首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mites are often overlooked as vectors of pathogens, but have been shown to harbor and transmit rickettsial agents such as Rickettsia akari and Orientia tsutsugamushi. We screened DNA extracts from 27 mites representing 25 species of dermanyssoids for rickettsial agents such as Anaplasma, Bartonella, Rickettsia, and Wolbachia by PCR amplification and sequencing. DNA from Anaplasma spp., a novel Bartonella sp., Spiroplasma sp., Wolbachia sp., and an unclassified Rickettsiales were detected in mites. These could represent mite-borne bacterial agents, bacterial DNA from blood meals, or novel endosymbionts of mites.  相似文献   

2.
This study investigated the endosymbiotic bacteria living inside the poultry red mite collected from five samples of one commercial farm from the UK and 16 farms from France using genus-specific PCR, PCR-TTGE and DNA sequencing. Endosymbiotic bacteria are intracellular obligate organisms that can cause several phenotypic and reproductive anomalies to their host and they are found widespread living inside arthropods. The farm sampled from the UK was positive for bacteria of the genera Cardinium sp. and Spiroplasma sp. From France, 7 farms were positive for Cardinium sp., 1 farm was positive for Spiroplasma sp., 1 farm was positive for Rickettsiella sp. and 2 farms were positive for Schineria sp. However, it was not possible to detect the presence of the genus Wolbachia sp. which has been observed in other ectoparasites. This study is the first report of the presence of endosymbionts living inside the poultry red mite. The results obtained suggest that it may be possible that these bacterial endosymbionts cause biological modifications to the poultry red mite.  相似文献   

3.
Microorganisms provide many physiological functions to herbivorous hosts. Spider mites (genus Tetranychus) are important agricultural pests throughout the world; however, the composition of the spider mite microbial community, especially gut microbiome, remains unclear. Here, we investigated the bacterial community in five spider mite species and their associated feces by deep sequencing of the 16S rRNA gene. The composition of the bacterial community was significantly different among the five prevalent spider mite species, and some bacterial symbionts showed host‐species specificity. Moreover, the abundance of the bacterial community in spider mite feces was significantly higher than that in the corresponding spider mite samples. However, Flavobacterium was detected in all samples, and represent a “core microbiome”. Remarkably, the maternally inherited endosymbiont Wolbachia was detected in both spider mite and feces. Overall, these results offer insight into the complex community of symbionts in spider mites, and give a new direction for future studies.  相似文献   

4.
Abstract. Many blood-feeding insects, including tsetse flies (Diptera: Glossinidae), harbour intracellular bacterial symbionts. Using isolates from tissues of several Glossina species and diagnostic DNA oligonucleotide primers, a polymerase chain reaction (PCR) based assay was designed to identify symbiotic bacteria. Those inhabiting the midgut of Glossina were found to belong to the gamma subdivision, whereas ovarian Proteobacteria were of the alpha subdivision - probably genus Wolbachia (Rickettsiaceae). The presence of Wolbachia-like Rickettsia in the ovaries of G. morsitans subspecies may help to explain the maternally inherited incompatibility of some crosses within this species.  相似文献   

5.
One fourth of Acanthamoebaisolates studied contain obligate bacterial endosymbionts. These intracellular bacteria have recently been assigned to four different, previously unknown phylogenetic lineages within the Proteobacteriaand the Chlamydiales. The symbiotic association of these amoebae and their bacterial endosymbionts might be a valuable model system for the analysis of bacterial adaptations and mechanisms for intracellular survival. In addition, Chlamydia‐related amoebal endosymbionts have been implicated as causative agents for respiratory disease suggesting that these protozoa may be sources of new emerging pathogens.  相似文献   

6.
Background

The predatory mirids of the genus Macrolophus are key natural enemies of various economically important agricultural pests. Both M. caliginosus and M. pygmaeus are commercially available for the augmentative biological control of arthropod pests in European greenhouses. The latter species is known to be infected with Wolbachia -inducing cytoplasmic incompatibility in its host- but the presence of other endosymbionts has not been demonstrated. In the present study, the microbial diversity was examined in various populations of M. caliginosus and M. pygmaeus by 16S rRNA sequencing and denaturing gradient gel electrophoresis.

