首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a growing requirement for ecosystem science to help inform a deeper understanding of the effects of global climate change and land use change on terrestrial ecosystem structure and function, from small area (plot) to landscape, regional and global scales. To meet these requirements, ecologists have investigated plant growth and carbon cycling processes at plot scale, using biometric methods to measure plant carbon accumulation, and gas exchange (chamber) methods to measure soil respiration. Also at the plot scale, micrometeorologists have attempted to measure canopy- or ecosystem-scale CO2 flux by the eddy covariance technique, which reveals diurnal, seasonal and annual cycles. Mathematical models play an important role in integrating ecological and micrometeorological processes into ecosystem scales, which are further useful in interpreting time-accumulated information derived from biometric methods by comparing with CO2 flux measurements. For a spatial scaling of such plot-level understanding, remote sensing via satellite is used to measure land use/vegetation type distribution and temporal changes in ecosystem structures such as leaf area index. However, to better utilise such data, there is still a need for investigations that consider the structure and function of ecosystems and their processes, especially in mountainous areas characterized by complex terrain and a mosaic distribution of vegetation. For this purpose, we have established a new interdisciplinary approach named ‘Satellite Ecology’, which aims to link ecology, remote sensing and micrometeorology to facilitate the study of ecosystem function, at the plot, landscape, and regional scale. This article was contributed at the invitation of the Editorial Committee.  相似文献   

2.
The eddy covariance technique ascertains the exchange rate of CO2 across the interface between the atmosphere and a plant canopy by measuring the covariance between fluctuations in vertical wind velocity and CO2 mixing ratio. Two decades ago, the method was employed to study CO2 exchange of agricultural crops under ideal conditions during short field campaigns. During the past decade the eddy covariance method has emerged as an important tool for evaluating fluxes of carbon dioxide between terrestrial ecosystems and the atmosphere over the course of a year, and more. At present, the method is being applied in a nearly continuous mode to study carbon dioxide and water vapor exchange at over a hundred and eighty field sites, worldwide. The objective of this review is to assess the eddy covariance method as it is being applied by the global change community on increasingly longer time scales and over less than ideal surfaces. The eddy covariance method is most accurate when the atmospheric conditions (wind, temperature, humidity, CO2) are steady, the underlying vegetation is homogeneous and it is situated on flat terrain for an extended distance upwind. When the eddy covariance method is applied over natural and complex landscapes or during atmospheric conditions that vary with time, the quantification of CO2 exchange between the biosphere and atmosphere must include measurements of atmospheric storage, flux divergence and advection. Averaging CO2 flux measurements over long periods (days to year) reduces random sampling error to relatively small values. Unfortunately, data gaps are inevitable when constructing long data records. Data gaps are generally filled with values produced from statistical and empirical models to produce daily and annual sums of CO2 exchange. Filling data gaps with empirical estimates do not introduce significant bias errors because the empirical algorithms are derived from large statistical populations. On the other hand, flux measurement errors can be biased at night when winds are light and intermittent. Nighttime bias errors tend to produce an underestimate in the measurement of ecosystem respiration. Despite the sources of errors associated with long‐term eddy flux measurements, many investigators are producing defensible estimates of annual carbon exchange. When measurements come from nearly ideal sites the error bound on the net annual exchange of CO2 is less than ±50 g C m?2 yr?1. Additional confidence in long‐term measurements is growing because investigators are producing values of net ecosystem productivity that are converging with independent values produced by measuring changes in biomass and soil carbon, as long as the biomass inventory studies are conducted over multiple years.  相似文献   

