首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of thermal tolerance and acclimation capacity in Jack Beardsley mealybug, Pseudococcus jackbeardsleyi Gimpel and Miller is the crucial step in determining their abilities to cope with climate change. Thus, the aim of this research was to determine the effects of acclimation temperatures on the changes in thermal tolerance of P. jackbeardsleyi. The influences of acclimation temperature at moderate (25?°C) and high (35?°C) temperatures on their lower and upper thermal limits were measured composed of critical thermal minimum (CTmin), maximum (CTmax), chill coma temperature (CCT) and heat coma temperature (HCT) for first instar nymphs and adults. The important information derived from this study revealed that the upper thermal limits of adults are constrained to a relative narrow range that will make them sensitive to relative small changes in temperatures, whilst all mean upper thermal indices at 35?°C were significantly higher than at 25?°C for nymphs. For this highlight notice, nymphs have more potential to change their upper thermal limits which will allow them to withstand high temperatures in the field. These results are a sign to warn us that P. jackbeardsleyi could become highly noxious which cause severe outbreaks damage to the crops in the tropics under global warming.  相似文献   

2.
Current trends of global climate change affect marine ectothermal animals not only through the increase in ambient temperature. Synergistic effects of carbon dioxide and temperature changes as well as more frequent hypoxia events must also be considered. As a first attempt, the combined effects of warming and elevated CO2 concentrations were investigated in the edible crab (Cancer pagurus). Arterial oxygen tension (PaO2) in the haemolymph was recorded on-line during a progressive warming scenario from 10 to 22 °C and cooling back to 10 °C. Hypercapnia (1% CO2) caused a significant reduction of oxygen partial pressure in the haemolymph as well as a large, 5 °C downward shift of upper thermal limits of aerobic scope. The present findings are the first to show that hypercapnia causes enhanced sensitivity to heat and thus, a narrowing of the thermal tolerance window of a marine ectotherm. Such interactions of ambient temperature and anthropogenic increases in ambient CO2 concentrations will need to be considered during future investigations of the effects of climate change on ecosystems.  相似文献   

3.
Success of Cyrtobagous salviniae Calder & Sands (Coleoptera: Curculionidae) for biological control of Salvinia molesta D. S. Mitchell in temperate regions has been less reliable than in tropical and subtropical regions and this difference is presumed to be due to greater winter mortality. We measured the cold tolerance of C. salviniae by comparing chill coma recovery time and survival of adults after exposure to freezing conditions among four geographic populations collected from Florida, Louisiana, Texas and Australia. Effects of winter temperature acclimation on low temperature oviposition also were determined. The Australian population was more cold tolerant than the three US populations. No oviposition by C. salviniae was observed at a water temperature of 17 °C and the oviposition rate at 19 °C was less than at 21, 23 and 25 °C. We suggest that introduction of cold tolerant strains of C. salviniae could increase its effectiveness in temperate regions of the US.  相似文献   

4.
Thermoregulatory studies of ectothermic organisms are an important tool for ecological physiology, evolutionary ecology and behavior, and recently have become central for evaluating and predicting global climate change impacts. Here, we present a novel combination of field, laboratory, and modeling approaches to examine body temperature regulation, habitat thermal quality, and hours of thermal restriction on the activity of two sympatric, aridlands horned lizards (Phrynosoma cornutum and Phrynosoma modestum) at three contrasting Chihuahuan Desert sites in Mexico. Using these physiological data, we estimate local extinction risk under predicted climate change within their current geographical distribution. We followed the Hertz et al. (1993, Am. Nat., 142, 796–818) protocol for evaluating thermoregulation and the Sinervo et al. (2010, Science, 328, 894–899) eco-physiological model of extinction under climatic warming. Thermoregulatory indices suggest that both species thermoregulate effectively despite living in habitats of low thermal quality, although high environmental temperatures restrict the activity period of both species. Based on our measurements, if air temperature rises as predicted by climate models, the extinction model projects that P. cornutum will become locally extinct at 6% of sites by 2050 and 18% by 2080 and P. modestum will become extinct at 32% of sites by 2050 and 60% by 2080. The method we apply, using widely available or readily acquired thermal data, along with the modeling, appeared to identify several unique ecological traits that seemingly exacerbate climate sensitivity of P. modestum.  相似文献   