Results

Besides Wolbachia, a co-infection of 2 Rickettsia species was detected in all M. pygmaeus populations. Based on a concatenated alignment of the 16S rRNA gene, the gltA gene and the coxA gene, the first is phylogenetically related to Rickettsia bellii, whereas the other is closely related to Rickettsia limoniae. All M. caliginosus populations were infected with the same Wolbachia and limoniae-like Rickettsia strain as M. pygmaeus, but did not harbour the bellii-like Rickettsia strain. Interestingly, individuals with a single infection were not found. A PCR assay on the ovaries of M. pygmaeus and M. caliginosus indicated that all endosymbionts are vertically transmitted. The presence of Wolbachia and Rickettsia in oocytes was confirmed by a fluorescence in situ hybridisation. A bio-assay comparing an infected and an uninfected M. pygmaeus population suggested that the endosymbionts had minor effects on nymphal development of their insect host and did not influence its fecundity.

Conclusion

Two species of the palaearctic mirid genus Macrolophus are infected with multiple endosymbionts, including Wolbachia and Rickettsia. Independent of the origin, all tested populations of both M. pygmaeus and M. caliginosus were infected with three and two endosymbionts, respectively. There was no indication that infection with endosymbiotic bacteria had a fitness cost in terms of development and fecundity of the predators.

  相似文献   

7.
A total of 9,281 larval chigger mites were collected from small mammals captured at Hwaseong-gun, Gyeonggi-do (Province) (2,754 mites from 30 small mammals), Asan city, Chungcheongnam-do (3,358 mites from 48 mammals), and Jangseong-gun, Jeollanam-do (3,169 for 62 mammals) from April-November 2009 in the Republic of Korea (= Korea) and were identified to species. Leptotrombidium pallidum was the predominant species in Hwaseong (95.8%) and Asan (61.2%), while Leptotrombidium scutellare was the predominant species collected from Jangseong (80.1%). Overall, larval chigger mite indices decreased from April (27.3) to June (4.9), then increased in September (95.2) and to a high level in November (169.3). These data suggest that L. pallidum and L. scutellare are the primary vectors of scrub typhus throughout their range in Korea. While other species of larval chigger mites were also collected with some implications in the transmission of Orientia tsutsugamushi, they only accounted for 11.2% of all larval chigger mites collected from small mammals.  相似文献   

8.
Outbreaks of vector‐borne diseases are dramatically increasing because of climate change, consequently increasing the importance of surveillance of endemic disease vectors. In this study, we surveyed chigger mites, vectors for Orientia tsutsugamushi—the bacteria that causes Tsutsugamushi disease—, and their rodent hosts in Gimcheon, central South Korea, in 2015–2018. A total of 225 rodents were collected, with trap rate and percentage of rodents infected by chigger mites of 9.8 and 72.4%, respectively. Six species of rodents from five genera were collected, the most common rodent being Apodemus agrarius (n = 153, infection rate = 90.8%). The highest number of rodents was collected in spring (trap rate = 10.3), but the rate of infected rodents was higher in fall (81.5%) than in spring (61.3%). Trap rate was highest for bank near waterway (17.9), but the chigger index (CI) was highest in hill (224.1). A total of 20,534 (CI 126.0) chigger mite individuals from 10 species and three genera were found on the collected rodents. The most common species was Leptotrombidium pallidum (n = 7,982, 83.6%, CI 49.0), followed by L. palpale and L. scutellare. Chigger mites were most frequent at banks near waterway (n = 11,093, CI 152.0) and hill (n = 2,017, CI 224.1). To detect O. tsutsugamushi in chigger mites, 450 pools of chigger mites (n = 10,991) were analyzed; 24 pools were positive—23 of A. agrarius, the most frequently collected species in South Korea, 1 of Micromys minutus—and the minimum positive rate (MPR) was 0.22. The detected strain types included Boryong (dominant in all years, seasons, and habitats), Jecheon, 07–489, and IIOC1202.  相似文献   

