首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The soil bacteria rhizobia have the capacity to establish nitrogen-fixing symbiosis with their leguminous host plants. In most Rhizobium species the genes for nodule development and nitrogen fixation have been localized on large indigenous plasmids that are transmissible, allowing lateral transfer of symbiotic functions. A recent paper reports on the complete sequencing of the symbiotic plasmid pNGR234a from Rhizobium species NGR234(1), revealing not only putative new symbiotic genes but also possible mechanisms for evolution and lateral dispersal of symbiotic nitrogen-fixing abilities among rhizobia.  相似文献   

2.
Forty-six of 52 (88.5%) enterohemorrhagic Escherichia coli (EHEC) strains screened carried a “common” plasmid of about 90 kb which encoded sequences homologous to the Inc F-IIA replicon. A similarly high incidence of Inc F-IIA plasmid-containing strains was observed in other groups of diarrheagenic E. coli, but not in random environmental coliform isolates. Enteropathogenic E. coli (EPEC) contain plasmids of similar properties and share a 23-kb DNA fragment with plasmids from EHEC. The common region encodes the F-IIA replication region and sequences homologous to the transfer operon of the Inc F-II plasmid R1. Sequence homology varied between plasmids isolated from different EHEC/EPEC strains with >80% showing homology to the regions encoding the rep and par genes. Only 5% of plasmids from EHEC strains had intact sequences homologous to the DNA between these two regions, including the oriT site. Some plasmids with an apparently intact tra operon still failed to plaque F-pilus-specific phages. This is consistent with observations that the large plasmids of EHEC and EPEC are phenotypically nonconjugative. These results suggest that the large plasmids of EHEC/EPEC constitute a family of transfer-deficient Inc F-IIA plasmids with varying degrees of deletion in tra function. The evolutionary ramifications of this finding are considered.  相似文献   

3.
The DNA region essential for replication and stability of a native plasmid (pTM5) from Rhizobium sp. (Hedysarum) has been identified and isolated within a 5.4-kb PstI restriction fragment. The isolation of this region was accomplished by cloning endonuclease-restricted pTM5 DNA into a ColE1-type replicon and selecting the recombinant plasmids containing the pTM5 replicator (pTM5 derivative plasmids) by their ability to replicate in Rhizobium. DNA homology studies revealed that pTM5-like replicons are present in cryptic plasmids from some Rhizobium sp. (Hedysarum) strains but not in plasmids from strains of other Rhizobium species or Agrobacterium tumefaciens. The pTM5 derivative plasmids were able to replicate in Escherichia coli and A. tumefaciens and in a wide range of Rhizobium species. On the basis of stability assays in the absence of antibiotic selective pressure, the pTM5 derivative plasmids were shown to be highly stable in both free-living and symbiotic cells of Rhizobium sp. (Hedysarum). The stability of these plasmids in other species of Rhizobium and in A. tumefaciens varied depending on the host and on the plasmid. Most pTM5 derivative plasmids tested showed significantly higher symbiotic stability than RK2 derivative plasmids pRK290 and pAL618 in Rhizobium sp. (Hedysarum), R. meliloti, and R. leguminosarum bv. phaseoli. Consequently, we consider that the constructed pTM5 derivative plasmids are potentially useful as cloning vectors for Rhizobiaceae.  相似文献   

4.
F-type plasmids are diverse and of great clinical significance, often carrying genes conferring antimicrobial resistance (AMR) such as extended-spectrum β-lactamases, particularly in Enterobacterales. Organising this plasmid diversity is challenging, and current knowledge is largely based on plasmids from clinical settings. Here, we present a network community analysis of a large survey of F-type plasmids from environmental (influent, effluent and upstream/downstream waterways surrounding wastewater treatment works) and livestock settings. We use a tractable and scalable methodology to examine the relationship between plasmid metadata and network communities. This reveals how niche (sampling compartment and host genera) partition and shape plasmid diversity. We also perform pangenome-style analyses on network communities. We show that such communities define unique combinations of core genes, with limited overlap. Building plasmid phylogenies based on alignments of these core genes, we demonstrate that plasmid accessory function is closely linked to core gene content. Taken together, our results suggest that stable F-type plasmid backbone structures can persist in environmental settings while allowing dramatic variation in accessory gene content that may be linked to niche adaptation. The association of F-type plasmids with AMR may reflect their suitability for rapid niche adaptation.Subject terms: Environmental microbiology, Genomics  相似文献   