5.
6.
Ecological forecasting on the likely impacts of climate warming is crucial at a time when several ecosystems seem to be responding to this environmental threat. Among the most important questions are: which are the most vulnerable organisms to climate warming and where are they? Recently, there has been debate on whether the tropics or temperate zones are more vulnerable to warming. Vulnerability toward higher temperatures will depend on the organisms’ thermal limits and also on their acclimation capacity, which remains largely unknown for most species. The aim of the present work was to estimate (1) the upper thermal limits (Critical Thermal Maximum (CTMax)), (2) the warming tolerance (CTMax – Maximum Habitat Temperature) and (3) the acclimation capacity of tropical and temperate rocky shore organisms. Differences in biological groups (decapod crustaceans vs fish) were investigated and the effect of region (tropical vs temperate) and habitat (intertidal vs subtidal) was tested. Overall, 35 species were tested. For the assessment of the acclimation capacity, tropical-temperate pairs of closely related species of shrimp, crab and fish were selected. Warming tolerance was higher for temperate species than for tropical species and higher for subtidal species than for intertidal species, confirming that species with the highest thermal limits have the lowest warming tolerance. All species tested presented some acclimation capacity (CTMaxTrial  CTMaxControl), with the exception of gobiid fish, which was not observed to acclimate. The tropical species tested showed a lower acclimation capacity than their temperate counterparts. Given that tropical rocky shore organisms are already living very close to their thermal limits and that their acclimation capacity is limited, it is likely that the impacts of global warming will be evident sooner in the tropics than in the temperate zone.  相似文献   

7.
Although the impact of warming on winter limitation of aphid populations is reasonably well understood, the impacts of hot summers and heat wave events are less clear. In this study, we address this question through a detailed analysis of the thermal ecology of three closely related aphid species: Myzus persicae, a widespread, polyphagous temperate zone pest, Myzus polaris, an arctic aphid potentially threatened by climate warming, and, Myzus ornatus, a glasshouse pest that may benefit from warming. The upper lethal limits (ULT50) and heat coma temperatures of the aphid species reared at both 15 and 20 °C did not differ significantly, suggesting that heat coma is a reliable indicator of fatal heat stress. Heat coma and CTmax were also measured after aphids were reared at 10 and 25 °C for one and three generations. The extent of the acclimation response was not influenced by the number of generations. Acclimation increased CTmax with rearing temperature for all species. The acclimation temperature also influenced heat coma; this relationship was linear for M. ornatus and M. polaris but non-linear for M. persicae (increased tolerance at 10 and 25 °C). Bacteria known generically as secondary symbionts can promote thermal tolerance of aphids, but they were not detected in the aphids studied here. Assays of optimum development temperature were also performed for each species. All data indicate that M. persicae has the greatest tolerance of high temperatures.  相似文献   