3.
Respiration has been proposed to be the main determinant of the carbon balance in European forests and is thus essential for our understanding of the carbon cycle. However, the choice of experimental design strongly affects estimates of annual respiration and of the contribution of soil respiration to total ecosystem respiration. In a detailed study of ecosystem and soil respiration fluxes in an old unmanaged deciduous forest in Central Germany over 3 years (2000–2002), we combined soil chamber and eddy covariance measurements to obtain a comprehensive picture of respiration in this forest. The closed portable chambers offered to investigate spatial variability of soil respiration and its controls while the eddy covariance system offered continuous measurements of ecosystem respiration. Over the year, both fluxes were mainly correlated with temperature. However, when soil moisture sank below 23 vol.% in the upper 6 cm, water limitations also became apparent. The temporal resolution of the eddy covariance system revealed that relatively high respiration rates occurred during budbreak due to increased metabolic activity and after leaf fall because of increased decomposition. Spatial variability in soil respiration rates was large and correlated with fine root biomass (r 2 = 0.56) resulting in estimates of annual efflux varying across plots from 730 to 1,258 (mean 898) g C m−2 year−1. Power function calculations showed that achieving a precision in the soil respiration estimate of 20% of the full population mean at a confidence level of 95%, requires about eight sampling locations. Our results can be used as guidelines to improve the representativeness of soil respiration measurements by nested sampling designs, being applied in long-term and large-scale carbon sequestration projects such as FLUXNET and CarboEurope.  相似文献   

4.
The fractional absorption of photosynthetically active radiation (fPAR) is frequently a key variable in models describing terrestrial ecosystem–atmosphere interactions, carbon uptake, growth and biogeochemistry. We present a novel approach to the estimation of the fraction of incident photosynthetically active radiation absorbed by the photosynthetic components of a plant canopy (fChl). The method uses micrometeorological measurements of CO2 flux and incident radiation to estimate light response parameters from which canopy structure is deduced. Data from two Ameriflux sites in Oklahoma, a tallgrass prairie site and a wheat site, are used to derive 7‐day moving average estimates of fChl during three years (1997–1999). The inverse estimates are compared to long‐term field measurements of PAR absorption. Good correlations are obtained when the field‐measured fPAR is scaled by an estimate of the green fraction of total leaf area, although the inverse technique tends to be lower in value than the field measurements. The inverse estimates of fChl using CO2 flux measurements are different from measurements of fPAR that might be made by other, more direct, techniques. However, because the inverse estimates are based on observed canopy CO2 uptake, they might be considered more biologically relevant than direct measurements that are affected by non‐physiologically active components of the canopy. With the increasing number of eddy covariance sites around the world the technique provides the opportunity to examine seasonal and inter‐annual variation in canopy structure and light harvesting capacity at individual sites. Furthermore, the inverse fChl provide a new source of data for development and testing of fPAR retrieval using remote sensing. New remote sensing algorithms, or adjustments to existing algorithms, might thus become better conditioned to ‘biologically significant’ light absorption than currently possible.  相似文献   

5.
Base Cation Cycling in a Pristine Watershed of the Canadian Boreal Forest   总被引:1,自引:0,他引:1  
In forest ecosystems the single largest respiratory flux influencing net ecosystem productivity (NEP) is the total soil CO2 efflux; however, it is difficult to make measurements of this flux that are accurate at the ecosystem scale. We examined patterns of soil CO2 efflux using five different methods: auto-chambers, portable gas analyzers, eddy covariance along and two models parameterized with the observed data. The relation between soil temperature and soil moisture with soil CO2 effluxes are also investigated, both inter-annually and seasonally, using these observations/results. Soil respiration rates (R soil) are greatest during the growing season when soil temperatures are between 15 and 25 °C, but some soil CO2 efflux occurs throughout the year. Measured soil respiration was sensitive to soil temperature, particularly during the spring and fall. All measurement methods produced similar annual estimates. Depending on the time of the year, the eddy covariance (flux tower) estimate for ecosystem respiration is similar to or slightly lower than estimates of annual soil CO2 efflux from the other methods. As the eddy covariance estimate includes foliar and stem respiration which the other methods do not; it was expected to be larger (perhaps 15–30%). The auto-chamber system continuously measuring soil CO2 efflux rates provides a level of temporal resolution that permits investigation of short- to longer term influences of factors on these efflux rates. The expense of building and maintaining an auto chamber system may not be necessary for those researchers interested in estimating R soil annually, but auto-chambers do allow the capture of data from all seasons needed for model parameterization.  相似文献   