5.
Bacterial plasmids can vary from small selfish genetic elements to large autonomous replicons that constitute a significant proportion of total cellular DNA. By conferring novel function to the cell, plasmids may facilitate evolution but their mobility may be opposed by co‐evolutionary relationships with chromosomes or encouraged via the infectious sharing of genes encoding public goods. Here, we explore these hypotheses through large‐scale examination of the association between plasmids and chromosomal DNA in the phenotypically diverse Bacillus cereus group. This complex group is rich in plasmids, many of which encode essential virulence factors (Cry toxins) that are known public goods. We characterized population genomic structure, gene content and plasmid distribution to investigate the role of mobile elements in diversification. We analysed coding sequence within the core and accessory genome of 190 B. cereus group isolates, including 23 novel sequences and genes from 410 reference plasmid genomes. While cry genes were widely distributed, those with invertebrate toxicity were predominantly associated with one sequence cluster (clade 2) and phenotypically defined Bacillus thuringiensis. Cry toxin plasmids in clade 2 showed evidence of recent horizontal transfer and variable gene content, a pattern of plasmid segregation consistent with transfer during infectious cooperation. Nevertheless, comparison between clades suggests that co‐evolutionary interactions may drive association between plasmids and chromosomes and limit wider transfer of key virulence traits. Proliferation of successful plasmid and chromosome combinations is a feature of specialized pathogens with characteristic niches (Bacillus anthracis, B. thuringiensis) and has occurred multiple times in the B. cereus group.  相似文献   

6.
Plasmids are important mobile elements that can facilitate genetic exchange and local adaptation within microbial communities. We compared the sequences of four co‐occurring pQBR family environmental mercury resistance plasmids and measured their effects on competitive fitness of a Pseudomonas fluorescens SBW25 host, which was isolated at the same field site. Fitness effects of carriage differed between plasmids and were strongly context dependent, varying with medium, plasmid status of competitor and levels of environmental mercury. The plasmids also varied widely in their rates of conjugation and segregational loss. We found that few of the plasmid‐borne accessory genes could be ascribed functions, although we identified a putative chemotaxis operon, a type IV pilus‐encoding cluster and a region encoding putative arylsulfatase enzymes, which were conserved across geographically distant isolates. One plasmid, pQBR55, conferred the ability to catabolize sucrose. Transposons, including the mercury resistance Tn5042, appeared to have been acquired by different pQBR plasmids by recombination, indicating an important role for horizontal gene transfer in the recent evolution of pQBR plasmids. Our findings demonstrate extensive genetic and phenotypic diversity among co‐occurring members of a plasmid community and suggest a role for environmental heterogeneity in the maintenance of plasmid diversity.  相似文献   

7.
Plasmid profile analysis is useful to characterize Rhizobium strains within the same species. Among the 16 Rhizobium strains examined, 14 had distinct plasmid profiles. The size of plasmids ranged from 40 to 650 kb, and three plasmids of 650, 510 and 390 kb were common to several strains. Plasmid analysis revealed that Rhizobium etli contained a mega-plasmid, similar in size to Rhizobium tropici. All the salt-tolerant strains examined had a plasmid of 250 kb, except for strain EBRI 29. This suggests that this plasmid may play an important adaptive role under salt stress conditions.  相似文献   

8.
Summary The ability to identify genes that specify nitrogenase (nif genes) in Rhizobium depends on the close homology between then and the corresponding nif genes of Klebsiella pneumoniae (Nuti et al. 1979; Ruvkun and Ausubel 1980). Rhizobium plasmids of high molecular weight (>100 Md) were separated on agarose gels, transferred to nitrocellulose filters and tested for their ability to hybridise with radioactively labelled pSA30, containing the nifKDH region of K. pneumoniae. Five large plasmids, each present in different strains of R. leguminosarum or R. phaseoli, were found to hybridise. Each of these plasmids had previously been shown to determine other symbiotic functions such as nodulation ability. The nif genes on three different plasmids appeared to be in conserved DNA regions since they were within an EcoRI restriction fragment of the same size.  相似文献   