8.
Coffee is predicted to be severely affected by climate change. We determined the thermal tolerance of the coffee berry borer , Hypothenemus hampei, the most devastating pest of coffee worldwide, and make inferences on the possible effects of climate change using climatic data from Colombia, Kenya, Tanzania, and Ethiopia. For this, the effect of eight temperature regimes (15, 20, 23, 25, 27, 30, 33 and 35°C) on the bionomics of H. hampei was studied. Successful egg to adult development occurred between 20–30°C. Using linear regression and a modified Logan model, the lower and upper thresholds for development were estimated at 14.9 and 32°C, respectively. In Kenya and Colombia, the number of pest generations per year was considerably and positively correlated with the warming tolerance. Analysing 32 years of climatic data from Jimma (Ethiopia) revealed that before 1984 it was too cold for H. hampei to complete even one generation per year, but thereafter, because of rising temperatures in the area, 1–2 generations per year/coffee season could be completed. Calculated data on warming tolerance and thermal safety margins of H. hampei for the three East African locations showed considerably high variability compared to the Colombian site. The model indicates that for every 1°C rise in thermal optimum (Topt.), the maximum intrinsic rate of increase (r max) will increase by an average of 8.5%. The effects of climate change on the further range of H. hampei distribution and possible adaption strategies are discussed. Abstracts in Spanish and French are provided as supplementary material Abstract S1 and Abstract S2.  相似文献   

9.
Climate warming has been proposed as the main cause of the recent range shifts seen in many species. Although species' thermal tolerances are thought to play a key role in determining responses to climate change, especially in ectotherms, empirical evidence is still limited. We investigate the connection between species' thermal tolerances, elevational range and shifts in the lower elevational limit of dung beetle species (Coleoptera, Aphodiidea) in an upland region in the northwest of England. We measured thermal tolerances in the laboratory, and used current and historical distribution data to test specific hypotheses about the area's three dominant species, particularly the species most likely to suffer from warming: Agollinus lapponum. We found marked differences between species in their minimum and maximum thermal tolerance and in their elevational range and patterns of abundance. Overall, differences in thermal limits among species matched the abundance patterns along the elevation gradient expected if distributions were constrained by climate. Agollinus lapponum abundance increased with elevation and this species showed lower maximum and minimum thermal limits than Acrossus depressus, for which abundance declined with elevation. Consistent with lower tolerance to high temperature, we recorded an uphill retreat of the low elevation limit of A. lapponum (177 m over 57 yr) in line with the increase in summer temperature observed in the region over the same period. Moreover, this species has been replaced at low and mid‐elevations by the other two warm‐tolerant species (A. depressus and Agrilinus ater). Our results provide empirical evidence that species' thermal tolerance constrains elevational ranges and contributes to explain the observed responses to climate warming. A mechanistic understanding of how climate change directly affects species, such as the one presented here, will provide a robust base to inform predictions of how individual species and whole assemblages may change in the future.  相似文献   

10.
  1. Tropical ectotherm species tend to have narrower physiological limits than species from temperate areas. As a consequence, tropical species are considered highly vulnerable to climate change since minor temperature increases can push them beyond their physiological thermal tolerance. Differences in physiological tolerances can also be seen at finer evolutionary scales, such as among populations of ectotherm species along elevation gradients, highlighting the physiological sensitivity of such organisms.
  2. Here, we analyze the influence of elevation and bioclimatic domains, defined by temperature and precipitation, on thermal sensitivities of a terrestrial direct‐developing frog (Craugastor loki) in a tropical gradient. We address the following questions: (a) Does preferred temperature vary with elevation and among bioclimatic domains? (b) Do thermal tolerance limits, that is, critical thermal maximum and critical thermal minimum vary with elevation and bioclimatic domains? and (c) Are populations from high elevations more vulnerable to climate warming?
  3. We found that along an elevation gradient body temperature decreases as environmental temperature increases. The preferred temperature tends to moderately increase with elevation within the sampled bioclimatic domains. Our results indicate that the ideal thermal landscape for this species is located at midelevations, where the thermal accuracy (db) and thermal quality of the environment (de) are suitable. The critical thermal maximum is variable across elevations and among the bioclimatic domains, decreasing as elevation increases. Conversely, the critical thermal minimum is not as variable as the critical thermal maximum.
  4. Populations from the lowlands may be more vulnerable to future increases in temperature. We highlight that the critical thermal maximum is related to high temperatures exhibited across the elevation gradient and within each bioclimatic domain; therefore, it is a response to high environmental temperatures.
  相似文献   

