首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial iodate (IO3) reduction is poorly understood largely due to the limited number of available isolates as well as the paucity of information about key enzymes involved in the reaction. In this study, an iodate-reducing bacterium, designated strain SCT, was newly isolated from marine sediment slurry. SCT is phylogenetically closely related to the denitrifying bacterium Pseudomonas stutzeri and reduced 200 μM iodate to iodide (I) within 12 h in an anaerobic culture containing 10 mM nitrate. The strain did not reduce iodate under the aerobic conditions. An anaerobic washed cell suspension of SCT reduced iodate when the cells were pregrown anaerobically with 10 mM nitrate and 200 μM iodate. However, cells pregrown without iodate did not reduce it. The cells in the former category showed methyl viologen-dependent iodate reductase activity (0.31 U mg−1), which was located predominantly in the periplasmic space. Furthermore, SCT was capable of anaerobic growth with 3 mM iodate as the sole electron acceptor, and the cells showed enhanced activity with respect to iodate reductase (2.46 U mg−1). These results suggest that SCT is a dissimilatory iodate-reducing bacterium and that its iodate reductase is induced by iodate under anaerobic growth conditions.  相似文献   

2.
The biological effects of ultraviolet radiation (UV), such as DNA damage, mutagenesis, cellular aging, and carcinogenesis, are in part mediated by reactive oxygen species (ROS). The major intracellular ROS intermediate is hydrogen peroxide, which is synthesized from superoxide anion (O2) and further metabolized into the highly reactive hydroxyl radical. In this study, we examined the involvement of mitochondria in the UV‐induced H2O2 accumulation in a keratinocyte cell line HaCaT. Respiratory chain blockers (cyanide‐p‐trifluoromethoxy‐phenylhydrazone and oligomycin) and the complex II inhibitor (theonyltrifluoroacetone) prevented H2O2 accumulation after UV. Antimycin A that inhibits electron flow from mitochondrial complex III to complex IV increased the UV‐induced H2O2 synthesis. The same effect was seen after incubation with rotenone, which blocks electron flow from NADH‐reductase (complex I) to ubiquinone. UV irradiation did not affect mitochondrial transmembrane potential (ΔΨm). These data indicate that UV‐induced ROS are produced at complex III via complex II (succinate‐Q‐reductase). J. Cell. Biochem. 80:216–222, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

3.
In order to clarify the relationship between chill-induced disturbance in photosynthetic, respiratory electron transport and the metabolism of reactive oxygen species (ROS), leaf gas exchange, chlorophyll fluorescence quenching, respiration, and activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) were investigated in chloroplasts and mitochondria of cucumber (Cucumis sativus) leaves subjected to a chill (8 °C) for 4 d. Chilling decreased net photosynthetic rate (P N) and quantum efficiency of photosystem 2 (ΦPS2), but increased the ratio of ΦPS2 to the quantum efficiency of CO2 fixation (ΦCO2) and non-photochemical quenching (NPQ) in cucumber leaves. While chilling inhibited the activity of cytochrome respiration pathway, it induced an increase of alternative respiration pathway activity and the reduction level of Q-pool. Chilling also significantly increased O2 production rate, H2O2 content, and SOD and APX activities in chloroplasts and mitochondria. There was a more significant increase in SOD and APX activities in chloroplasts than in mitochondria with the increase of membrane-bound Fe-SOD and tAPX in chloroplasts being more significant than other isoenzymes. Taken together, chilling inhibited P N and cytochrome respiratory pathway but enhanced the photosynthetic electron flux to O2 and over-reduction of respiratory electron transport chain, resulting in ROS accumulation in cucumber leaves. Meanwhile, chilling resulted in an enhancement of the protective mechanisms such as thermal dissipation, alternative respiratory pathway, and ROS-scavenging mechanisms (SODs and APXs) in chloroplasts and mitochondria.  相似文献   