6.
Fluxes of CO2 (FCO2) and energy (latent heat, LE; sensible heat, H) exchange between ecosystems and atmosphere, as measured by the eddy covariance technique, represent a fundamental data source for global-change research. However, little is known about the uncertainties of flux measurements at an ecosystem level in China. Here, we use data from six eddy covariance tower sites in ChinaFLUX, including two forested sites, three grassland sites, and one agricultural site, to conduct a cross-site analysis of random flux errors (RFEs) of FCO2, LE, and H. By using the daily-differencing approach, paired observations are obtained to characterize the random error in these measurements. Our results show that: (1) The RFEs of FCO2, LE, and H in different ecosystems of ChinaFLUX closely follow a double-exponential (Laplace) distribution, presumably due to a superposition of Gaussian distribution for high flux magnitude. (2) The RFEs of FCO2, LE, and H are not homogeneous and appear to be a linear function of flux magnitude. (3) Except for H, the RFEs of FCO2 and LE exhibit a distinct seasonal pattern. For FCO2, the dependence of RFEs on wind speed varies somewhat according to vegetation type, whereas for LE and H, there is no such dependence. The effect of temperature on RFEs is not statistically significant (P < 0.05). Both the distribution and the relationship of RFEs with flux magnitude in ChinaFLUX are essentially in accord with those in AmeriFlux and CarboEurope.  相似文献   

7.
We scale a model of net ecosystem CO2 exchange (NEE) for tundra ecosystems and assess model performance using eddy covariance measurements at three tundra sites. The model, initially developed using instantaneous (seconds–minutes) chamber flux (~m2) observations, independently represents ecosystem respiration (ER) and gross primary production (GPP), and requires only temperature (T), photosynthetic photon flux density (I 0), and leaf area index (L) as inputs. We used a synthetic data set to parameterize the model so that available in situ observations could be used to assess the model. The model was then scaled temporally to daily resolution and spatially to about 1 km2 resolution, and predicted values of NEE, and associated input variables, were compared to observations obtained from eddy covariance measurements at three flux tower sites over several growing seasons. We compared observations to modeled NEE calculated using T and I 0 measured at the towers, and L derived from MODIS data. Cumulative NEE estimates were within 17 and 11% of instrumentation period and growing season observations, respectively. Predictions improved when one site-year experiencing anomalously dry conditions was excluded, indicating the potential importance of stomatal control on GPP and/or soil moisture on ER. Notable differences in model performance resulted from ER model formulations and differences in how L was estimated. Additional work is needed to gain better predictive ability in terms of ER and L. However, our results demonstrate the potential of this model to permit landscape scale estimates of NEE using relatively few and simple driving variables that are easily obtained via satellite remote sensing.  相似文献   

8.
华北平原玉米田生态系统光合作用特征及影响因素   总被引:1,自引:0,他引:1  
同小娟  李俊  刘渡 《生态学报》2011,31(17):4889-4899
采用涡度相关法对华北平原夏玉米田进行了连续4a(2003-2006年)的碳通量观测,结果表明:夏玉米田生态系统初始量子效率(α)、最大光合速率(Pmax)、暗呼吸速率(Rd)和总初级生产力(GPP)随作物生长发育而变化。在夏玉米生育前期和后期,α、PmaxRdGPP都比较小,其最大值出现在抽穗期/灌浆期。2003-2006年,夏玉米生长季平均α、PmaxRd的范围分别为0.054-0.124 μmol/μmol、1.72-2.93 mg CO2 · m-2 · s-1、0.23-0.38 mg CO2 · m-2 · s-1。α、PmaxRd均随叶面积指数(LAI)增加呈指数增长。2003-2006年夏玉米生长季GPP总量分别为806.2、741.5、703.0、817.4 g C/m2,年际差异较大。玉米田生态系统GPP随温度升高呈指数增长。在玉米营养生长阶段,GPPLAI增加而增大,两者之间的关系可用直角双曲线方程来表示;生殖生长阶段,GPPLAI降低而下降.相同LAI下,生殖生长阶段的GPP明显低于营养生长阶段。  相似文献   

