首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Consensus design, the selection of mutations based on the most common amino acid in each position of a multiple sequence alignment, has proven to be an efficient way to engineer stabilized mutants and even to design entire proteins. However, its application has been limited to small motifs or small families of highly related proteins. Also, we have little idea of how information that specifies a protein's properties is distributed between positional effects (consensus) and interactions between positions (correlated occurrences of amino acids). Here, we designed several consensus variants of triosephosphate isomerase (TIM), a large, diverse family of complex enzymes. The first variant was only weakly active, had molten globular characteristics, and was monomeric at 25 °C despite being based on nearly all dimeric enzymes. A closely related variant from curation of the sequence database resulted in a native-like dimeric TIM with near-diffusion-controlled kinetics. Both enzymes vary substantially (30–40%) from any natural TIM, but they differ from each other in only a relatively small number of unconserved positions. We demonstrate that consensus design is sufficient to engineer a sophisticated protein that requires precise substrate positioning and coordinated loop motion. The difference in oligomeric states and native-like properties for the two consensus variants is not a result of defects in the dimerization interface but rather disparate global properties of the proteins. These results have important implications for the role of correlated amino acids, the ability of TIM to function as a monomer, and the ability of molten globular proteins to carry out complex reactions.  相似文献   

2.
De novo design of the hydrophobic core of ubiquitin.   总被引:9,自引:7,他引:2       下载免费PDF全文
We have previously reported the development and evaluation of a computational program to assist in the design of hydrophobic cores of proteins. In an effort to investigate the role of core packing in protein structure, we have used this program, referred to as Repacking of Cores (ROC), to design several variants of the protein ubiquitin. Nine ubiquitin variants containing from three to eight hydrophobic core mutations were constructed, purified, and characterized in terms of their stability and their ability to adopt a uniquely folded native-like conformation. In general, designed ubiquitin variants are more stable than control variants in which the hydrophobic core was chosen randomly. However, in contrast to previous results with 434 cro, all designs are destabilized relative to the wild-type (WT) protein. This raises the possibility that beta-sheet structures have more stringent packing requirements than alpha-helical proteins. A more striking observation is that all variants, including random controls, adopt fairly well-defined conformations, regardless of their stability. This result supports conclusions from the cro studies that non-core residues contribute significantly to the conformational uniqueness of these proteins while core packing largely affects protein stability and has less impact on the nature or uniqueness of the fold. Concurrent with the above work, we used stability data on the nine ubiquitin variants to evaluate and improve the predictive ability of our core packing algorithm. Additional versions of the program were generated that differ in potential function parameters and sampling of side chain conformers. Reasonable correlations between experimental and predicted stabilities suggest the program will be useful in future studies to design variants with stabilities closer to that of the native protein. Taken together, the present study provides further clarification of the role of specific packing interactions in protein structure and stability, and demonstrates the benefit of using systematic computational methods to predict core packing arrangements for the design of proteins.  相似文献   

3.
Understanding the determinants of protein stability remains one of protein science's greatest challenges. There are still no computational solutions that calculate the stability effects of even point mutations with sufficient reliability for practical use. Amino acid substitutions rarely increase the stability of native proteins; hence, large libraries and high-throughput screens or selections are needed to stabilize proteins using directed evolution. Consensus mutations have proven effective for increasing stability, but these mutations are successful only about half the time. We set out to understand why some consensus mutations fail to stabilize, and what criteria might be useful to predict stabilization more accurately. Overall, consensus mutations at more conserved positions were more likely to be stabilizing in our model, triosephosphate isomerase (TIM) from Saccharomyces cerevisiae. However, positions coupled to other sites were more likely not to stabilize upon mutation. Destabilizing mutations could be removed both by removing sites with high statistical correlations to other positions and by removing nearly invariant positions at which "hidden correlations" can occur. Application of these rules resulted in identification of stabilizing mutations in 9 out of 10 positions, and amalgamation of all predicted stabilizing positions resulted in the most stable yeast TIM variant we produced (+8 °C). In contrast, a multimutant with 14 mutations each found to stabilize TIM independently was destabilized by 2 °C. Our results are a practical extension to the consensus concept of protein stabilization, and they further suggest the importance of positional independence in the mechanism of consensus stabilization.  相似文献   

4.
Binary patterning of polar and nonpolar amino acids has been used as the key design feature for constructing large combinatorial libraries of de novo proteins. Each position in a binary patterned sequence is designed explicitly to be either polar or nonpolar; however, the precise identities of these amino acids are varied extensively. The combinatorial underpinnings of the "binary code" strategy preclude explicit design of particular side chains at specified positions. Therefore, packing interactions cannot be specified a priori. To assess whether the binary code strategy can nonetheless produce well-folded de novo proteins, we constructed a second-generation library based upon a new structural scaffold designed to fold into 102-residue four-helix bundles. Characterization of five proteins chosen arbitrarily from this new library revealed that (1) all are alpha-helical and quite stable; (2) four of the five contain an abundance of tertiary interactions indicative of well-ordered structures; and (3) one protein forms a well-folded structure with native-like features. The proteins from this new 102-residue library are substantially more stable and dramatically more native-like than those from an earlier binary patterned library of 74-residue sequences. These findings demonstrate that chain length is a crucial determinant of structural order in libraries of de novo four-helix bundles. Moreover, these results show that the binary code strategy--if applied to an appropriately designed structural scaffold--can generate large collections of stably folded and/or native-like proteins.  相似文献   