4.
The respiration and photosynthesis requirement for induction and maintenance of nitrate reductase activity was determined on leaves of Hordeum vulgare L. In this induction, glucose substituted for light in both dark-grown and carbohydrate-depleted green leaves. Oxygen appeared to be required for induction in all cases studied. In light and under N2, 3-(3,4-dichlorophenyl)-1,1-dimethylurea completely inhibited induction, presumably by inhibiting the production of O2, Hence, under N2 the leaves appeared to utilize both the O2 produced by photosynthesis and the CO2 produced by respiration. CO2 fixation can then produce both photosynthate to drive the induction and terminal electron acceptors to allow photosynthetic electron flow. This possibility was further suggested by the observation that CO2 was an absolute requirement for induction in carbohydrate-depleted barley leaves. Results obtained with respiratory inhibitors also indicated that respiration drove the induction of nitrate reductase.  相似文献   

5.
Mechanisms of hydrogen peroxide generation in Escherichia coli were investigated using a strain lacking scavenging enzymes. Surprisingly, the deletion of many abundant flavoenzymes that are known to autoxidize in vitro did not substantially lessen overall H2O2 formation. However, H2O2 production diminished by 25–30% when NadB turnover was eliminated. The flavin‐dependent desaturating dehydrogenase, NadB uses fumarate as an electron acceptor in anaerobic cells. Experiments showed that aerobic NadB turnover depends upon its oxidation by molecular oxygen, with H2O2 as a product. This reaction appears to be mechanistically adventitious. In contrast, most desaturating dehydrogenases are associated with the respiratory chain and deliver electrons to fumarate anaerobically or oxygen aerobically without the formation of toxic by‐products. Presumably, NadB can persist as an H2O2‐generating enzyme because its flux is limited. The anaerobic respiratory enzyme fumarate reductase uses a flavoprotein subunit that is homologous to NadB and accordingly forms substantial H2O2 upon aeration. This tendency is substantially suppressed by cytochrome oxidase. Thus cytochrome d oxidase, which is prevalent among anaerobes, may diminish intracellular H2O2 formation by the anaerobic respiratory chain, whenever these organisms encounter oxygen. These two examples reveal biochemical and physiological arrangements through which evolution has minimized the rate of intracellular oxidant formation.  相似文献   

6.
For Azospirillum brasilense Sp7, the energy transformation efficiencies were measured in anaerobic respirations with either nitrate, nitrite or nitrous oxide as respiratory electron acceptors by determining the maximal molar growth yields and the H+-translocations using the oxidant pulse method. In continuous cultures grown with malate limiting, the maximal molar growth yields (Y s max -values) were essentially the same with O2 or N2O but were 1/3 and 2/3 lower with NO 2 - or NO 3 - , respectively, as respiratory electron acceptors. Both the maximal molar growth yields and the maintenance energy coefficients were surprisingly high when Azospirillum was grown with nitrite as the sole electron acceptor and source for N-assimilation. Growth under N2-fixing conditions drastically reduced the Y s max -values in the N2O and O2-respiring cells. In the H+-translocation measurements, the /oxidant ratios were 5.6 for O2→H2O, 2.5–2.8 for NO 3 - →NO 2 - , 2.2 for NO 2 - →N2O and 3.1 for N2O→N2 respirations when the cells were preincubated with valinomycin and K+. All the values were enhanced when the experiments were performed with valinomycin plus methyltriphenylphosphonium (=TPMP+) cation. The uncoupler carbonyl cyanide-m-chlorophenyl-hydrazone diminished the H+-excretion indicating that this translocation was due to vectorial flow across the membrane. In the absence of any ionophore, nitrate and nitrite respirations were accompanied by a H+-uptake . Any significant H+-translocation could not be detected in N2O- and O2-respirations under these conditions. It is concluded that nitrate reduction proceeds inside the cytoplasmic membrane, whereas nitrite is reduced extramembraneously. The data are not conclusive for the location of nitrous oxide reductase. The maximal molar growth yield determinations and the absence of any H+-uptake in untreated cells indicate a cytoplasmic orientation of the enzyme similar to the terminal cytochrome oxidase of respiration. The low H+-extrusion values for N2O-respiration compared to O2-respiration in cells treated with valinomycin plus TPMP+ are, however, not in accord with such an interpretation.  相似文献   