11.
Thermal tolerance shapes organisms' physiological performance and limits their biogeographic ranges. Tropical terrestrial organisms are thought to live very near their upper thermal tolerance limits, and such small thermal safety factors put them at risk from global warming. However, little is known about the thermal tolerances of tropical marine invertebrates, how they vary across different life stages, and how these limits relate to environmental conditions. We tested the tolerance to acute heat stress of five life stages of the tropical sea urchin Lytechinus variegatus collected in the Bahía Almirante, Bocas del Toro, Panama. We also investigated the impact of chronic heat stress on larval development. Fertilization, cleavage, morula development, and 4‐armed larvae tolerated 2‐h exposures to elevated temperatures between 28–32°C. Average critical temperatures (LT50) were lower for initiation of cleavage (33.5°C) and development to morula (32.5°C) than they were for fertilization (34.4°C) or for 4‐armed larvae (34.1°C). LT50 was even higher (34.8°C) for adults exposed to similar acute thermal stress, suggesting that thermal limits measured for adults may not be directly applied to the whole life history. During chronic exposure, larvae had significantly lower survival and reduced growth when reared at temperatures above 30.5°C and did not survive chronic exposures at or above 32.3°C. Environmental monitoring at and near our collection site shows that L. variegatus may already experience temperatures at which larval growth and survival are reduced during the warmest months of the year. A published local climate model further suggests that such damaging warm temperatures will be reached throughout the Bahía Almirante by 2084. Our results highlight that tropical marine invertebrates likely have small thermal safety factors during some stages in their life cycles, and that shallow‐water populations are at particular risk of near future warming.  相似文献   

12.
Multi-model ensemble of Maximum (Tmax) and Minimum (Tmin) temperature data of four Representative Concentration Pathways viz., RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5 of Coupled Model Intercomparison Project 5 (CMIP5) models were generated for ten major groundnut growing locations of the India to predict the number of generations of Spodoptera litura (Fab.) using Growing Degree Days approach during three future climate viz., Near (NF), Distant (DF) and Very Distant (VDF) periods and were compared over 1976–2005 baseline period (BL). Projections indicate significant increase in Tmax (0.7–4.7 °C) and Tmin (0.7–5.1 °C) in NF, DF and VDF periods under the four RCP scenarios at the ten groundnut growing locations. Higher percent increase of the number of generations of S. litura was predicted to occur in VDF (6–38%) over baseline, followed by DF (5–22%) and NF (4–9%) periods with reduction of generation time (5–26%) across the four RCP scenarios. Reduction of crop duration was higher (12–22 days) in long duration groundnut than in medium and short duration groundnut. Decrease in crop duration was higher in VDF (12.1–20.8 days) than DF (8.26–13.15 days) and NF (4.46–6.15 days) climate change periods under RCP 8.5 scenario. Increase in number of generations of S. litura was predicted even with altered crop duration of groundnut. Among locations, more number of generations of S. litura with reduced generation time are likely at Vridhachalam and Tirupathi locations. Geographical location (74–77%) and climate period (15–19%), together explained over 90 percent of the total variation in the number of generations and generation time of S. litura. These findings suggest that the incidence of S. litura on groundnut could be higher in future.  相似文献   

