首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Dioecy allows separation of female and male functions and therefore facilitates separate co‐evolutionary pathways with pollinators and seed dispersers. In monoecious figs, pollinators' offspring develop inside the syconium by consuming some of the seeds. Flower‐stage syconia must attract pollinators, then ripen and attract seed dispersers. In dioecious figs, male (“gall”) figs produce pollen but not viable seeds, as the pollinators' larvae eat all seeds, while female (“seed”) figs produce mostly viable seeds, as pollinators cannot oviposit in the ovules. Hence, gall and seed figs are under selection to attract pollinators, but only seed figs must attract seed dispersers. We test the hypothesis that seed and gall syconia at the flower stage will be similar, while at the fruiting stage they will differ. Likewise, monoecious syconia will be more similar to seed than gall figs because they must attract both pollinators and seed dispersers. We quantified syconium characteristics for 24 dioecious and 11 monoecious fig species and recorded frugivore visits. We show that seed and gall syconia are similar at the flower stage but differ at the fruit stage; monoecious syconia are more similar to seed syconia than they are to gall syconia; seed and gall syconia differentiate through their ontogeny from flower to fruit stages; and frugivores visit more monoecious and seed syconia than gall syconia. We suggest that similarity at the flower stage likely enhances pollination in both seed and gall figs and that differentiation after pollination likely enhances attractiveness to seed dispersers of syconia containing viable seeds. These ontogenetic differences between monoecious and dioecious species provide evidence of divergent responses to selection by pollinators and seed dispersers.  相似文献   

2.
1. Fig trees (Ficus spp.) and their host‐specific pollinator fig wasps (Agaonidae) are partners in an obligate mutualism. Receptive phase figs release specific volatiles to attract their pollinators, and this is generally effective in preventing pollinator species from entering figs of the wrong hosts. 2. If entry is attempted into atypical host figs, then ostiole size and shape and style length may also prevent reproduction. In spite of these barriers, there is increasing evidence that fig wasps enter atypical hosts, and that this can result in hybrid seed and fig wasp offspring. 3. This study examines the basis of pollinator specificity in two dioecious fig species from different geographical areas. Kradibia tentacularis pollinates Ficus montana in Asia. Ficus asperifolia from East Africa is closely related but is pollinated by a different species of Kradibia. 4. In glasshouses, K. tentacularis was attracted to its normal host, F1s and backcrosses, but only rarely entered figs of F. asperifolia. Foundresses were able to lay eggs in hybrids, backcrosses, and F. asperifolia, although flower occupancy was lowest in F. asperifolia figs and intermediate in hybrids. 5. The fig wasp failed to reproduce in female F. montana, male F. asperifolia, and male F1s, and most but not all backcrosses to F. montana. This was a result of the failure to initiate gall production. 6. Host specificity in this fig wasp is strongly influenced by host volatiles, but the ability to gall may be the ultimate determinant of whether it can reproduce.  相似文献   

3.
    
Fig wasps (Chalcidoidea, Agaonidae, Agaoninae) are the exclusive pollinators of fig trees (Ficus spp., Moraceae). Fig development on the African fig tree, F. burtt-davyi, is normally synchronised on individual trees, but not between trees. Consequently the females of each generation of the pollinating species (Elisabethiella baijnathi) have to disperse to other trees to find ‘receptive’ figs which are suitable for oviposition. This paper examines this aspect of fig - fig wasp biology. The flight speed of insects is closely linked to their size, and directional flight is difficult for small insects, such as fig wasps, in all but the lightest of winds. We investigated the movements of fig wasps between trees using sticky traps placed around fig trees or near cotton bags containing figs. Away from the trees, the densities of flying wasps at different heights was also determined. When the wasps disperse from their natal figs they take off near-vertically. They are unable to exert directional control once they enter the air column and are subsequently blown downwind. Near receptive host trees the wasps appear to lose height and then fly upwind at speeds of around 25 cm/sec.  相似文献   

4.
Platyscapa awekei DNA was enriched for several repeat motifs. Sequencing of 48 transformed colonies showed that 22 contained microsatellite loci. Eleven of these loci were tested and six of them proved to be reliable and variable. As expected from these wasps’ biology, FIS was high (= 0.423), indicating frequent sibmating. Notwithstanding, we estimate that dispersing males may secure as much as 8% of all matings.  相似文献   

5.
    