7.
Whole‐cell biocatalysis for C–H oxyfunctionalization depends on and is often limited by O2 mass transfer. In contrast to oxygenases, molybdenum hydroxylases use water instead of O2 as an oxygen donor and thus have the potential to relieve O2 mass transfer limitations. Molybdenum hydroxylases may even allow anaerobic oxyfunctionalization when coupled to anaerobic respiration. To evaluate this option, the coupling of quinoline hydroxylation to denitrification is tested under anaerobic conditions employing Pseudomonas putida (P. putida) 86, capable of aerobic growth on quinoline. P. putida 86 reduces both nitrate and nitrite, but at low rates, which does not enable significant growth and quinoline hydroxylation. Introduction of the nitrate reductase from Pseudomonas aeruginosa enables considerable specific quinoline hydroxylation activity (6.9 U gCDW?1) under anaerobic conditions with nitrate as an electron acceptor and 2‐hydroxyquinoline as the sole product (further metabolization depends on O2). Hydroxylation‐derived electrons are efficiently directed to nitrate, accounting for 38% of the respiratory activity. This study shows that molybdenum hydroxylase‐based whole‐cell biocatalysts enable completely anaerobic carbon oxyfunctionalization when coupled to alternative respiration schemes such as nitrate respiration.  相似文献   

8.
The paper mainly studied the effects of ultraviolet‐B (UV‐B) radiation, nitrogen, and their combination on photosynthesis and antioxidant defenses of Picea asperata seedlings. The experimental design included two levels of UV‐B treatments (ambient UV‐B, 11.02 KJ m−2 day−1; enhanced UV‐B, 14.33 KJ m−2 day−1) and two nitrogen levels (0; 20 g m−2 a−1 N) – to determine whether the adverse effects of UV‐B are eased by supplemental nitrogen. Enhanced UV‐B significantly inhibited plant growth, net photosynthetic rate (A), stomatal conductance to water vapor (Gs), transpiration rate and photosynthetic pigment, and increased intercellular CO2 concentration, UV‐B absorbing compounds, proline content, malondialdehyde (MDA) content, and activity of antioxidant enzymes (peroxidase (POD), superoxide dimutase, and glutathione reductase). Enhanced UV‐B also reduced needle DW and increased hydrogen peroxide (H2O2) content and the rate of superoxide radical (O2) production only under supplemental nitrogen. On the other hand, supplemental nitrogen increased plant growth, A, Gs, chlorophyll content and activity of antioxidant enzymes (POD, ascorbate peroxidase, and catalase), and reduced MDA content, H2O2 content, and the rate of O2 production only under ambient UV‐B, whereas supplemental nitrogen reduced activity of antioxidant enzymes under enhanced UV‐B. Carotenoids content, proline content, and UV‐B absorbing compounds increased under supplemental nitrogen. Moreover, significant UV‐B × nitrogen interaction was found on plant height, basal diameter, A, chlorophyll a, activity of antioxidant enzymes, H2O2, MDA, and proline content. These results implied that supplemental nitrogen was favorable for photosynthesis and antioxidant defenses of P.asperata seedlings under ambient UV‐B. However, supplemental nitrogen made the plants more sensitive to enhanced UV‐B, although some antioxidant indexes increased.  相似文献   

9.
Mitochondrial aldehyde dehydrogenase ALD5 of Saccharomyces cerevisiae is involved in the biosynthesis of mitochondrial electron transport chain, and the ald5 mutant is incompetent for respiration. With use of the mutant, we examined the detoxication of H2O2 generation by fatty acid -oxidation in peroxisome. The ald5 mutant (AKD321), as well as the 746 0 mutant, was more resistant to H2O2 stress than the wild type. However, overexpression of the MDH3 gene that was involved in the reoxidation of NADH during fatty acid -oxidation caused a decrease in cell viability of AKD321 to H2O2 stress, while the 746 0 mutant had no such effect. Intracellular H2O2 concentration increased approximately fourfold in MDH3 overexpressing ald5 strain (MD3-AKD321), compared with AKD321. The peroxisomal catalase activity of MD3-AKD321 decreased by 83% to that of AKD321. And also, the overexpression of MDH3 had only a weak effect in MDH3 overexpressing 746 0 strain, decreasing by 14% to that of 746 0 mutant. The increased palmitoyl CoA oxidation by overexpression of MDH3 gene was the same in both strains. Under conditions of MDH3 overexpression, peroxisomal catalase (CTA1) appears to be a limiting factor to oxidative stress. These observations point to an important, as yet unidentified, role of mitochondrial aldehyde dehydrogenase (ALD5) to endogeneous oxidative stress in peroxisome.Received: 23 September 2002 / Accepted: 24 October 2002  相似文献   

