首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The present study is investigating the immobilization of Rubia tinctorum L. suspension cultures. The effects of three inoculation volumes and three immobilization materials (loofa, sisal and jute) on fresh and dry weights of biomass as well as on alizarin and purpurin production were determined in this study. Two grams of four-week old callus tissue were transferred to liquid medium to establish suspension cultures. After four weeks, suspension cultures of R. tinctorum at concentration of 8?×?105?living cells/ml were immobilized with lignocellulosic materials and the cells were attached to all immobilization materials at the end of the first week and started to form aggregates on them. At the fourth week of these batch systems, biomass was measured approximately three times higher than the starting suspension cultures. The highest fresh weight was obtained (339.40?g/l) from sisal with ? inoculation ratio. Immobilization materials and inoculation volumes had an effect on dry weights, and accordingly, the most effective combinations were jute with ? (J3) and ? (J1) inoculation volumes with 7.86 and 7.82?g/l dry weights, respectively. Alizarin and purpurin contents of immobilized cells, analyzed with U-HPLC method, were 6.05 and 22.91 times higher than inoculated cells. All immobilization materials used in this study had no negative effect on to cells and biomass accumulation was enhanced. Concomitantly with rapid biomass increase, alizarin and purpurin production was ascended.  相似文献   

3.
Plant cell suspension cultures can be used to make safe vaccines at a lower cost than conventional procedures. An inducible gene expression system provides an opportunity to optimize the conditions of vaccine production in a plant system. In this investigation, a dexamethasone-inducible Norwalk virus capsid protein (NVCP) gene expression system has been developed in cell suspension cultures for four different plant species: tobacco (Nicotiana tabacum), rice (Oryza sativa L.), cotton (Gossypium hirsutum L.), and slash pine (Pinus elliottii Engelm.) via Agrobacterium-mediated transformation. Resulting transgenic cell lines were confirmed by Southern blot analyses and NVCP gene expression was confirmed by Northern blot analysis. NVCP gene expression was observed in all 24 cell lines tested, but there were minor differences in transgene expression among the transgenic cell lines. The highest level of NVCP gene expression was observed 48 h after addition of the glucocorticoid hormone dexamethasone (10 mg/l), for all transgenic cell lines derived from four different plant species. This investigation demonstrated that expression of NVCP in different transgenic cell lines and in different species was tightly controlled by the inducer, and the inducible gene expression system could be useful in controlling expression of NVCP or similar proteins for production of vaccines in cultured plant cells.  相似文献   

4.
5.
6.
Two drought tolerant varieties TKM-1 and TKM-2 and two drought susceptible varieties Jaya and Improved Sabarmati of rice were studied for soluble protein pattern and isoenzymes of malate dehydrogenase, glutamate dehydrogenase, esterase and peroxidase during germination at different water stress. MDH, GDH and esterase patterns were not affected, but the soluble proteins were changed. Peroxidase isoenzyme pattern from drought tolerant and susceptible varieties showed characteristic differences. The intensity of bands with higher electrophoretic mobility decreased in Jaya and Improved Sabarmati while in TKM-1 and TKM-2 the intensity of these bands did not change much after 72 hr water stress. In shoots of Jaya and Improved Sabarmati, the activity of the peroxidase isoenzymes decreased more than in TKM-1 and TKM-2 shoots with increase in water stress.  相似文献   

7.
When rice (Oryza sativa) cell suspension cultures are grown in the presence of [terminal methylenes-3H]spermidine, label is incorporated in a single polypeptide with a molecular mass of 18 kilodaltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Preincubation of cell cultures with polyamine biosynthesis inhibitors difluoromethylarginine and difluoromethylornithine, resulted in increased incorporation of the label into the 18 kilodalton polypeptide. In cells in which protein synthesis was arrested by cycloheximide, no label was detected in the 18 kilodalton polypeptide, suggesting a requirement for de novo protein synthesis.  相似文献   

8.
《Plant science》1988,58(1):85-92
Somatic pro-embryos were regenerated from morphogenic protoplasts of cell suspension cultures of Douglas fir and loblolly pine. Morphogenic protoplasts were obtained from suspension cultures of embryonal cells grown in a modified basal medium high in myo-inositol. After 11–12 weeks, microcolonies of embryonal-suspensor masses (ESMs) were recovered from agarose-embedded protoplasts. Somatic pro-embryos were regenerated after 18–20 weeks by somatic polyembryogenesis from new ESMs on agar plates. The luciferase (luc) gene was successfully introduced into fir and pine protoplasts by electroporation. While viability of protoplasts was reduced from 90% to 45–55% by electroporation, the transient expression of the luc gene was detected in protoplasts surviving 36 h after electroporation. Gene expression was improved by the addition of polythylene glycol (PEG) to the electroporation mixture.  相似文献   