9.
Summary: Bacterial plasmids are self-replicating, extrachromosomal elements that are key agents of change in microbial populations. They promote the dissemination of a variety of traits, including virulence, enhanced fitness, resistance to antimicrobial agents, and metabolism of rare substances. Escherichia coli, perhaps the most studied of microorganisms, has been found to possess a variety of plasmid types. Included among these are plasmids associated with virulence. Several types of E. coli virulence plasmids exist, including those essential for the virulence of enterotoxigenic E. coli, enteroinvasive E. coli, enteropathogenic E. coli, enterohemorrhagic E. coli, enteroaggregative E. coli, and extraintestinal pathogenic E. coli. Despite their diversity, these plasmids belong to a few plasmid backbones that present themselves in a conserved and syntenic manner. Thanks to some recent research, including sequence analysis of several representative plasmid genomes and molecular pathogenesis studies, the evolution of these virulence plasmids and the implications of their acquisition by E. coli are now better understood and appreciated. Here, work involving each of the E. coli virulence plasmid types is summarized, with the available plasmid genomic sequences for several E. coli pathotypes being compared in an effort to understand the evolution of these plasmid types and define their core and accessory components.  相似文献   

10.
Rhizobium leguminosarum strain VF39, isolated from nodules of field-grown faba beans in the Federal Republic of Germany, was shown to contain six plasmids ranging in molecular weight from 90 to 400 Md. Hybridisation to nif gene probes, plasmid curing, and mobilisation to other strains of Rhizobium and to Agrobacterium showed that the third largest plasmid, pRleVF39d (220 Md), carried genes for nodulation and nitrogen fixation. This plasmid was incompatible with pRL10JI, the Sym plasmid of R. leguminosarum strain JB300. Of the other plasmids, the two smallest (pRleVF39a and pRleVF39b, 90 and 160 Md respectively) were shown to be self-transmissible at a low frequency. Although melanin production is as yet unreported in strains of R. leguminosarum biovar viceae, strain VF39 produced a dark pigment, which, since it was not produced on minimal media and its production was greatly enhanced by the presence of tyrosine in the media, is probably melanin-like. Derivatives of VF39 cured of pRleVF39a no longer produced this pigment, but regained the ability to produce it when this plasmid was transferred into them. Strains of Agrobacterium tumefaciens, R. meliloti, and some strains of R. leguminosarum carrying pRleVF39a did not produce this pigment, indicating perhaps that some genes elsewhere on the VF39 genome are also involved in pigment production. Plasmid pRleVF39a appeared to be incompatible with the cryptic Rhizobium plasmids pRle336b and pRL8JI (both ca. 100 Md), but was compatible with the R. leguminosarum biovar phaseoli Sym plasmids pRP1JI, pRP2JI and pRph51a, all of which also code for melanin production. The absence of pRleVF39a in cured derivatives of VF39 had no effect on the symbiotic performance or competitive ability of this strain.  相似文献   

11.
Plasmids are important vehicles for the dissemination of antibiotic resistance genes (ARGs) among bacteria by conjugation. Here, we determined the complete nucleotide sequences of nine different plasmids previously obtained by exogenous plasmid isolation from river and creek sediments and wastewater from a pharmaceutical company. We identified six IncP/P-1ε plasmids and single members of IncL, IncN and IncFII-like plasmids. Genetic structures of the accessory regions of the IncP/P-1ε plasmids obtained implied that multiple insertions and deletions had occurred, mediated by different transposons and Class 1 integrons with various ARGs. Our study provides compelling evidence that Class 1 integrons, Tn402-like transposons, Tn3-like transposons and/or IS26 played important roles in the acquisition of ARGs across all investigated plasmids. Our plasmid sequencing data provide new insights into how these mobile genetic elements could mediate the acquisition and spread of ARGs in environmental bacteria.  相似文献   