The obligate interaction between figs and their pollinating wasps is often cited as an extraordinary example of reciprocal species specificity and evolutionary cospeciation. However, recent studies have shown that breakdowns in one-to-one specificity are not rare (30–60% of species depending on the locality). Combined with evidence of hybridization in some species, this led researchers to propose that a better evolutionary model was one of groups of genetically well-defined pollinators coevolving with groups of frequently hybridizing figs. Nevertheless, these recent studies still indicate that a majority of fig species have one or more host-specific pollinator. The extent to which specificity barriers in these species are leaky will have important consequences for the evolutionary process in Ficus . At Lambir Hills N.P., Sarawak, a single individual of Ficus acamptophylla has become recently isolated from conspecifics through clearance of its specialized habitat, but adjacent forest has a diverse fig flora, including 16 species with congeneric pollinators. Thus, when this individual flowered I was able to investigate the maintenance of its specificity barriers in the absence of competition from the normal pollinator. Only 1 percent of inflorescences were entered by a single pollinator species, which had very low reproductive success, and no viable seeds were produced. Nonpollinating wasps also failed to reproduce in any of the inflorescences. These results indicate the maintenance of strict specificity barriers in this fig individual.  相似文献   

6.
    
We studied foundress number and its effect on seed production in a dioecious fig Ficus fistulosa in Sarawak, Malaysia. The effects of flowering time and the two-way interaction of flowering time and tree location on foundress number were statistically significant. A multiple regression indicated seed production increased significantly with the number of foundresses. Our results indicate that phenology and local ecological factors generate a large variance in foundress number, which in turn affects the reproductive success of F. fistulosa.  相似文献   

7.
    
1. Fig trees require host‐specific agaonid fig wasps for pollination, but their figs also support numerous non‐pollinating fig wasps (NPFW) that gall fig tissues or develop as parasitoids. 2. Ficus microcarpa L. is widely naturalised outside its native range and the most invasive fig tree species. Seed predators are widely used for the biological control of invasive plants, but no obligate seed predatory (as opposed to ovule or fig wall galling) NPFW have been recorded previously from any fig trees. 3. Philotrypesis NPFW are usually regarded as parasitoids or ‘inquilines’ (parasitoids that also eat plant material) of pollinator fig wasps, but the present study provides evidence that Philotrypesis taiwanensis, a NPFW associated with F. microcarpa, is an obligate seed predator: (i) adults emerge from seeds of typical appearance, with a surrounding elaiosome; (ii) it shows no preference for figs occupied by fig wasp species, other than the pollinator; (iii) it only develops in figs that contain pollinated ovules, avoiding figs occupied by an agaonid that fails to pollinate; (iv) larvae are distributed in layers where seeds are concentrated and (v) it has a negative impact on seed but not pollinator offspring numbers. 4. Philotrypesis is a large genus, and further species are likely to be seed predators.  相似文献   

8.
The evolution of plants exhibiting different sexes, or dioecy, is correlated with a number of ecological and life-history traits such as woody growth form and animal-dispersed seeds, but the underlying causes of these associations are unclear. Previous work in seed plants has suggested that the evolution of fleshy cones or seeds may favour dioecy. In this study, we use a well-sampled molecular phylogeny of conifers to show that although dioecy and fleshiness strongly co-occur at the species level, this relationship has not resulted from numerous separate origins of this trait combination or from differential rates of diversification. Instead, we suggest that two character combinations—the ancestral dry-monoecious condition and the derived fleshy-dioecious condition—have persisted in conifers longer than other combinations over evolutionary time. The persistence of these trait combinations appears to reflect differences in the rate of successful transition into and out of these character states over time, as well as the geographical restriction of species with rare combinations and their consequent vulnerability to extinction. In general, we argue that such persistence explanations should be considered alongside ‘key innovation’ hypotheses in explaining the phylogenetic distribution of traits.  相似文献   

9.
Abstract. Ficus burtt-davyi is a shrub or small tree found in the south and east of South Africa. Based on studies carried out in an area where the plant grows mainly as a rock-splitter, we first describe the nature and timing of the fruit resources it offers to potential dispersal agents, and then the animals that feed on the fruits. The figs are eaten by a diverse avian disperser assemblage, although just two species comprised about half of the recorded visits to the trees. Germination trials with seeds defecated by the birds found that they germinated more quickly than control seeds. Small terrestrial mammals and ants were also found to have a role in fig seed dispersal which may be disproportionate to the number of seeds they transport.  相似文献   