9.
K. Grossmann  E. W. Weiler  J. Jung 《Planta》1985,164(3):370-375
Cell division in cell suspension cultures can be completely blocked by the growth retardant tetcyclacis at a concentration of 10-4 mol l-1. In rice cells it has been demonstrated that the growth inhibition can be completely overcome by application of cholesterol independent of the duration of pretreatment with tetcyclacis. In suspension cultures of maize and soybean, too, the effect of tetcyclacis on cell division was neutralized by adding cholesterol. Other plant sterols, stigmasterol, campesterol and sitosterol were active in a decreasing order. Modifications in the cholesterol perhydro-cyclopentanophenanthrene-ring system indicate that the hydroxyl group at C-3 and the double bond between C-5 and C-6 in ring B are required for the activity. In contrast, gibberellic acid as well as ent-kaurenoic acid could not compensate retardant effects. Likewise, tetcyclasis did not change the level of gibberellins in rice cells as shown by radioimmunoassay. Thus, it is concluded that in cell suspension cultures sterols play a more important role in cell division than gibberellins.Abbreviation GAx gibberelin Ax  相似文献   

10.
Manipulation of culture strategies was adopted to study the influence of nutrient stress, pH stress and precursor feeding on the biosynthesis of capsaicin in suspension and immobilized cell cultures of C. chinense. Cells cultured in the absence of one of the four nutrients (ammonium and potassium nitrate for nitrate and potassium stress, potassium dihydrogen orthophosphate for phosphorus stress, and sucrose for sugar stress) influenced the accumulation of capsaicin. Among the stress factors studied, nitrate stress showed maximal capsaicin production on day 20 (505.9 ± 2.8 μg g?1 f.wt) in immobilized cell, whereas in suspension cultures the maximum accumulation (345.5 ± 2.9 μg g?1 f.wt) was obtained on day 10. Different pH affected capsaicin accumulation; enhanced accumulation of capsaicin (261.6 ± 3.4 μg g?1 f.wt) was observed in suspension cultures at pH 6 on day 15, whereas in case of immobilized cultures the highest capsaicin content (433.3 ± 3.3 μg g?1 f.wt) was obtained at pH 5 on day 10. Addition of capsaicin precursors and intermediates significantly enhanced the biosynthesis of capsaicin, incorporation of vanillin at 100 μM in both suspension and immobilized cell cultures resulted in maximum capsaicin content with 499.1 ± 5.5 μg g?1 f.wt on day 20 and 1,315.3 ± 10 μg g?1 f.wt on day 10, respectively. Among the different culture strategies adopted to enhance capsaicin biosynthesis in cell cultures of C. chinense, cells fed with vanillin resulted in the maximum capsaicin accumulation. The rate of capsaicin production was significantly higher in immobilized cells as compared to freely suspended cells.  相似文献   

11.
《Plant science》1986,46(1):53-61
Cell cycle parameters of maize (Zea maysL cv Black Mexican Sweet) suspension cultures and root meristem cells were determined by pulse labelling with [3H]thymidine ([3H]TdR). Total cell cycle time for the suspension cultures was 27 h; 3 h in G1, 14 h in S, 6 h in G2, 2.2 h in prophase, 1 h in metaphase, 0.1 h in anaphase, and 0.7 h in telophase. Cell cycle durations in root meristem cells of Black Mexican Sweet (BMS) corn with and without B chromosomes in vivo were 20.0 h and 18.3h, respectively. Chemical and physical methods were used successfully to accumulate mitoses in the suspension cultures; compared to the untreated control, the mitotic index of the treated cultures was increased from 4 to 23% and the frequency of metaphase cells increased dramatically from 3 to 19%.  相似文献   

12.
For 18 sugarcane cultivars, four distinct callus types developed on leaf explant tissue cultured on modified MS medium, but only Type 3 (embryogenic) and Type 4 (organogenic) were capable of plant regeneration. Cell suspension cultures were initiated from embryogenic callus incubated in a liquid medium. In stage one the callus adapted to the liquid medium. In stage two a heterogeneous cell suspension culture formed in 14 cultivars after five to eight weeks of culture. In stage three a homogeneous cell suspension culture was developed in six cultivars after 10 to 14 weeks by selective subculturing to increase the proportion of actively dividing cells from the heterogeneous cell suspension culture. Plants were regenerated from cell aggregates in heterogeneous cell suspension cultures for up to 148 days of culture but plants could not be regenerated from homogeneous cell suspension cultures. High yields of protoplasts were obtained from homogeneous cell suspension cultures (3.4 to 5.2 × 106 protoplasts per gram fresh weight of cells [gfwt-1]) compared to heterogeneous cell suspension cultures (0.1 × 106 protoplasts gfwt-1). Higher yields of protoplasts were obtained from homogeneous cell suspension cultures for cultivars Q63 and Q96 after regenerating callus from the cell suspension cultures, then recycling this callus to liquid medium (S-cell suspension cultures). This process increased protoplast yield to 9.4 × 106 protoplasts gfwt-1. Protoplasts isolated from S-cell suspension cultures were regenerated to callus and recycled to produce SP-cell suspension cultures yielding 6.4 to 13.2 × 106 protoplasts gfwt-1. This recycling of callus to produce S-cell suspension cultures allowed protoplasts to be isolated for the first time from cell lines of cultivars Q110 and Q138.  相似文献   