9.
Gas-exchange measurements were performed to analyze the leaf conductances and assimilation rates of potato (Solanum tuberosum L. cv. Desireé) plants expressing an antisense construct against chloroplastic fructose-1,6-bisphosphatase (FBPase, EC 3.1.3.11) in response to increasing photon flux densities, different relative air humidities and elevated CO2 concentrations. Assimilation rates (A) and transpiration rates (E) were observed during a stepwise increase of photon flux density. These experiments were carried out under atmospheric conditions and in air containing 500 μmol mol−1 CO2. In both gas atmospheres, two levels of relative air humidity (60–70% and 70–80%) were applied in different sets of measurements. Intercellular CO2 concentration, leaf conductance, air-to-leaf vapour pressure deficit, and instantaneous water-use efficiency (A/E) were determined. As expected, assimilation rates of the FBPase antisense plants were significantly reduced as compared to the wild type. Saturation of assimilation rates in transgenic plants occurred at a photon flux density of 200 μmol m−2 s−1, whereas saturation in wild type plants was observed at 600 μmol m−2 s−1. Elevated ambient CO2 levels did not effect assimilation rates of transgenic plants. At 70–80% relative humidity and atmospheric CO2 concentration the FBPase antisense plants had significantly higher leaf conductances than wild-type plants while no difference emerged at 60–70%. These differences in leaf conductance vanished at elevated levels of ambient CO2. Stomatal response to different relative air humidities was not affected by mesophyll photosynthetic activity. It is suggested that the regulation of stomatal opening upon changes in photon flux density is merely mediated by a signal transmitted from mesophyll cells, whereas the intercellular CO2 concentration plays a minor role in this kind of stomatal response. The results are discussed with respect to stomatal control by environmental parameters and mesophyll photosynthesis. Received: 24 September 1998 / Accepted: 9 February 1999  相似文献   

10.
Unidirectional flux rates of Ca2+ across gastrointestinal tissues from sheep and goats were measured in vitro by applying the Ussing-chamber technique. Except for the sheep duodenum, mucosal to serosal Ca2+ flux rates (J ms) exceeded respective flux rates in the opposite direction (J sm) in both species and in all segments of the intestinal tract. This resulted in net Ca2+ flux rates␣(J net = J ms − J sm) ranging between −2 and 9 nmol · cm−2 · h−1 in sheep and between 10 and 15 nmol cm−2 · h−1 in goats. In sheep, only J net in jejunum, and in goats, J netin duodenum and jejunum were significantly different from zero. Using sheep rumen wall epithelia, significant J net of Ca2+ of around 5 nmol · cm−2 · h−1 could be detected. Since the experiments were carried out in the absence of an electrochemical gradient, significant net Ca2+ absorption clearly indicates the presence of active mechanisms for Ca2+ transport. Dietary Ca depletion caused increased calcitriol plasma concentrations and induced significant stimulations of net Ca2+ absorption in goat rumen. J net of Ca2+ across goat rumen epithelia was significantly reduced by 1 mmol · l −1 verapamil in the mucosal buffer solution. In conclusion, there is clear evidence for the rumen as a main site for active Ca2+ absorption in small ruminants. Stimulation of active Ca2+ absorption by increased plasma calcitriol levels and inhibition by mucosal verapamil suggest mechanistic and regulatory similarities to active Ca2+ transport as described for the upper small intestines of monogastric species. Accepted: 31 July 1996  相似文献   