12.
Jiang Y  Yang F  Zhang X  Yang J  Chen L  Yan Y  Nie H  Xiong Z  Wang J  Dong J  Xue Y  Xu X  Zhu Y  Chen S  Jin Q 《Plasmid》2005,54(2):149-159
The complete sequence of pSS, which is the large virulence plasmid of Shigella sonnei, was determined. The 214-kb plasmid is composed of segments of virulence-associated genes, the O-antigen gene clusters, a range of replication and maintenance genes, and large numbers of insertion sequence (IS) elements. Two hundred and forty-one open reading frames (ORFs) were identified, of which 117 are highly homologous to IS elements or transposases, 57 are homologous to known pathogenesis-associated proteins, and 30 are related to replication, plasmid maintenance, or other metabolic functions. Thirty-seven ORFs have no similarity to proteins with a known function, including two with no significant similarity to any hypothetical proteins. Interestingly, 10 ORFs encoding O-antigen gene clusters were identified on the plasmid and this is markedly different from most other Shigella spp. virulent plasmids. A novel toxin-antitoxin system, a series of stbDE homologs, was found on the plasmid immediately downstream of the replication region; the sole segregation stability system may be responsible for the instability of pSS. The pSS plasmid is a mixture of genes with different origins and functions. The sequence suggests a remarkable history of IS-mediated recombination and acquisition of DNA across a range of bacterial species.  相似文献   

13.
Rhizobia are a well-known group of soil bacteria that establish symbiotic relationship with leguminous plants, fix atmospheric nitrogen, and improve soil fertility. To fulfill multiple duties in soil, rhizobia are elaborated with a large and complex multipartite genome composed of several replicons. The genetic material is divided among various replicons, in a way to cope with, and satisfy the diverse functions of rhizobia. In addition to the main chromosome, which is carrying the essential (core) genes required for sustaining cell life, the rhizobia genomes contain several extra-chromosomal plasmids, carrying the nonessential (accessory) genes. Occasionally, some mega-plasmids, denoted as secondary chromosomes or chromids, carry some essential (core) genes. Furthermore, specific accessory gene sequences (the symbiotic chromosomal islands) are incorporated in the main chromosome of some rhizobia species in Bradyrhizobium and Mesorhizobium genera. Plasmids in rhizobia are of variable sizes. All of the plasmids in a Rhizobium cell constitute about 30–50% of the genome. Rhizobia plasmids have specific characters such as miscellaneous genes, independent replication system, self-transmissibility, and instability. The plasmids regulate several cellular metabolic functions and enable the host rhizobia to survive in diverse habitats and even under stress conditions. Symbiotic plasmids in rhizobia are receiving increased attention because of their significance in the symbiotic nitrogen fixation process. They carry the symbiotic (nod, nif and fix) genes, and some non-symbiotic genes. Symbiotic plasmids are conjugally-transferred by the aid of the non-symbiotic, self-transmissible plasmids, and hence, brings about major changes in the symbiotic interactions and host specificity of rhizobia. Besides, the rhizobia cells harbor one or more accessory, non-symbiotic plasmids, carrying genes regulating various metabolic functions, rhizosphere colonization, and nodulation competitiveness. The entire rhizobia-plasmid pool interacting in harmony and provides rhizobia with substantial abilities to fulfill their complex symbiotic and non-symbiotic functions in variable environments. The above concepts are extensively reviewed and fairly discussed.  相似文献   

14.
Increasing reports of multidrug resistance conferred by conjugative plasmids of Enterobacteriaceae necessitate a better understanding of their evolution. One such group is the narrow-host-range IncI1 plasmid type, known for their ability to carry genes encoding resistance to extended-spectrum beta lactamases. The focus of this study was to perform comparative sequencing of IncI1 plasmids from porcine enterotoxigenic Escherichia coli (ETEC), isolated irrespective of antimicrobial susceptibility phenotype. Five IncI1 plasmids of porcine ETEC origin and one IncI1 plasmid from a Salmonella enterica serovar Kentucky isolate from a healthy broiler chicken were sequenced and compared to existing IncI1 plasmid sequences in an effort to better understand the overall genetic composition of the IncI1 plasmid lineages. Overall, the sequenced porcine ETEC IncI1 plasmids were divergent from other sequenced IncI1 plasmids based upon multiple means of inferred phylogeny. High occurrences of IncI1 and IncA/C plasmid-associated genes and the blaTEM and blaCMY-2 beta lactamase genes were observed among porcine ETEC. However, the presence of blaTEM and blaCMY-2 did not strongly correlate with IncI1 plasmid possession, suggesting that these plasmids in porcine ETEC are not primarily associated with the carriage of such resistance genes. Overall, this work suggests a conservation of the IncI1 plasmid backbone among sequenced plasmids with a single locus for the acquisition of accessory genes, such as those associated with antimicrobial resistance. Furthermore, the high occurrence of IncI1 and IncA/C plasmids among clinical E. coli from commercial swine facilities is indicative of extensive horizontal gene transfer among porcine ETEC.  相似文献   