10.
Fig trees (Ficus spp., Moraceae) are pollinated by species-specific fig wasps and have seeds that are mainly dispersed by fruit bats and birds. Consequently, they should be strongly dependent on mutualisms with animals for their reproductive success. As elsewhere in the Pacific, extinctions of potential seed dispersers have occurred on the islands in the southern Cook Islands archipelago. The abundance of the Pacific Banyan, Ficus prolixa, was found to be unrelated to the extent of potential seed disperser extinctions on different islands. There was no evidence of recruitment on Rarotonga, which has the most diverse bird and bat assemblage, and healthy populations on Mangaia, where all the native avian frugivores are extinct. Despite its very small population sizes on some of the islands, the trees pollinators are still present, showing that this mutualism has not yet been disrupted. Habitat loss, rather than a loss of mutualists, appears to be the main problem facing this species.  相似文献   

11.
Abstract. We studied the phenology of 198 mature trees of the dioecious fig Ficus variegata Blume (Moraceae) in a seasonally wet tropical rain forest at Cape Tribulation, Australia, from March 1988 to February 1993. Leaf production was highly seasonal and correlated with rainfall. Trees were annually deciduous, with a pronounced leaf drop and a pulse of new growth during the August-September drought. At the population level, figs were produced continually throughout the study but there were pronounced annual cycles in fig abundance. Figs were least abundant during the early dry period (June-September) and most abundant from the late dry season (October-November) through the wet season (December-April). The annual peak in reproduction actually reflected two staggered peaks arising from gender differences in fig phenology. In this dioecious species, female and male trees initiated their maximal fig crops at different times and flowering was to some extent synchronized within sexes. Fig production in the female (seed-producing) trees was typically confined to the wet season. Male (wasp-producing) trees were less synchronized than female trees but reached a peak level of fig production in the months prior to the onset of female fig production. Male trees were also more likely to produce figs continually. Asynchrony among male fig crops during the dry season could maintain the pollinator population under adverse conditions through within- and among-tree wasp transfers.  相似文献   

12.
    
We investigated the diet of the southern cassowary (Casuarius casuarius) by identifying the seeds and fruits in fecal droppings encountered on a set of transects over 2 yr in upland rain forest in the wet tropics of North Queensland. A total of 198 droppings containing 56 plant species were found. We surveyed fleshy fruit availability over the subsequent 68 mo on transects in the same area to ascertain fruiting patterns in the study area. The number of droppings found each month did not correspond to the pattern of available fruit biomass. There was no relationship between the fruit traits of moisture content, flesh to seed mass ratio, color, or crop size to contribution of a species to the diet. During the lean fruiting season (May–July) cassowaries relied more on species that fruited continuously throughout the year as they were significantly over‐represented in droppings, while annual fruiting species were under‐represented. During months of high fruit availability (October–December), continuously fruiting species were still over‐represented in the diet but became less important while annual and biennial species became more important. Significantly more species with large fruit and large seeds appeared in the diet than expected and we confirm that the cassowary contributes to the continued dispersal of these species over long distances and in large quantities.  相似文献   

13.
    
The fig–fig pollinator association is a classic case of an obligate mutualism. Fig‐pollinating wasps often have to fly long distances from their natal syconia to a receptive syconium and then must enter the narrow ostiole of the syconium to reproduce. Large wasps are expected to have a greater chance of reaching a receptive syconium. In this study, we tested this hypothesis and then examined whether the ostiole selectively prevented larger pollinators from entering the syconial cavity. In Xishuangbanna, China, Ceratosolen solmsi marchali Mayr (Hymenoptera: Agaonidae) pollinates the dioecious syconia of Ficus hispida L. (Moraceae). The body size of newly emerged wasps and wasps arriving at receptive syconia were compared. Wasps arriving at receptive syconia were significantly larger than newly emerged wasps. We also compared the size of wasps trapped in the ostiole with those in the cavity. Wasps trapped in the ostiole were significantly larger than those in the syconial cavity. Thus, in the case of F. hispida, large wasps were more likely to reach receptive syconia, but the ostiole limited maximum fig wasp size. This indicates that the ostiole, as a selective filter to pollinators, stabilizes pollinator size. Hence, it helps to maintain stability in the fig–fig pollinator mutualism.  相似文献   

14.
简述了榕树与其传粉者的共生体系,讨论了榕属植物与榕小蜂科的分类历史和现状,指出了二者分 类研究中存在的分歧,并对榕属与榕小蜂科的分类不匹配问题进行了评述。结合我国榕属与榕小蜂科分类的 研究现状,展望今后研究的方向及前景。  相似文献   

15.
    