11.
Novel nonstationary and nonlinear dynamic time series analysis tools are applied to multiyear eddy covariance CO2 flux and micrometeorological data from the Harvard Forest and University of Michigan Biological Station field study sites. Firstly, the utility of these tools for partitioning the gross photosynthesis and bulk respiration signals within these series is demonstrated when employed within a simple model framework. This same framework offers a promising new method for gap filling missing CO2 flux data. Analysing the dominant seasonal components extracted from the CO2 flux data using these tools, models are inferred for daily gross photosynthesis and bulk respiration. Despite their simplicity, these models fit the data well and yet are characterized by well‐defined parameter estimates when the models are optimized against calibration data. Predictive validation of the models also demonstrates faithful forecasts of annual net cumulative CO2 fluxes for these sites.  相似文献   

12.
Oxygen consumption was measured in five Dermophis mexicanus and averaged (±SEM) 0.047 ± 0.004 ml O2 g−1 h−1. Carbon dioxide production averaged 0.053 ± 0.005 ml CO2 g−1 h−1 in the same five animals 1 week later. This metabolic rate is similar to metabolic rates of other Gymnophionans but lower than metabolic rates reported for Anurans and Urodeles. Total nitrogen excretion averaged 1.37 μmol N g−1 h−1 which is higher than that found for other amphibians. Of this, 82.5% (1.13 μmol N g−1 h−1) was in the form of urea while 17.5% (0.24 μmol N g−1 h−1) was in the form of NH3 + NH+ 4. Such ureotelism is typical of terrestrial amphibians like D. mexicanus. Osmotic water flux averaged 0.0193 ml g−1 h−1 in control (sham injected) animals and was not significantly altered by injection of either arginine vasotocin or mesotocin. This osmotic flux is similar to osmotic fluxes found for other terrestrial amphibians. The combined data suggest that metabolism in D. mexicanus is, like most other Gymnophionans, lower than other amphibians. The high rates of nitrogen (especially urea) excretion suggests that this fossorial animal accumulates urea like other burrowing amphibians. Accepted: 27 June 2000  相似文献   

13.
Biogenic volatile organic compounds (BVOCs) are major precursors of both ozone and secondary organic aerosols (SOA) in the troposphere and represent a non‐negligible portion of the carbon fixed by primary producers, but long‐term ecosystem‐scale measurements of their exchanges with the atmosphere are lacking. In this study, the fluxes of 46 ions corresponding to 36 BVOCs were continuously monitored along with the exchanges of mass (carbon dioxide and water vapor) and energy (sensible and latent heat) for an entire year in a poplar (Populus) short‐rotation crop (SRC), using the eddy covariance methodology. BVOC emissions mainly consisted of isoprene, acetic acid, and methanol. Total net BVOC emissions were 19.20 kg C ha?1 yr?1, which represented 0.63% of the net ecosystem exchange (NEE), resulting from ?23.59 Mg C ha?1 yr?1 fixed as CO2 and 20.55 Mg C ha?1 yr?1 respired as CO2 from the ecosystem. Isoprene emissions represented 0.293% of NEE, being emitted at a ratio of 1 : 1709 mol isoprene per mol of CO2 fixed. Based on annual ecosystem‐scale measurements, this study quantified for the first time that BVOC carbon emissions were lower than previously estimated in other studies (0.5–2% of NEE) on poplar trees. Furthermore, the seasonal and diurnal emission patterns of isoprene, methanol, and other BVOCs provided a better interpretation of the relationships with ecosystem CO2 and water vapor fluxes, with air temperature, vapor pressure deficit, and photosynthetic photon flux density.  相似文献   