13.
Callus and suspension plant cell cultures of Tribulus terrestris L., a valuable medicinal plant producing steroidal glycosides, were obtained. The seeds from an American population of T. terrestris were used as explants. Regulation of the production and growth of cell cultures, as well as the biosynthetic characteristics of the cell lines, were studied. The combination of phytohormones of 2,4-D (2.0 mg/L) and BAP (1.0 mg/L) was found to be optimal for callus induction and cultivation. Suspension cell culture obtained in liquid medium of the same composition showed such high growth characteristics during prolonged cultivation (more than 2 years) as a maximum accumulation of dry biomass of 13 g/L, specific growth rate at exponential phase of 0.24 day–1, and economical coefficient of 0.39. A semicontinuous mode of cultivation was used to grow the plant cell suspension in a lab-scale bioreactor. Screening of the steroidal glycosides in the obtained cell cultures was carried out. Steroidal glycosides were not found in the callus cultures. However, as was demonstrated by TLC and UPLC ESI MS methods, the suspension culture contained furostanol glycosides, and their amount increased during the cultivation process. These results support the hypothesis of the autoselection of cultivated cells containing compounds promoting their proliferation in vitro.  相似文献   

14.
《Plant science》1986,45(3):157-165
A rapid assay for the metabolic behaviour of organic chemicals in plants has been developed using soybean (Glycine max L.) and wheat (Triticum aestivum L.) cell suspension cultures. The test was performed with the following 14C-labelled compounds: 2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloroaniline (4-CA), 3,4-dichloroaniline (3,4-DCA), pentachlorophenol (PCP), diethylhexylphthalate (DEHP), perylene (PR) and benzo[a]pyrene (BaP), which were applied at 1 mg · 1−1 for 48 h during the logarithmic growth phase. All chemicals were catabolized The predominant fractions found were polar conjugates and non-extractable (bound) residues, with significantly less non-polar conversion products. Soybean cells often released large amounts of polar conjugates into the medium while in wheat cultures metabolites were mainly cell-associated. High rates of pentachlorophenol and chlorinated aniline incorporation into non-extractable residues were found in wheat suspension cells.  相似文献   

15.
Stable transformation of cotton (Gossypium hirsutum L.) at a high frequency has been obtained by particle bombardment of embryogenic cell suspension cultures. Transient and stable expression of the β-glucuronidase (GUS) gene was monitored in cell suspension cultures. Transient expression, measured 48 h after bombardment, was abundant, and stable expression was observed in over 4% of the transiently expressing cells. The high efficiency of stable expression is due to the multiple bombardment of rapidly dividing cell suspension cultures and the selection for transformed cells by gradually increasing the concentrations of the antibiotic Geneticin (G418). Southern analysis indicated a minimum transgene copy number of one to four in randomly selected plants. Fertile plants were obtained from transformed cell cultures less than 3 months old. However, transgenic and control plants from cell cultures older than 6 months produced plants with abnormal morphology and a high degree of sterility. Received: 20 January 1999 / Revision received: 1 October 1999 / Accepted: 11 October 1999  相似文献   

16.
The involvement of lipoxygenase (LOX, EC 1.13.11.12) in elicitor-induced opium poppy defense response was investigated. Papaver somniferum L. suspension cultures were treated with abiotic elicitor methyl jasmonate (MJ), fungal elicitor (Botrytis cinerea homogenate) and phenidone (specific inhibitor of LOX) to determine the involvement of this enzyme in production of sanguinarine, the major secondary metabolite of opium poppy cultures. P. somniferum suspension cultures responded to elicitor treatment with strong and transient increase of LOX activity followed by sanguinarine accumulation. LOX activity increased in elicited cultures, reaching 9.8 times of the initial value at 10 h after MJ application and 2.9 times after B. cinerea application. Sanguinarine accumulated to maximal levels of 169.5 ± 12.5 μg g?1 dry cell weight in MJ-elicited cultures and 288.0 ± 10.0 μg g?1 dry cell weight in B. cinerea-elicited cultures. The treatment of cells with phenidone before elicitor addition, significantly reduced sanguinarine production. The relative molecular weight of P. somniferum LOX (83 kDa) was estimated by using immunobloting and its pH optimum was shown to be pH 6.5.  相似文献   