10.
《FEBS letters》1985,193(2):180-184
Plasmalemma vesicles from wheat (Triticum aestivum L.) roots consumed O2 and the addition of 1 mM NADH increased the rate ~ 3-fold (to 15-30 nmol O2·mg−1·min−1). The NADH-dependent O2 uptake was abolished by catalase. In the presence of salicylhydroxamic acid (SHAM), an inhibitor of the alternative oxidase pathway in plant mitochondria, NADH-dependent O2 consumption was stimulated 10–20-fold (to 200–400 nmol·mg1̄·min−1). Catalase also abolished this stimulation, which was KCN-sensitive but antimycin A-insensitive, and the production of H2O2 during SHAM-stimulated NADH-dependent O2 uptake was demonstrated. Irrespective of the mechanism, SHAM-stimulated respiration by root plasmalemma makes it difficult to interpret results on root respiration obtained using KCN and SHAM.  相似文献   

11.
Dehydrogenases that use ubiquinone as an electron acceptor, including complex I of the respiratory chain, complex II, and glycerol-3-phosphate dehydrogenase, are known to be direct generators of superoxide and/or H2O2. Dihydroorotate dehydrogenase oxidizes dihydroorotate to orotate and reduces ubiquinone to ubiquinol during pyrimidine metabolism, but it is unclear whether it produces superoxide and/or H2O2 directly or does so only indirectly from other sites in the electron transport chain. Using mitochondria isolated from rat skeletal muscle we establish that dihydroorotate oxidation leads to superoxide/H2O2 production at a fairly high rate of about 300 pmol H2O2·min−1·mg protein−1 when oxidation of ubiquinol is prevented and complex II is uninhibited. This H2O2 production is abolished by brequinar or leflunomide, known inhibitors of dihydroorotate dehydrogenase. Eighty percent of this rate is indirect, originating from site IIF of complex II, because it can be prevented by malonate or atpenin A5, inhibitors of complex II. In the presence of inhibitors of all known sites of superoxide/H2O2 production (rotenone to inhibit sites in complex I (site IQ and, indirectly, site IF), myxothiazol to inhibit site IIIQo in complex III, and malonate plus atpenin A5 to inhibit site IIF in complex II), dihydroorotate dehydrogenase generates superoxide/H2O2, at a small but significant rate (23 pmol H2O2·min−1·mg protein−1), from the ubiquinone-binding site. We conclude that dihydroorotate dehydrogenase can generate superoxide and/or H2O2 directly at low rates and is also capable of indirect production at higher rates from other sites through its ability to reduce the ubiquinone pool.  相似文献   

12.
Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella oneidensis strain MR‐1. Although the pathways share a suite of similar proteins, the activity of only two of these pathways has been described. Respiration of extracellular substrates requires a mechanism to facilitate electron transfer from the quinone pool in the cytoplasmic membrane to terminal reductase enzymes located on the outer leaflet of the outer membrane. The four pathways share MtrA paralogues, a periplasmic electron carrier cytochrome, and terminal reductases similar to MtrC for reduction of metals, flavins and electrodes or to DmsAB for reduction of dimethyl sulphoxide (DMSO). The promiscuity of respiratory electron transfer reactions catalysed by these pathways has made studying strains lacking single proteins difficult. Here, we present a comprehensive analysis of MtrA and MtrC paralogues in S. oneidensis to define the roles of these proteins in respiration of insoluble iron oxide, soluble iron citrate, flavins and DMSO. We present evidence that some periplasmic electron carrier components and terminal reductases in these pathways can provide partial compensation in the absence of the primary component, a phenomenon described as modularity, and discuss biochemical and evolutionary implications.  相似文献   

