年生洞A的子指、单株铃数、产量显著增加,但单铃重、衣分显著下降,僵瓣率显著增加;纤维品质基本没有显著变化。说明利用陆地棉细胞核雄性不育系在南亚热带的宿生栽培进行良种繁育具有较好的前景。  相似文献   

20.
The A1 cytoplasmic–nuclear male sterility system in sorghum is used almost exclusively for the production of commercial hybrid seed and thus, the dominant genes that restore male fertility in F1 hybrids are of critical importance to commercial seed production. The genetics of fertility restoration in sorghum can appear complex, being controlled by at least two major genes with additional modifiers and additional gene–environment interaction. To elucidate the molecular processes controlling fertility restoration and to develop a marker screening system for this important trait, two sorghum recombinant inbred line populations were created by crossing a restorer and a non-restoring inbred line, with fertility phenotypes evaluated in hybrid combination with three unique cytoplasmic male sterile lines. In both populations, a single major gene segregated for restoration which was localized to chromosome SBI-02 at approximately 0.5 cM from microsatellite marker, Xtxp304. In the two populations we observed that approximately 85 and 87% of the phenotypic variation in seed set was associated with the major Rf gene on SBI-02. Some evidence for modifier genes was also observed since a continuum of partial restored fertility was exhibited by lines in both RIL populations. With the prior report (Klein et al. in Theor Appl Genet 111:994–1012, 2005) of the cloning of the major fertility restoration gene Rf1 in sorghum, the major fertility restorer locus identified in this study was designated Rf2. A fine-mapping population was used to resolve the Rf2 locus to a 236,219-bp region of chromosome SBI-02, which spanned ~31 predicted open reading frames including a pentatricopeptide repeat (PPR) gene family member. The PPR gene displayed high homology with rice Rf1. Progress towards the development of a marker-assisted screen for fertility restoration is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号