14.
The use of stable isotopes to study ecosystem gas exchange   总被引:24,自引:0,他引:24  
Stable isotopes are a powerful research tool in environmental sciences and their use in ecosystem research is increasing. In this review we introduce and discuss the relevant details underlying the use of carbon and oxygen isotopic compositions in ecosystem gas exchange research. The current use and potential developments of stable isotope measurements together with concentration and flux measurements of CO2 and water vapor are emphasized. For these applications it is critical to know the isotopic identity of specific ecosystem components such as the isotopic composition of CO2, organic matter, liquid water, and water vapor, as well as the associated isotopic fractionations, in the soil-plant- atmosphere system. Combining stable isotopes and concentration measurements is very effective through the use of ”Keeling plots.” This approach allows the identification of the isotopic composition and the contribution of ecosystem, or ecosystem components, to the exchange fluxes with the atmosphere. It also allows the estimation of net ecosystem discrimination and soil disequilibrium effects. Recent modifications of the Keeling plot approach permit examination of CO2 recycling in ecosystems. Combining stable isotopes with dynamic flux measurements requires precision in isotopic sampling and analysis, which is currently at the limit of detection. Combined with the micrometeorological gradient approach (applicable mostly in grasslands and crop fields), stable isotope measurements allow separation of net CO2 exchange into photosynthetic and soil respiration components, and the evapotranspiration flux into soil evaporation and leaf transpiration. Similar applications in conjunction with eddy correlation techniques (applicable to forests, in addition to grasslands and crop fields) are more demanding, but can potentially be applied in combination with the Keeling plot relationship. The advance and potential in using stable isotope measurements should make their use a standard component in the limited arsenal of ecosystem-scale research tools. Received: 8 July 1999 / Accepted: 10 January 2000  相似文献   

15.
In 2001–03, continuous eddy covariance measurements of carbon dioxide (CO2) flux were made above mature boreal aspen, black spruce, and jack pine forests in Saskatchewan, Canada, prior to and during a 3−year drought. During the 1st drought year, ecosystem respiration (R) was reduced at the aspen site due to the drying of surface soil layers. Gross ecosystem photosynthesis (GEP) increased as a result of a warm spring and a slow decrease of deep soil moisture. These conditions resulted in the highest annual net ecosystem productivity (NEP) in the 9 years of flux measurements at this site. During 2002 and 2003, a reduction of 6% and 34% in NEP, respectively, compared to 2000 was observed as the result of reductions in both R and GEP, indicating a conservative response to the drought. Although the drought affected most of western Canada, there was considerable spatial variability in summer rainfall over the 100−km extent of the study area; summer rainfalls in 2001 and 2002 at the two conifer sites minimized the impact of the drought. In 2003, however, precipitation was similarly low at all three sites. Due to low topographic position and consequent poor drainage at the black spruce site and the coarse soil with low water-holding capacity at the jack pine site almost no reduction in R, GEP, and NEP was observed at these two sites. This study shows that the impact of drought on carbon sequestration by boreal forest ecosystems strongly depends on rainfall distribution, soil characteristics, topography, and the presence of vegetation that is well adapted to these conditions.  相似文献   

16.
The present research work was aimed to formulate clotrimazole encapsulated Cavamax W7 composite ethosomes by injection method for improved delivery across epidermis. 32 factorial design was used to design nine formulations (F1-F9) and compared with ethosomal formulations (F10-F12). F9 with vesicle size of 202.8 ± 4.8 nm, highest zeta potential (−83.6 ± 0.96 mV) and %EE of 98.42 ± 0.15 was selected as optimized composite ethosome and F12 as reference ethosomal formulation. As revealed by transmission electron microscopy F9 vesicles were more condensed, uniformly spherical in shape than F12 vesicles. Vesicular stability studies indicated F9 to be more stable as compared to F12. Both F9 and F12 were incorporated in carbopol 934 gel base to get G1–G8 gel formulations and evaluated for in vitro skin permeability. Cavamax W7 composite ethosomal optimized gel (G5) showed higher in vitro percent cumulative drug permeation (88.53 ± 2.10%) in 8 h and steady state flux (J ss) of 3.39 ± 1.45 μg/cm2/min against the J ss of 1.57 ± 0.23 μg/cm2/min for ethosomal gel (G1) and 1.13 ± 0.06 μg/cm2/min for marketed formulation. The J ss flux of G5 was independent of amount of drug applied/unit area of skin. In vivo confocal laser scanning microscopic study of G5 depicted uniform and deeper penetration of rhodamine B (marker) in epidermis from Cavamax W7 composite ethosomal gel in comparison to G1. Finally, G5 demonstrated better (p < 0.05) antifungal activity against Candida albicans and Aspergillus niger than G1 thus, signifying that Cavamax W7 composite ethosomes present a superior stable and efficacious vesicular system than ethosomal formulation for topical delivery of clotrimazole.  相似文献   