13.
Photoautotrophic growth of a marine non-heterocystous filamentous cyanobacterium, Symploca sp. strain S84, was examined under nitrate-assimilating and N2-fixing conditions. Under continuous light, photon flux density of 55 μmol photons·m−2 ·s−1 was at a saturating level for growth, and light did not inhibit the growth rate under N2-fixing conditions even when the photon flux density was doubled (110 μmol photons·m−2 ·s−1). Doubling times of the N2-fixing cultures under 55 and 110 μmol photons·m−2 ·s−1 were about 30 and 31 h, respectively. Under 110 μmol photons·m−2 ·s−1 during the light phase of an alternating 12:12-h light:dark (L:D) cycle, the doubling time of the N2-fixing culture was also about 30 h. When grown diazotrophically under a 12:12-h L:D regime, C2H2 reduction activity was observed mainly during darkness. In continuous light, relatively large cyclic fluctuations in C2H2 reduction were observed during growth. The short-term (<4 h) effect of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU; 5 μM) indicated that C2H2 reduction activity was not influenced by photosynthetic O2 evolution. Long-term (24 h) effects of DCMU indicated that photosynthesis and C2H2 reduction activity occur simultaneously. These results indicate that strain S84 grows well under diazotrophic conditions when saturating light is supplied either continuously or under a 12:12-h L:D diel light regime.  相似文献   

14.
Changes in gene expression, by application of H2O2, O2°generating agents (methyl viologen, digitonin) and gamma irradiation to tomato suspension cultures, were investigated and compared to the well-described heat shock response. Two-dimensional gel protein mapping analyses gave the first indication that at least small heat shock proteins (smHSP) accumulated in response to application of H2O2 and gamma irradiation, but not to O2° generating agents. While some proteins seemed to be induced specifically by each treatment, only part of the heat shock response was observed. On the basis of Northern hybridization experiments performed with four heterologous cDNA, corresponding to classes I–IV of pea smHSP, it could be concluded that significant amounts of class I and II smHSP mRNA are induced by H2O2 and by irradiation. Taken together, these results demonstrate that in plants some HSP genes are inducible by oxidative stresses, as in micro-organisms and other eukaryotic cells. HSP22, the main stress protein that accumulates following H2O2 action or gamma irradiation, was also purified. Sequence homology of amino terminal and internal sequences, and immunoreactivity with Chenopodium rubrum mitochondrial smHSP antibody, indicated that the protein belongs to the recently discovered class of plant mitochondrial smHSP. Heat shock or a mild H2O2 pretreatment was also shown to lead to plant cell protection against oxidative injury. Therefore, the synthesis of these stress proteins can be considered as an adaptive mechanism in which mitochondrial protection could be essential.  相似文献   

15.
1. The single station diel oxygen curve method was used to determine the response of system metabolism to backfilling of a flood control canal and restoration of flow through the historic river channel of the Kissimmee River, a sub‐tropical, low gradient, blackwater river in central Florida, U.S.A. Gross primary productivity (GPP), community respiration (CR), the ratio of GPP/CR (P/R) and net daily metabolism (NDM) were estimated before and after canal backfilling and restoration of continuous flow through the river channel. 2. Restoration of flow through the river channel significantly increased reaeration rates and mean dissolved oxygen (DO) concentrations from <2 mg L−1 before restoration of flow to 4.70 mg L−1 after flow was restored. 3. Annual GPP and CR rates were 0.43 g O2 m−2 day−1 and 1.61 g O2 m−2 day−1 respectively, before restoration of flow. After restoration of flow, annual GPP and CR rates increased to 3.95 O2 m−2 day−1 and 9.44 g O2 m−2 day−1 respectively. 4. The ratio of P/R (mean of monthly values) increased from 0.29 during the prerestoration period to 0.51 after flow was restored, indicating an increase in autotrophic processes in the restored river channel. NDM values became more negative after flow was restored. 5. After flow was restored, metabolism parameters were generally similar to those reported for other blackwater river systems in the southeast U.S.A. Postrestoration DO concentrations met target values derived from free flowing, minimally impacted reference streams.  相似文献   