13.
The thermal reaction norms of 4 closely related intertidal Nacellid limpets, Antarctic (Nacella concinna), New Zealand (Cellana ornata), Australia (C. tramoserica) and Singapore (C. radiata), were compared across environments with different temperature magnitude, variability and predictability, to test their relative vulnerability to different scales of climate warming. Lethal limits were measured alongside a newly developed metric of “duration tenacity”, which was tested at different temperatures to calculate the thermal reaction norm of limpet adductor muscle fatigue. Except in C. tramoserica which had a wide optimum range with two break points, duration tenacity did not follow a typical aerobic capacity curve but was best described by a single break point at an optimum temperature. Thermal reaction norms were shifted to warmer temperatures in warmer environments; the optimum temperature for tenacity (Topt) increased from 1.0°C (N. concinna) to 14.3°C (C. ornata) to 18.0°C (an average for the optimum range of C. tramoserica) to 27.6°C (C. radiata). The temperature limits for duration tenacity of the 4 species were most consistently correlated with both maximum sea surface temperature and summer maximum in situ habitat logger temperature. Tropical C. radiata, which lives in the least variable and most predictable environment, generally had the lowest warming tolerance and thermal safety margin (WT and TSM; respectively the thermal buffer of CTmax and Topt over habitat temperature). However, the two temperate species, C. ornata and C. tramoserica, which live in a variable and seasonally unpredictable microhabitat, had the lowest TSM relative to in situ logger temperature. N. concinna which lives in the most variable, but seasonally predictable microhabitat, generally had the highest TSMs. Intertidal animals live at the highly variable interface between terrestrial and marine biomes and even small changes in the magnitude and predictability of their environment could markedly influence their future distributions.  相似文献   

14.
Matthew J. Troia  Xingli Giam 《Ecography》2019,42(11):1913-1925
Identifying how close species live to their physiological thermal maxima is essential to understand historical warm‐edge elevational limits of montane faunas and forecast upslope shifts caused by future climate change. We used laboratory experiments to quantify the thermal tolerance and acclimation potential of four fishes (Notropis leuciodus, N. rubricroceus, Etheostoma rufilineatum, E. chlorobranchium) that are endemic to the southern Appalachian Mountains (USA), exhibit different historical elevational limits, and represent the two most species‐rich families in the region. All‐subsets selection of linear regression models using AICc indicated that species, acclimation temperature, collection location and month, and the interaction between species and acclimation temperature were important predictors of thermal maxima (Tmax), which ranged from 28.5 to 37.2°C. Next, we implemented water temperature models and stochastic weather generation to characterize the magnitude and frequency of extreme heat events (Textreme) under historical and future climate scenarios across 25 379 stream reaches in the upper Tennessee River system. Lastly, we used environmental niche models to compare warming tolerances (acclimation‐corrected Tmax minus Textreme) between historically occupied versus unoccupied reaches. Historical warming tolerances, ranging from +2.2 to +10.9°C, increased from low to high elevation and were positive for all species, suggesting that Tmax does not drive warm‐edge (low elevation) range limits. Future warming tolerances were lower (?1.2 to +9.3°C) but remained positive for all species under the direst warming scenario except for a small proportion of reaches historically occupied by E. rufilineatum, indicating that Tmax and acclimation potentials of southern Appalachian minnows and darters are adequate to survive future heat waves. We caution concluding that these species are invulnerable to 21st century warming because sublethal thermal physiology remains poorly understood. Integrating physiological sensitivity and warming exposure demonstrates a general and fine‐grained approach to assess climate change vulnerability for freshwater organisms across physiographically diverse riverscapes.  相似文献   

15.
The relationship between acute thermal tolerance and habitat temperature in ectotherm animals informs about their thermal adaptation and is used to assess thermal safety margins and sensitivity to climate warming. We studied this relationship in an equatorial freshwater snail (Clea nigricans), belonging to a predominantly marine gastropod lineage (Neogastropoda, Buccinidae). We found that tolerance of heating and cooling exceeded average daily maximum and minimum temperatures, by roughly 20 °C in each case. Because habitat temperature is generally assumed to be the main selective factor acting on the fundamental thermal niche, the discordance between thermal tolerance and environmental temperature implies trait conservation following ‘in situ’ environmental change, or following novel colonisation of a thermally less-variable habitat. Whereas heat tolerance could relate to an historical association with the thermally variable and extreme marine intertidal fringe zone, cold tolerance could associate with either an ancestral life at higher latitudes, or represent adaptation to cooler, higher-altitudinal, tropical lotic systems. The broad upper thermal safety margin (difference between heat tolerance and maximum environmental temperature) observed in this snail is grossly incompatible with the very narrow safety margins typically found in most terrestrial tropical ectotherms (insects and lizards), and hence with the emerging prediction that tropical ectotherms, are especially vulnerable to environmental warming. A more comprehensive understanding of climatic vulnerability of animal ectotherms thus requires greater consideration of taxonomic diversity, ecological transition and evolutionary history.  相似文献   