9.
Endosymbiotic bacteria that potentially influence reproduction and other fitness-related traits of their hosts are widespread in insects and mites and their appeal to researchers’ interest is still increasing. We screened 20 strains of 12 agriculturally relevant herbivorous and predatory mite species for infection with Wolbachia, Cardinium and Spiroplasma by the use of PCR. The majority of specimens originated from Austria and were field collected or mass-reared. Eight out of 20 strains (40%) tested, representing seven of 12 mite species (58%), carried at least one of the three bacteria. We found Wolbachia in the herbivorous spider mites Tetranychus urticae and Bryobia rubrioculus, with the former also carrying Spiroplasma and the latter also carrying Cardinium. Cardinium was furthermore found in two populations of the predatory mite Euseius finlandicus and the spider mite Eotetranychus uncatus. Spiroplasma was detected in the predatory mite Neoseiulus californicus. All bacteria positive PCR products were sequenced, submitted to GenBank and analyzed in BLAST queries. We found high similarities to complete identity with bacteria found in the same and different mite species but also with bacteria found in insect species like ladybirds, butterflies and minute pirate bugs, Orius. We discuss the significance of potential (multiple) infections with the investigated bacteria for biological control.  相似文献   

10.
Owing to climate change, the global resurgence of vector‐borne infectious diseases has emerged as a critical public health issue. Orientia tsutsugamushi is the etiological agent of tsutsugamushi disease (scrub typhus) a mite‐borne acute febrile disease occurring in the Asia‐Pacific region. We investigated the prevalence of tsutsugamushi disease transmitted by chigger mite vectors living on rodents. Using sticky‐type chigger traps for three months during 2016–2018, 1,057 chigger mites were collected (chigger mite index, 1.31) from four locations in the Hwaseong‐si area of Gyeonggi‐do, Republic of Korea. Five species distributed among three genera were identified. In addition, 94 rodents were captured (collection rate: 7.83%) using Sherman live traps over the course of three months (April, October, and November) during 2016–2017. Three rodent species were captured and identified and the striped field mouse (Apodemus agrarius) was the dominant rodent host species in the surveyed area. A total of 10,469 ectoparasitic chigger mites were recovered from the 94 rodents, from which 13 species distributed among four genera were identified. Of the 5,250 chigger mites examined, Leptotrombidium pallidum was most abundant (n = 2,558), followed by L. orientale, L. scutellare, L. zetum, Euschoengastia koreaensis, L. subintermedium, and Neotrombicula tamiyai. Of the examined chigger mites, no groups recovered from rodent hosts tested positive for O. tsutsugamushi. This study provides fundamental regional information on vector‐borne disease data collection in the Hwaseong‐si area, Gyeonggi‐do, and will further contribute to formulating disease control and prevention strategies.  相似文献   

11.
Peptidoglycan in obligate intracellular bacteria   总被引:1,自引:0,他引:1       下载免费PDF全文
Peptidoglycan is the predominant stress‐bearing structure in the cell envelope of most bacteria, and also a potent stimulator of the eukaryotic immune system. Obligate intracellular bacteria replicate exclusively within the interior of living cells, an osmotically protected niche. Under these conditions peptidoglycan is not necessarily needed to maintain the integrity of the bacterial cell. Moreover, the presence of peptidoglycan puts bacteria at risk of detection and destruction by host peptidoglycan recognition factors and downstream effectors. This has resulted in a selective pressure and opportunity to reduce the levels of peptidoglycan. In this review we have analysed the occurrence of genes involved in peptidoglycan metabolism across the major obligate intracellular bacterial species. From this comparative analysis, we have identified a group of predicted ‘peptidoglycan‐intermediate’ organisms that includes the Chlamydiae, Orientia tsutsugamushi, Wolbachia and Anaplasma marginale. This grouping is likely to reflect biological differences in their infection cycle compared with peptidoglycan‐negative obligate intracellular bacteria such as Ehrlichia and Anaplasma phagocytophilum, as well as obligate intracellular bacteria with classical peptidoglycan such as Coxiella, Buchnera and members of the Rickettsia genus. The signature gene set of the peptidoglycan‐intermediate group reveals insights into minimal enzymatic requirements for building a peptidoglycan‐like sacculus and/or division septum.  相似文献   