  1. The interaction between pollinator fig wasps (Agaonidae) and their host fig trees (Ficus) is a striking example of an obligate plant–insect mutualism, but figs also support numerous ‘parasites’ of the mutualism. Female agaonids (foundresses) lay their eggs in shorter‐styled flowers, whereas longer‐styled flowers produce seeds. A few ‘non‐pollinating’ fig wasps (NPFWs) can also enter figs to oviposit
  2. Fig wasp oviposition site choice and larval biology in figs of an Asian monoecious species, Ficus curtipes Corner, were recorded where two NPFW species oviposit inside the figs, such as the agaonid.
  3. Eupristina sp. agaonids chose flowers in proportion to their availability, rather than preferring to oviposit in shorter‐styled flowers. Diaziella yangi van Noort & Rasplus and Lipothymus sp. (Pteromalidae) foundresses followed Eupristina sp. into receptive figs and laid their eggs entirely in flowers that already contained pollinator eggs. This indicates that both NPFWs are inquilines under the widely‐used terminology in the fig wasp literature, because they utilise galls generated by the pollinators. However, their adult bodies and galls were larger than those of the pollinators, showing that they independently stimulate ovule growth. These species are better described as secondary gallers that modify galls previously generated by the pollinators and kill these primary gallers.
  4. Use of the term ‘inquiline’ among NPFWs inadequately and often inappropriately describes their biology. No known NPFWs are inquilines in the strict sense that they do not harm their hosts. ‘Primary gallers’, ‘secondary gallers’, ‘seed predators’, and ‘parasitoids’ describe their biology more accurately.
  相似文献   

16.
    
Abstract The distribution of epiphytic organisms is limited by the availability of, and dispersal to suitable hosts. We examined the distribution of a hemi‐epiphytic strangler fig, Ficus watkinsiana (Moraceae) in Cooloola National Park (Queensland, Australia), in order to determine whether this species exhibits a preference for certain host species and why. We assessed host bark roughness and flakiness, fruit type, and size to explain the observed distribution of F. watkinsiana. We surveyed over 1900 potential host trees of the 30 most common forest canopy species and found that host size measured by diameter at breast height accounted for most variation in fig prevalence (Binary Logistic Regression log‐likelihood = ?588.178, G = 314.494, d.f. = 1, P < 0.005). After controlling for host size, F. watkinsiana prevalence still differed significantly between host species (χ2 = 54.612, d.f. = 24, P < 0.005), a difference that was only partly explained by variation in the bark roughness of host trunks. These results suggest that variation in the rate at which tree species host strangler figs are primarily related to individual tree size – figs may simply be more likely to colonize and thrive upon host species that grow larger.  相似文献   

17.
  总被引:10,自引:0,他引:10  
The consumption of figs (the fruit of Ficus spp.: Moraceae) by vertebrates is reviewed using data from the literature, unpublished accounts and new field data from Borneo and Hong Kong. Records of frugivory from over 75 countries are presented for 260 Ficus species (approximately 30% of described species). Explanations are presented for geographical and taxonomic gaps in the otherwise extensive literature. In addition to a small number of reptiles and fishes, 1274 bird and mammal species in 523 genera and 92 families are known to eat figs. In terms of the number of species and genera of fig-eaters and the number of fig species eaten we identify the avian families interacting most with Ficus to be Columbidae, Psittacidae, Pycnonotidae, Bucerotidae, Sturnidae and Lybiidae. Among mammals, the major fig-eating families are Pteropodidae, Cercopithecidae, Sciuridae, Phyllostomidae and Cebidae. We assess the role these and other frugivores play in Ficus seed dispersal and identify fig-specialists. In most, but not all, cases fig specialists provide effective seed dispersal services to the Ficus species on which they feed. The diversity of fig-eaters is explained with respect to fig design and nutrient content, phenology of fig ripening and the diversity of fig presentation. Whilst at a gross level there exists considerable overlap between birds, arboreal mammals and fruit bats with regard to the fig species they consume, closer analysis, based on evidence from across the tropics, suggests that discrete guilds of Ficus species differentially attract subsets of sympatric frugivore communities. This dispersal guild structure is determined by interspecific differences in fig design and presentation. Throughout our examination of the fig-frugivore interaction we consider phylogenetic factors and make comparisons between large-scale biogeographical regions. Our dataset supports previous claims that Ficus is the most important plant genus for tropical frugivores. We explore the concept of figs as keystone resources and suggest criteria for future investigations of their dietary importance. Finally, fully referenced lists of frugivores recorded at each Ficus species and of Ficus species in the diet of each frugivore are presented as online appendices. In situations where ecological information is incomplete or its retrieval is impractical, this valuable resource will assist conservationists in evaluating the role of figs or their frugivores in tropical forest sites.  相似文献   