15.
Although IncP-1 plasmids are important for horizontal gene transfer among bacteria, in particular antibiotic resistance spread, so far only three plasmids from the subgroup IncP-1α have been completely sequenced. In this study we doubled this number. The three IncP-1α plasmids pB5, pB11 and pSP21 were isolated from bacteria of two different sewage treatment plants and sequenced by a combination of next-generation and capillary sequencing technologies. A comparative analysis including the previously analysed IncP-1α plasmids RK2, pTB11 and pBS228 revealed a highly conserved plasmid backbone (at least 99.9% DNA sequence identity) comprising 54 core genes. The accessory elements of the plasmid pB5 constitute a class 1 integron interrupting the parC gene and an IS6100 copy inserted into the integron. In addition, the tetracycline resistance genes tetAR and the ISTB11-like element are located between the klc operon and the trfA-ssb operon. Plasmid pB11 is loaded with a Tn5053-like mercury resistance transposon between the parCBA and parDE operons and contains tetAR that are identical to those identified in plasmid pB5 and the insertion sequence ISSP21. Plasmid pSP21 harbours an ISPa7 element in a Tn402 transposon including a class 1 integron between the partitioning genes parCBA and parDE. The IS-element ISSP21 (99.89% DNA sequence identity to ISSP21 from pB11), inserted downstream of the tetR gene and a copy of ISTB11 (identical to ISTB11 on pTB11) inserted between the genes pncA and pinR. On all three plasmids the accessory genes are almost always located between the backbone modules confirming the importance of the backbone functions for plasmid maintenance. The striking backbone conservation among the six completely sequenced IncP-1α plasmids is in contrast to the much higher diversity within the IncP-1β subgroup.  相似文献   

16.
Alphaproteobacteria are typically characterized by a multipartite genome organization with a chromosome, stable chromids and accessory plasmids. Extrachromosomal elements determine the lifestyle of roseobacters and their horizontal transfer was previously correlated with rapid adaptations to novel ecological niches. We characterized the distribution and biology of a novel Rhodobacteraceae-specific plasmid type that was designated RepC_soli according to its diagnostic solitary replicase. This low copy number replicon exhibits an exceptional stability, which is likely ensured by non-canonical separate parA and parB partitioning genes. RepC_soli plasmids occur frequently in the surface-associated marine genus Phaeobacter and comparative genome analyses revealed the emergence of four compatibility groups. The universal presence of conserved type IV secretion systems in RepC_soli plasmids is indicative of their recurrent mobilization, a prediction that was experimentally validated by conjugation of the 57 kb Phaeobacter inhibens P72 plasmid (pP72_e) over genus borders. RepC_soli plasmids harbour a diverse collection of beneficial genes including transporters for heavy metal detoxification, prokaryotic defence systems and a conspicuous abundance of antibiotic resistance genes. The pP72_e-encoded efflux pump FloR conferred an about 50-fold increase of resistance against chloramphenicol. Its specific occurrence in Phaeobacter likely reflects a genetic footprint of (former) antimicrobial use in marine aquaculture.  相似文献   

17.
DNA sequence homology in Rhizobium meliloti plasmids   总被引:8,自引:0,他引:8  
Summary Plasmids were recovered by an alkaline procedure from six symbiotically effective strains of Rhizobium meliloti of diverse geographical origin, reported to harbour only one middle-size large plasmid (ranging from 89 to 143 Megadaltons). Each purified plasmid was digested with eight restriction endonucleases; cleavage patterns were very complex: only KpnI and XbaI gave a limited number of bands. Fingerprints were very different, whatever the restriction enzyme or the geographical origin of the strains. However, Southern DNA-DNA hybridizations revealed that the plasmids showed homologous sequences having a high thermal stability. We gave evidence that some of these sequences are common to all the plasmids of R. meliloti. The biological function of these common sequences is unknown. Hybridization with cloned nitrogen fixation (nif) genes from Klebsiella pneumoniae had demonstrated that nif genes were not located on the middle — size plasmids of R. meliloti studied in this paper.  相似文献   