12.
Among eukaryotes, sexual reproduction is by far the most predominant mode of reproduction. However, some systems maintaining sexuality appear particularly labile and raise intriguing questions on the evolutionary routes to asexuality. Thelytokous parthenogenesis is a form of spontaneous loss of sexuality leading to strong distortion of sex ratio towards females and resulting from mutation, hybridization or infection by bacterial endosymbionts. We investigated whether ecological specialization is a likely mechanism of spread of thelytoky within insect communities. Focusing on the highly specialized genus Megastigmus (Hymenoptera: Torymidae), we first performed a large literature survey to examine the distribution of thelytoky in these wasps across their respective obligate host plant families. Second, we tested for thelytoky caused by endosymbionts by screening in 15 arrhenotokous and 10 thelytokous species for Wolbachia, Cardinium, Arsenophonus and Rickettsia endosymbionts and by performing antibiotic treatments. Finally, we performed phylogenetic reconstructions using multilocus sequence typing (MLST) to examine the evolution of endosymbiont‐mediated thelytoky in Megastigmus and its possible connections to host plant specialization. We demonstrate that thelytoky evolved from ancestral arrhenotoky through the horizontal transmission and the fixation of the parthenogenesis‐inducing Wolbachia. We find that ecological specialization in Wolbachia's hosts was probably a critical driving force for Wolbachia infection and spread of thelytoky, but also a constraint. Our work further reinforces the hypothesis that community structure of insects is a major driver of the epidemiology of endosymbionts and that competitive interactions among closely related species may facilitate their horizontal transmission.  相似文献   

13.
14.
Wolbachia are the most abundant bacterial endosymbionts among arthropods. Although maternally inherited, they do not conform to the widespread view that vertical transmission inevitably selects for beneficial symbionts. Instead, Wolbachia are notorious for their reproductive parasitism which, although lowering host fitness, ensures their spread. However, even for reproductive parasites it can pay to enhance host fitness. Indeed, there is a recent upsurge of reports on Wolbachia‐associated fitness benefits. Therefore, the question arises how such instances of mutualism are related to the phenotypes of reproductive parasitism. Here, we review the evidence of Wolbachia mutualisms in arthropods, including both facultative and obligate relationships, and critically assess their biological relevance. Although many studies report anti‐pathogenic effects of Wolbachia, few actually prove these effects to be relevant to field conditions. We further show that Wolbachia frequently have beneficial and detrimental effects at the same time, and that reproductive manipulations and obligate mutualisms may share common mechanisms. These findings undermine the idea of a clear‐cut distinction between Wolbachia mutualism and parasitism. In general, both facultative and obligate mutualisms can have a strong, and sometimes unforeseen, impact on the ecology and evolution of Wolbachia and their arthropod hosts. Acknowledging this mutualistic potential might be the key to a better understanding of some unresolved issues in the study of Wolbachia–host interactions.  相似文献   

15.
Sex ratio distorting endosymbionts induce reproductive anomalies in their arthropod hosts. They have recently been paid much attention as firstly texts of evolution of host-symbiont relationships and secondly potential biological control agents to control arthropod pests. Among such organisms, Wolbachia and Cardinium bacteria are well characterized. This study aims at probing such bacteria in the Osmia community to evaluate their potential utilization to control arthropod pests. Among 17 PCR tested species, Osmia cornifrons and a parasitic fly are infected with Wolbachia and a mite species is infected with Cardinium. Phylogenetic tree analyses suggest that horizontal transfer of the bacteria occurred between phylogenetically distant hosts.  相似文献   

16.
Wolbachia are maternally inherited intracellular bacteria that infect a wide range of arthropods and cause an array of effects on host reproduction, fitness and mating behavior. Although our understanding of the Wolbachia-associated effects on hosts is rapidly expanding, our knowledge of the host factors that mediate Wolbachia dynamics is rudimentary. Here, we explore the interactions between Wolbachia and its host, the two-spotted spider mite Tetranychus urticae Koch. Our results indicate that Wolbachia induces strong cytoplasmic incompatibility (CI), increases host fecundity, but has no effects on the longevity of females and the mating competitiveness of males in T. urticae. Most importantly, host mating pattern was found to affect Wolbachia density dynamics during host aging. Mating of an uninfected mite of either sex with an infected mite attenuates the Wolbachia density in the infected mite. According to the results of Wolbachia localization, this finding may be associated with the tropism of Wolbachia for the reproductive tissue in adult spider mites. Our findings describe a new interaction between Wolbachia and their hosts.  相似文献   