17.
Phytosterols are isoprenoid-derived compounds that play essential roles in plant growth and development as they are integral components of the plant cell membranes, and responsible for their permeability and fluidity. In this study, the effect of different types of beta-cyclodextrins (β-CD) on phytosterol production was evaluated using Daucus carota cell suspension cultures. A detailed analysis provides the optimal type and concentration of β-CD, elicitation time, and the optimal cell age and density. The highest levels of phytosterols produced by cells and secreted to the culture medium were obtained when 10 day-old D. carota cell suspension cultures, with an initial cell density of 200 g of fresh weight (FW) l?1, were incubated in the presence of 50 mM of methylated-β-CD (M-β-CD) for 144 h. In addition, M-β-CD significantly promoted the accumulation of phytosterol in the extracellular medium of D. carota cell suspension cultures, which was not observed in control cell suspension cultures. Moreover, these high phytosterol levels did not improve when methyl jasmonate (MJ) was added to the cell suspension cultures alone or combined with 50 mM M-β-CD, although MJ stimulated the formation of defense-related compounds. Therefore, the use of carrot cell suspension cultures seems a promising biotechnological alternative since the addition of β-CD to the culture medium not only induced the biosynthesis of phytosterols but also promoted their secretion into the culture medium, where they were accumulated and could be isolated easily.  相似文献   

18.
Jin DF  West CA 《Plant physiology》1984,74(4):989-992
The metabolism of [14CH3]2-(2,4-dichlorophenoxy)isobutyric acid (DIB) was studied in plants and cell suspension cultures of Lycopersicon esculentum Mill. sp. `Lukullus'. Both plants and cells in suspension culture showed a rapid uptake of DIB from nutrient media. The metabolites, isolated by extraction with methanol and separated by chromatographic methods, were identified by enzymic, chemical, and spectrometric methods. Two conjugates of the carboxyl with 2 and 3 moles glucose per mole DIB and, to a smaller extent, its β-d-glucopyranosyl ester, were formed in both intact plants and cell suspension cultures, but there were quantitative differences.  相似文献   

19.
Tang  K.  Sun  X.  An  D.  Power  J.B.  Cocking  E.C.  Davey  M.R. 《Plant Cell, Tissue and Organ Culture》2000,60(1):79-82
A reproducible plant regeneration system has been developed for protoplasts from embryogenic cell suspension cultures of the commercial Asian long-grain javanica rice, Oryza sativa cv. Azucena. Protoplasts were isolated routinely from cell suspensions with yields of 5.5–12.0 × 106 g-1 fresh weight. A membrane filter nurse-culture method was adopted and was essential to support sustained mitotic division of protoplast-derived cells, leading to cell colony formation. The protoplast plating efficiency was higher when suspension cells of Lolium multiflorum, rather than those of the japonica rice O. sativa L. cv. Taipei 309, were employed as nurse cells. A two-step shoot regeneration procedure, in which protoplast-derived calli were cultured initially on medium semi-solidified with 1% (w/v) agarose followed by culture on medium containing 0.4% (w/v) agarose, induced plant regeneration from protoplast-derived calli. Fifteen percent of protoplast-derived tissues regenerated shoots; tissues not subjected to this treatment failed to develop shoots.  相似文献   

20.
Callus and suspension cultures adapted to various concentrations of NaCl or mannitol were developed from the cultivated potato Solanum tuberosum cv. Desire. Growth of the calli was less inhibited by mannitol than by iso-osmotic concentrations of NaCl. Reduction of growth by both NaCl and mannitol was considerably lower in osmotically adapted calli than in non-adapted ones. Salt-adapted suspension cultures that grew in the medium to which they had been originally adapted had a shorter lag in growth as well as a shorter time required to achieve the maximum growth, as compared with non-adapted cells. Suspension cultures adapted to NaCl concentrations higher than 150 mM were obtained only after preadaptation to osmotic stress. Adaptation of these cells was found to be stable. Accumulation of Na+ was lower and level of K+ was more stable in osmotically adapted than in non-adapted calli, when both were exposed to salt. Potassium level in NaCl-adapted calli exposed to saline medium was lower than that in non-adapted calli in standard medium. The maximum of Cl and Na+ accumulation was reached at higher external salt concentration in salt-adapted than in non-adapted suspension cultures. In both callus and suspension cultures, Cl accumulated more than Na+. Potassium level decreased more in non-adapted than in NaCl-adapted suspension cultures. The decrease of osmotic potential in osmotically adapted calli exposed to mannitol and in salt-adapted calli and suspension cultures exposed to salt was correlated to the increase of the external concentration. Such a correlation was not found in osmotically adapted calli exposed to salt. Non-electrolytes were found to be the main contributors to the decrease is osmotic potential in both callus and suspension cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号