18.
Apart from the ability to nodulate legumes, fast-and slow-growing rhizobia have few bacteriological traits in common. Given that there is only one pathway to nodulation, DNA sequences conserved in fast- and slow-growing organisms that nodulate the same host should be strongly enriched in infectivity genes. We tested this hypothesis with seven fast-growing and five slow-growing strains that produced responses varying from fully effective nodulation through various ineffective associations to non-nodulation on four different hosts (Lotus pedunculatus, Lupinus nanus, Macroptilium atropurpureum, and Vigna unguiculata). When restriction enzyme digested total DNA from 10 of the strains was separately hybridized with nick-translated plasmid DNA isolated from 4 fast-growing strains, variable but significant homologies were found with all 10 strains. Part of this homology was shown to be associated with the nifKDH genes for nitrogenase and part with putative nodulation genes carried on pC2, a cosmid clone containing a 37 kbp region of the large sym plasmid present in the fast-growing broad-host range Rhizobium sp. strain NGR234. Analysis of the extent of homology between the plasmids of 3 fastgrowing strains (NGR234, TAL 996 and UMKL 19) able to effectively nodulate Vigna unguiculata showed them to have homologous DNA fragments totalling 47 kbp. This core homology represents less than 12% of the total coding capacity of the sym plasmid present in each of these strains.Abbreviations Sym symbiotic sequences/plasmids - nod genes required for nodulation - nod putative nod genes - nif genes required for the synthesis of the enzyme nitrogenase  相似文献   

19.
Soil bacteria of the genus Rhizobium possess complex genomes consisting of a chromosome and in addition, often, multiple extrachromosomal replicons, which are usually equipped with repABC genes that control their replication and partition. The replication regions of four plasmids of Rhizobium leguminosarum bv. trifolii TA1 (RtTA1) were identified and characterized. They all contained a complete set of repABC genes. The structural diversity of the rep regions of RtTA1 plasmids was demonstrated for parS and incα elements, and this was especially apparent in the case of symbiotic plasmid (pSym). Incompatibility assays with recombinant constructs containing parS or incα demonstrated that RtTA1 plasmids belong to different incompatibility groups. Horizontal acquisition was plausibly the main contributor to the origin of RtTA1 plasmids and pSym is probably the newest plasmid of this strain. Phylogenetic and incompatibility analyses of repABC regions of three closely related strains: RtTA1, R. leguminosarum bv. viciae 3841 and Rhizobium etli CFN42, provided data on coexistence of their replicons in a common genomic framework.  相似文献   

20.
We determined and analyzed the Shigella flexneri serotype 5 (pSF5) and S. dysenteriae serotype 1 (pSD1) virulence plasmid genomes. The total length of pSF5 is 136513 bp, including 165 open reading frames (ORFs). Of these ORFs, 133 were identified and 32 of those had no significant homology to proteins with known functions. The length of pSD1 is 182545 bp, including 224 ORFs, of which we identified 181. The remaining 43 ORFs were not significantly homologous to proteins with known functions. The insertion sequence (IS) elements are 53787 bp in pSF5, and 49616 bp in pSD1, which represents 39.4% and 27.1% of the genome, respectively. There are 22 IS element types in pSF5 and pSD1, among which we report ISEc8 and ISSbo6 for the first time in the Shigella virulence plasmid. Compared to pCP301, there are a large number of deleted genes and gene inversions in both pSF5 and pSD1. The ipa-mxi-spa locus in pSF5 is completely absent, and the genes related to the O-antigen biosynthesis are partially missing. In contrast, the above genes in pSD1 are integral, with the exception of virF. The whole genome analysis of the two plasmids shows that the loss of genes related to gene invasion or regulation also obliterates the ability of pPF5 and pSD1 to bind Congo red (Crb). Whether these genes determine the Crb function requires continued investigation. These authors contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号