16.
Insects in temperate regions are predicted to be at low risk of climate change relative to tropical species. However, these assumptions have generally been poorly examined in all regions, and such forecasting fails to account for microclimatic variation and behavioural optimisation. Here, we test how a population of the dominant ant species, Iridomyrmex purpureus, from temperate Australia responds to thermal stress. We show that ants regularly forage for short periods (minutes) at soil temperatures well above their upper thermal limits (upper lethal temperature = 45.8 ± 1.3 °C; CTmax = 46.1 °C) determined over slightly longer periods (hours) and do not show any signs of a classic thermal performance curve in voluntary locomotion across soil surface temperatures of 18.6–57°C (equating to a body temperature of 24.5–43.1 °C). Although ants were present all year round, and dynamically altered several aspects of their thermal biology to cope with low temperatures and seasonal variation, temperature-dependence of running speed remained invariant and ants were unable to elevate high temperature tolerance using plastic responses. Measurements of microclimate temperature were higher than ant body temperatures during the hottest part of the day, but exhibited a stronger relationship with each other than air temperatures from the closest weather station. Generally close associations of ant activity and performance with microclimatic conditions, possibly to maximise foraging times, suggest I. purpureus displays highly opportunistic thermal responses and readily adjusts behaviour to cope with high trail temperatures. Increasing frequency or duration of high temperatures is therefore likely to result in an immediate reduction in foraging efficiency. In summary, these results suggest that (1) soil-dwelling temperate insect populations may be at higher risks of thermal stress with increased frequency or duration of high temperatures resulting from climate change than previously thought, however, behavioural cues may be able to compensate to some extent; and (2) indices of climate change-related thermal stress, warming tolerance and thermal safety margin, are strongly influenced by the scale of climate metrics employed.  相似文献   

17.
Climate change is rapidly altering the way current species interact with their environment to satisfy life-history demands. In areas anticipated to experience extreme warming, rising temperatures are expected to diminish population growth, due either to environmental degradation, or the inability to tolerate novel temperature regimes. Determining how at risk ectotherms, and lizards in particular, are to changes in climate traditionally emphasizes the thermal ecology and thermal sensitivity of physiology of adult members of a population. In this study, we reveal ontogenetic differences in thermal physiological and ecological traits that have been used to anticipate how ectotherms will respond to climate change. We show that the thermal biological traits of juvenile Yarrow’s Spiny Lizards (Sceloporus jarrovii) differ from the published estimates of the same traits for adult lizards. Juvenile S. jarrovii differ in their optimal performance temperature, field field-active body temperature, and critical thermal temperatures compared to adult S. jarrovii. Within juvenile S. jarrovii, males and females exhibit differences in field-active body temperature and desiccation tolerance. Given the observed age- and sex-related variation in thermal physiology, we argue that not including physiological differences in thermal biology throughout ontogeny may lead to misinterpretation of patterns of ecological or evolutionary change due to climate warming. Further characterizing the potential for ontogenetic changes in thermal biology would be useful for a more precise and accurate estimation of the role of thermal physiology in mediating population persistence in warmer environments.  相似文献   