17.
The aim of this study was to investigate the relationship between maximal anaerobic power (P max) and corresponding optimal velocity (V opt) and habitual physical activity (PA) on the one hand and with maximal oxygen consumption (O2max) on the other hand, in elderly women. Twenty-nine community dwelling, healthy women aged 66–82 years participated in the study. PA was evaluated using the Questionnaire d'Activite Physique Saint-Etienne (QAPSE) and expressed using two QAPSE activity indices: mean habitual daily energy expenditure (MHDEE) and daily energy expenditure corresponding to leisure time sports activities (sports activity). The subjects' P max and V opt were measured while they cycled on a friction-loaded non-isokinetic cycle ergometer. P max was expressed relative to body mass [P max/kg(W · kg−1)], and relative to the mass of two quadriceps muscles [P max /Quadr(W·kgQuadr −1)]. A negative relationship between P max/kg (Spearman's r = −0.56; P < 0.01), P max/Quadr (r = −0.53; P < 0.01) and V opt (r = −0.45; P < 0.05) and age was found. P max/kg was positively associated with MHDEE (r = 0.51; P < 0.01) and sports activity (r = 0.58; P < 0.01), as were P max/Quadr and V opt (r = 0.55; P < 0.01 and r = 0.54; P < 0.01, respectively). P max/kg, P max/Quadr and V opt correlated positively with O2max. The positive relationship between ergometer measurements and PA indices was similar to that between O2max and PA. P max/kg was, moreover, closely related to V opt (r = 0.77; P < 0.001). When a multiple stepwise regression analysis was used to select the variables influencing ergometer measurements, MHDEE contributed significantly to P max/kg variance, whereas sports activity contributed to P max/Quadr and V opt variances. In conclusion, the data from this cross-sectional study suggest that in healthy elderly women habitual PA, and especially leisure time PA, alleviates the decline of the P max of the quadriceps muscles. Accepted: 30 January 1997  相似文献   

18.
This paper discusses the advantages and disadvantages of the different methods that separate net ecosystem exchange (NEE) into its major components, gross ecosystem carbon uptake (GEP) and ecosystem respiration (Reco). In particular, we analyse the effect of the extrapolation of night‐time values of ecosystem respiration into the daytime; this is usually done with a temperature response function that is derived from long‐term data sets. For this analysis, we used 16 one‐year‐long data sets of carbon dioxide exchange measurements from European and US‐American eddy covariance networks. These sites span from the boreal to Mediterranean climates, and include deciduous and evergreen forest, scrubland and crop ecosystems. We show that the temperature sensitivity of Reco, derived from long‐term (annual) data sets, does not reflect the short‐term temperature sensitivity that is effective when extrapolating from night‐ to daytime. Specifically, in summer active ecosystems the long‐term temperature sensitivity exceeds the short‐term sensitivity. Thus, in those ecosystems, the application of a long‐term temperature sensitivity to the extrapolation of respiration from night to day leads to a systematic overestimation of ecosystem respiration from half‐hourly to annual time‐scales, which can reach >25% for an annual budget and which consequently affects estimates of GEP. Conversely, in summer passive (Mediterranean) ecosystems, the long‐term temperature sensitivity is lower than the short‐term temperature sensitivity resulting in underestimation of annual sums of respiration. We introduce a new generic algorithm that derives a short‐term temperature sensitivity of Reco from eddy covariance data that applies this to the extrapolation from night‐ to daytime, and that further performs a filling of data gaps that exploits both, the covariance between fluxes and meteorological drivers and the temporal structure of the fluxes. While this algorithm should give less biased estimates of GEP and Reco, we discuss the remaining biases and recommend that eddy covariance measurements are still backed by ancillary flux measurements that can reduce the uncertainties inherent in the eddy covariance data.  相似文献   