17.
Wolbachia: intracellular manipulators of mite reproduction   总被引:7,自引:0,他引:7  
Cytoplasmically transmitted Wolbachia (alpha-Proteobacteria) are a group of closely related intracellular microorganisms that alter reproduction in arthropods. They are found in a few isopods and are widespread in insects. Wolbachia are implicated as the cause of parthenogenesis in parasitic wasps, feminization in isopods and reproductive (cytoplasmic) incompatibility in many insects. Here we report on the widespread occurrence of Wolbachia in spider mites and predatory mites based on a PCR assay for a 730 bp fragment of the ftsZ gene with primers that are specific for Wolbachia. An additional PCR, using two primer pairs that amplify a 259 bp region of the ftsZ gene that are diagnostic for the two Wolbachia subdivisions A and B, showed that infected mites only carried type B and not type A Wolbachia. The fact that some species tested negative for Wolbachia does not mean that the entire species is uninfected. We found that natural populations of Tetranychus urticae are polymorphic for the infection. The possible effects of Wolbachia on mite reproduction and post-zygotic reproductive isolation are discussed.To whom correspondence should be addressed at: Kruislaan 320, 1098 SM Amsterdam, The Netherlands  相似文献   

18.
Intracellular bacteria of the genus Wolbachia (alpha Proteobacteria) induce cytoplasmic incompatibility (CI) in many arthropod species, including spider mites, but not all Wolbachia cause CI. In spider mites CI becomes apparent by a reduced egg hatchability and a lower daughter:son ratio: CI in haplodiploid organisms in general was expected to produce all-male offspring or a male-biased sex ratio without any death of eggs. In a previous study of Japanese populations of Tetranychus urticae, two out of three green-form populations tested were infected with non-CI Wolbachia strains, whereas none of six red-form populations harbored Wolbachia. As the survey of Wolbachia infection in T. urticae is still fragmentary in Japan, we checked Wolbachia infection in thirty green-form populations and 29 red-form populations collected from a wide range of Japanese islands. For Wolbachia-infected populations, we tested the effects of Wolbachia on the reproductive traits and determined the phylogenetic relationships of the different strains of Wolbachia. All but one green-form populations were infected with Wolbachia and all strains belonged to the subgroup Ori when the wsp gene was used to determine the phylogenetic relationships of different strains of Wolbachia. Six out of 29 red-form populations harbored Wolbachia and the infected strains belonged to the subgroups Ori and Bugs. Twenty-four of 29 infected green-form populations and five of six infected red-form populations induced CI among the hosts. Thus, CI-Wolbachia strains are widespread in Japan, and no geographical trend was observed in the CI-Wolbachia. Although three red-form populations harbored other intracellular bacteria Cardinium, they did not affect host reproduction.  相似文献   

19.
One of the major evolutionary events that transformed endosymbiotic bacterium into mitochondrion was an acquisition of ATP/ADP carrier in order to supply the host with respiration-derived ATP. Along with mitochondrial carrier, unrelated carrier is known which is characteristic of intracellular chlamydiae, plastids, parasitic intracellular eukaryote Encephalitozoon cuniculi, and the genus Rickettsia of obligate endosymbiotic alpha-Proteobacteria. This non-mitochondrial ATP/ADP carrier was recently described in rickettsia-like endosymbionts - a group of obligate intracellular bacteria, classified with the order Rickettsiales, which have diverged after free-living alpha-Proteobacteria but before sister groups of the Rickettsiaceae assemblage (true rickettsiae) and mitochondria. Published controversial phylogenetic data on the non-mitochondrial carrier were reanalysed in the present work using both DNA and protein sequences, and various methods including Bayesian analysis. The data presented are consistent with classic endosymbiont theory for the origin of mitochondria and also suggest that even last but one common ancestor of rickettsiae and organelles may have been an endosymbiotic bacterium in which ATP/ADP carrier has first originated.  相似文献   

20.
At least 20% of all arthropods and some nematode species are infected with intracellular bacteria of the genus Wolbachia. This highly diverse genus has been subdivided into eight “supergroups” (A to H) on the basis of nucleotide sequence data. Here, we report the discovery of a new Wolbachia supergroup recovered from the spider mite species Bryobia species V (Acari: Tetranychidae), based on the sequences of three protein-coding genes (ftsZ, gltA, and groEL) and the 16S rRNA gene. Other tetranychid mites possess supergroup B Wolbachia strains. The discovery of another Wolbachia supergroup expands the known diversity of Wolbachia and emphasizes the high variability of the genus. Our data also clarify the existing supergroup structure and highlight the use of multiple gene sequences for robust phylogenetic analysis. In addition to previous reports of recombination between the arthropod-infecting supergroups A and B, we provide evidence for recombination between the nematode-infecting supergroups C and D. Robust delineation of supergroups is essential for understanding the origin and spread of this common reproductive parasite and for unraveling mechanisms of host adaptation and manipulation across a wide range of hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号