18.
Susceptibility of species to climate change varies depending on many biological and environmental traits, such as reproductive mode and climatic exposure. For example, wider thermal tolerance breadths are associated with more climatically variable habitats and viviparity could be associated with greater vulnerability relative to oviparity. However, few examples exist detailing how such physiological and environmental traits together might shape species thermal performance. In this study we compared the thermal tolerance and performance of two sympatric skink congeners in Hong Kong that differ in habitat use and reproductive mode. The viviparous Sphenomorphus indicus lives on the forest floor while the oviparous Sphenomorphus incognitus occupies stream edges. We quantified the thermal environments in each of these habitats to compare climatic exposure and then calculated thermal safety margins, potential daily activity times within each species’ thermal optimal range, and possible climate change vulnerability. Although we did not detect any differences in thermal tolerance range or thermal environments across habitats, we found cooler performance in S. indicus relative to S. incognitus. Moreover, while optimal activity time increases for both skinks under a warming scenario, we project that the thermal safety margin of S. indicus would narrow to nearly zero, thus losing its buffering capacity to potential extreme climate events in the future. This research is thus consistent with recent studies emphasizing the vulnerability of viviparous reptiles to a warming climate. The results together furthermore highlight the complexity in how environmental and physiological traits at multiple spatial scales structure climate change vulnerability of ectothermic species.  相似文献   

19.
The distribution of modern symbiont-bearing larger foraminifera is confined to tropical and subtropical shallow water marine habitats and a narrow range of environmental variables (e.g. temperature). Most of today''s taxa are restricted to tropical and subtropical regions (between 30°N and 30°S) and their minimum temperature limits are governed by the 14 to 20°C isotherms. However, during times of extensive global warming (e.g., the Eocene and Miocene), larger foraminifera have been found as far north as 50°N (North America and Central Europe) as well as towards 47°S in New Zealand. During the last century, sea surface temperatures have been rising significantly. This trend is expected to continue and climate change scenarios for 2050 suggest a further increase by 1 to 3°C. We applied Species Distribution Models to assess potential distribution range changes of three taxa of larger foraminifera under current and future climate. The studied foraminifera include Archaias angulatus, Calcarina spp., and Amphistegina spp., and represent taxa with regional, superregional and global distribution patterns. Under present environmental conditions, Amphistegina spp. shows the largest potential distribution, apparently due to its temperature tolerance. Both Archaias angulatus and Calcarina spp. display potential distributions that cover currently uninhabited regions. Under climate conditions expected for the year 2050, all taxa should display latitudinal range expansions between 1 to 2.5 degrees both north- and southward. The modeled range projections suggest that some larger foraminifera may colonize biogeographic regions that so far seemed unsuitable. Archaias angulatus and Calcarina spp. also show an increase in habitat suitability within their native occurrence ranges, suggesting that their tolerance for maximum temperatures has yet not been fully exploited and that they benefit from ocean warming. Our findings suggest an increased role of larger foraminifera as carbonate producers and reef framework builders in future oceans.  相似文献   

20.
Tree growth decline has been reported in many places around the globe under the context of increasingly warming climate, and strengthening drought intensity is detected to be the primary factor for such decline, particularly in northern forest sites, as well as arid and semi-arid areas. Yet, the forest growth decline in high altitude, high mountain sites certainly merits investigation. Here, we reported faxon fir (Abies fargesii var. faxoniana) forest growth decline (slope = -0.64) at the tree line (4150 m above sea level) in Miyaluo Forest Reserve (MFR) at the Western Sichuan Plateau, southwestern China since 2000. We investigated the cause of tree growth decline by applying dendrochronological approaches. We took tree-ring samples from fir trees at the tree line and developed tree-ring width (TRW) chronology. The tree growth – climate relationship analysis showed that maximum temperature (Tmax) was the primary factor limiting the radial growth of fir trees in the investigated area. The moving correlation analysis indicated the strengthening positive influence of Tmax, spring precipitation, and cloud cover during winter and monsoon period on radial growth since 2000s. Our results have shown that both thermal and hydraulic constrains accounted for the radial growth decline of fir trees at the tree line of MFR in the western Sichuan Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号