19.
Seasonal and annual respiration of a ponderosa pine ecosystem   总被引:2,自引:0,他引:2  
The net ecosystem exchange of CO2 between forests and the atmosphere, measured by eddy covariance, is the small difference between two large fluxes of photosynthesis and respiration. Chamber measurements of soil surface CO2 efflux (Fs), wood respiration (Fw) and foliage respiration (Ff) help identify the contributions of these individual components to net ecosystem exchange. Models developed from the chamber data also provide independent estimates of respiration costs. We measured CO2 efflux with chambers periodically in 1996–97 in a ponderosa pine forest in Oregon, scaled these measurements to the ecosystem, and computed annual totals for respiration by component. We also compared estimated half-hourly ecosystem respiration at night (Fnc) with eddy covariance measurements. Mean foliage respiration normalized to 10 °C was 0.20 μmol m–2 (hemi-leaf surface area) s–1, and reached a maximum of 0.24 μmol m–2 HSA s–1 between days 162 and 208. Mean wood respiration normalized to 10 °C was 5.9 μmol m–3 sapwood s–1, with slightly higher rates in mid-summer, when growth occurs. There was no significant difference (P > 0.10) between wood respiration of young (45 years) and old trees (250 years). Soil surface respiration normalized to 10 °C ranged from 0.7 to 3.0 μmol m–2 (ground) s–1 from days 23 to 329, with the lowest rates in winter and highest rates in late spring. Annual CO2 flux from soil surface, foliage and wood was 683, 157, and 54 g C m–2 y–1, with soil fluxes responsible for 76% of ecosystem respiration. The ratio of net primary production to gross primary production was 0.45, consistent with values for conifer sites in Oregon and Australia, but higher than values reported for boreal coniferous forests. Below-ground carbon allocation (root turnover and respiration, estimated as Fs– litterfall carbon) consumed 61% of GPP; high ratios such as this are typical of sites with more water and nutrient constraints. The chamber estimates were moderately correlated with change in CO2 storage in the canopy (Fstor) on calm nights (friction velocity u* < 0.25 m s–1; R2 = 0.60); Fstor was not significantly different from summed chamber estimates. On windy nights (u* > 0.25 m s–1), the sum of turbulent flux measured above the canopy by eddy covariance and Fstor was only weakly correlated with summed chamber estimates (R2 = 0.14); the eddy covariance estimates were lower than chamber estimates by 50%.  相似文献   

20.
The ability to measure directly individual protoplast ion fluxes is a valuable addition to patch clamp and other techniques when using protoplasts to study membrane transporters. Before interpreting observations on protoplasts in terms of behaviour of intact cells and tissues, some methodological questions should be addressed. These include effects of space and time variations of transporter activities over the membrane, the osmotic dependence of specific ion transporters and the effect of the regenerating cell wall. In this study net H+ and Ca2+ fluxes were measured from individual corn (Zea mays L.) coleoptile protoplasts using a non-invasive microelectrode technique for ion flux measurements. For Ca2+, the flux distribution was almost symmetrical, ranging ±30 nmol · m−2 · s−1 around zero. For H+ it was skewed towards efflux ranging from −100 to +10 nmol · m−2 · s−1. The distribution of H+ fluxes through the protoplast surface was a complex mosaic which changed with time, sometimes showing oscillations. These flux variations with time and position around the surface, apparently driven by endogenous mechanisms, may be relevant to protoplast pH homeostasis. When the new cell wall was partially regenerated on the next day, the correlation between H+ and Ca2+ fluxes increased, which is consistent with the weak-acid Donnan-Manning model of cell wall ion exchange. Received: 11 June 1997 / Accepted: 10 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号