16.
A flow injection chemiluminescence (FI–CL) method was developed for the determination of cyanide (CN) based on the recovered CL signal by Cu2+ inhibiting a glutathione (GSH)‐capped CdTe quantum dot (QD) and hydrogen peroxide system. In an alkaline medium, strong CL signals were observed from the reaction of CdTe QDs and H2O2, and addition of Cu2+ could cause significant CL inhibition of the CdTe QDs–H2O2 system. In the presence of CN, Cu2+ can be removed from the surface of CdTe QDs via the formation of particularly stable [Cu(CN)n](n‐1)– species, and the CL signal of the CdTe QDs–H2O2 system was efficiently recovered. Thus, the CL signals of CdTe QDs–H2O2 system were turned off and turned on by the addition of Cu2+ and CN, respectively. Further, the results showed that among the tested ions, only CN could recover the CL signal, which suggested that the CdTe QDs–H2O2–Cu2+ CL system had highly selectivity for CN. Under optimum conditions, the CL intensity and the concentration of CN show a good linear relationship in the range 0.0–650.0 ng/mL (R2 = 0.9996). The limit of detection for CN was 6.0 ng/mL (3σ). This method has been applied to detect CN in river water and industrial wastewater with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The effect of NH4+ addition to NO3?-growing cells of the non-N2-fixing cyanobacterium Phormidium laminosum (Agardh) Gomont (strain OH-1-pCl1) on photo-synthetic and respiratory electron transport as well as on the intracellular levels of amino acids and some organic acids was studied. Addition of ammonium to nitrate-growing cells resulted in substantial increases in the pool size of most amino acids and a transient decrease in the pool size of organic acids. The high demand for organic acids was partially overcome by degradation of stored carbohydrates, more than by newly fixed carbon, as indicated by the large stimulation of the respiration rate upon ammonium addition. Following ammonium addition, the photosynthetic yield of the in vivo noncyclic electron transport decreased, and the sensitivity of photosystem II to photodamage increased. Results indicate that cells balance their photosynthetic and respiratory activities depending on nitrogen availability and point to an important involvement of respiration in providing energy for ammonium assimilation until adaptation of bioenergetic processes to the new nitrogen source is complete.  相似文献   

18.
The microzonation of O2 respiration, H2S oxidation, and SO42- reduction in aerobic trickling-filter biofilms was studied by measuring concentration profiles at high spatial resolution (25 to 100 μm) with microsensors for O2, S2-, and pH. Specific reaction rates were calculated from measured concentration profiles by using a simple one-dimensional diffusion reaction model. The importance of electron acceptor and electron donor availability for the microzonation of respiratory processes and their reaction rates was investigated. Oxygen respiration was found in the upper 0.2 to 0.4 mm of the biofilm, whereas sulfate reduction occurred in deeper, anoxic parts of the biofilm. Sulfate reduction accounted for up to 50% of the total mineralization of organic carbon in the biofilms. All H2S produced from sulfate reduction was reoxidized by O2 in a narrow reaction zone, and no H2S escaped to the overlying water. Turnover times of H2S and O2 in the reaction zone were only a few seconds owing to rapid bacterial H2S oxidation. Anaerobic H2S oxidation with NO3- could be induced by addition of nitrate to the medium. Total sulfate reduction rates increased when the availability of SO42- or organic substrate increased as a result of deepening of the sulfate reduction zone or an increase in the sulfate reduction intensity, respectively.  相似文献   

19.
Oxygen utilization is defined in this investigation as the terminal use of oxygen in respiration, i.e., the formation of water. A culture of Pseudomonas fluorescens was allowed to respire in an atmosphere of O18. The production of H2O18 was measured during two test runs of 124 and 232 min each. During the first run, 0.505 mmole of H2O18 was produced. The second run produced 0.460 mmole of H2O18. H2O18 production took place throughout the course of each of the runs.  相似文献   

20.
Summary Two different strains, An 1 and An 2, were obtained from root nodules ofAlnus nitida Endl., collected from one locality in the area of its natural habitat near Bahrin, District Swat, Pakistan. The light and electron microscopy of the isolates revealed the occurrence of septate and branched hyphae bearing sporangia and vesicles. The strains differed in their growth requirements, nitrogen-fixing ability and production of extracellular pigments, thus indicating the existence of more than oneFrankia strain in the same locality. In the absence of combined nitrogen in the medium strain An 1 formed vesicles and fixed N2 (up to 200 nmol C2H4. mg protein–1.h–1), while strain An 2 under the experimental conditions formed only few vesicles and fixed N2 at a very low rate (ca 10 nmol C2H4. mg protein–1 .h–1). The nitrogenase activity of strain An 1 was strongly affected by the O2 concentration.Frankia An 1 and An 2 were infective and effective onA. nitida andA. glutinosa but not onDatisca cannabina andElaeagnus umbellata. Both An 1 and An 2 strains were more infective and effective onA. glutinosa thanFrankia strains AvcIl and CpI1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号