18.
传粉榕小蜂与非传粉小蜂间寄主识别行为的趋同进化   总被引:1,自引:0,他引:1  
在高度专性传粉的榕树-榕小蜂互惠共生系统中普遍存在着一些非传粉小蜂,它们中的一些种类进入果腔后也能为榕树传粉,且在形态和物候上已与传粉榕小蜂发生了趋同进化。但其寄主识别行为是否也与传粉榕小蜂发生了趋同进化还不得而知。我们在西双版纳选择了钝叶榕(Ficuscurtipes)及其3种进果繁殖小蜂开展了相关的行为实验。3种小蜂中,1种是钝叶榕的专性传粉榕小蜂(Eupristina sp.),另外2种是寄居性非传粉小蜂(杨氏金小蜂Diaziellayangi和Lipothymus sp.),这2种非传粉小蜂进入果腔后也像传粉榕小蜂那样为钝叶榕传粉。我们以钝叶榕不同发育时期的榕果及这3种小蜂为材料,采用Y型嗅觉仪观察了这3种小蜂对各发育时期榕果和信息化学物质6-甲基-5-庚烯-2-醇、6-甲基-5-庚烯-2-酮及这2种化合物的混合物的选择行为。结果表明,当提供雌花期榕果与其他发育时期榕果和空气对照供这3种小蜂选择时,它们均显著地偏向于选择雌花期榕果;当提供雄花期榕果与其他发育时期榕果和空气对照供这3种小蜂选择时,它们均显著地偏向于选择其他发育时期榕果和空气对照,即都会避开雄花期榕果;此外,这3种小蜂均对钝叶榕雌花期果释放的一种主要化合物6-甲基-5-庚烯-2-醇的同一剂量(1μL)表现出显著的偏好。这一结果为传粉榕小蜂与非传粉小蜂间的寄主识别行为趋同进化的假说提供了证据。  相似文献   

19.
Figs (Ficus spp., Moraceae) and their pollinating wasps (Hymenoptera, Agaonidae, Chalcidoidea) constitute a classic example of an obligate plant-pollinator mutualism, and have become an ideal system for addressing questions on coevolution, speciation, and the maintenance of mutualisms. In addition to pollinating wasps, figs host several types of nonpollinating, parasitic wasps from a diverse array of Chalcid subfamilies with varied natural histories and ecological strategies (e.g. competitors, gallers, and parasitoids). Although a few recent studies have addressed the question of codivergence between specific genera of pollinating and nonpollinating fig wasps, no study has addressed the history of divergence of a fig wasp community comprised of multiple genera of wasps associated with a large number of sympatric fig hosts. Here, we conduct phylogenetic analyses of mitochondrial DNA sequences (COI) using 411 individuals from 69 pollinating and nonpollinating fig wasp species to assess relationships within and between five genera of fig wasps (Pegoscapus, Idarnes, Heterandrium, Aepocerus, Physothorax) associated with 17 species of New World Urostigma figs from section Americana. We show that host-switching and multiple wasp species per host are ubiquitous across Neotropical nonpollinating wasp genera. In spite of these findings, cophylogenetic analyses (TREEMAP 1.0, TREEMAP 2.02beta, and parafit) reveal evidence of codivergence among fig wasps from different ecological guilds. Our findings further challenge the classical notion of strict-sense coevolution between figs and their associated wasps, and mirror conclusions from detailed molecular studies of other mutualisms that have revealed common patterns of diffuse coevolution and asymmetric specialization among the participants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号