5.
M D Finucane  D N Woolfson 《Biochemistry》1999,38(36):11613-11623
We have applied the method described in the preceding paper [Finucane, M. D., et al. (1999) Biochemistry 38, 11604-11612], namely, stability-based selection using phage display, to explore the sequence requirements for packing in the hydrophobic core of ubiquitin. In contrast to the parent protein, which was a structurally compromised mutant, the selected variants could be overexpressed and purified in yields for structural studies. In particular, CD and NMR measurements showed that the selectants folded correctly to stable native-like structures. These points demonstrate the utility of our core-directed method for stabilizing and redesigning proteins. In addition and in contrast to foregoing studies on other proteins, which suggest that hydrophobic cores permit substitutions provided that hydrophobicity and core volumes are generally conserved, we find that the core of ubiquitin is surprisingly intolerant of amino acid substitutions; variants that survived our selection showed a clear consensus for the wild-type sequence. It is probable that our results differed from those from other groups for two reasons. First, ubiquitin may be unusual in that it has strict sequence requirements for its structure and stability. We discuss this result in light of sequence conservation in the eukaryotic ubiquitins and proteins of the ubiquitin structural superfamily. Second, our mutants were selected solely on the basis of stability, in contrast to the other studies that rely on function-based selection. The latter may lead to proteins that are more plastic and tolerant of substitutions.  相似文献   

6.
A simple theoretical model for increasing the protein stability by adequately redesigning the distribution of charged residues on the surface of the native protein was tested experimentally. Using the molecule of ubiquitin as a model system, we predicted possible amino acid substitutions on the surface of this protein which would lead to an increase in its stability. Experimental validation for this prediction was achieved by measuring the stabilities of single-site-substituted ubiquitin variants using urea-induced unfolding monitored by far-UV CD spectroscopy. We show that the generated variants of ubiquitin are indeed more stable than the wild-type protein, in qualitative agreement with the theoretical prediction. As a positive control, theoretical predictions for destabilizing amino acid substitutions on the surface of the ubiquitin molecule were considered as well. These predictions were also tested experimentally using correspondingly designed variants of ubiquitin. We found that these variants are less stable than the wild-type protein, again in agreement with the theoretical prediction. These observations provide guidelines for rational design of more stable proteins and suggest a possible mechanism of structural stability of proteins from thermophilic organisms.  相似文献   

7.
GroEL minichaperones have potential in the biotechnology industry for the refolding of recombinant proteins. With the aim of enhancing and widening their use, we have created two highly stable functional variants of minichaperone GroEL(193-345). A sequence alignment of 130 members of the chaperonin 60 (Cpn60) family was used to design 37 single mutations. Two small-to-large mutations, A223T, A223V and one similar-size mutation, M233L, all located in the hydrophobic core were found to stabilize the protein by more than 1 kcal mol(-1) each. Six stabilizing mutations were combined, yielding two multiple mutants that were 6.99 and 6.15 kcal mol(-1) more stable than wild-type protein. Even though some of the substituted residue pairs are close to each other in the protein structure, the energetic effects of mutation are approximately additive. In particular, the stabilizing substitution A223T is unexpected and would have been missed by purely structural analysis. In the light of previously reported successes employing similar methods with several other proteins, our results show that a homology based approach is a simple and efficient method of increasing the stability of a protein.  相似文献   

8.
9.

Background

Global residue-specific amino acid mutagenesis can provide important biological insight and generate proteins with altered properties, but at the risk of protein misfolding. Further, targeted libraries are usually restricted to a handful of amino acids because there is an exponential correlation between the number of residues randomized and the size of the resulting ensemble. Using GFP as the model protein, we present a strategy, termed protein evolution via amino acid and codon elimination, through which simplified, native-like polypeptides encoded by a reduced genetic code were obtained via screening of reduced-size ensembles.

Methodology/Principal Findings

The strategy involves combining a sequential mutagenesis scheme to reduce library size with structurally stabilizing mutations, chaperone complementation, and reduced temperature of gene expression. In six steps, we eliminated a common buried residue, Phe, from the green fluorescent protein (GFP), while retaining activity. A GFP variant containing 11 Phe residues was used as starting scaffold to generate 10 separate variants in which each Phe was replaced individually (in one construct two adjacent Phe residues were changed simultaneously), while retaining varying levels of activity. Combination of these substitutions to generate a Phe-free variant of GFP abolished fluorescence. Combinatorial re-introduction of five Phe residues, based on the activities of the respective single amino acid replacements, was sufficient to restore GFP activity. Successive rounds of mutagenesis generated active GFP variants containing, three, two, and zero Phe residues. These GFPs all displayed progenitor-like fluorescence spectra, temperature-sensitive folding, a reduced structural stability and, for the least stable variants, a reduced steady state abundance.

Conclusions/Significance

The results provide strategies for the design of novel GFP reporters. The described approach offers a means to enable engineering of active proteins that lack certain amino acids, a key step towards expanding the functional repertoire of uniquely labeled proteins in synthetic biology.  相似文献   

10.
Redesigning the hydrophobic core of a four-helix-bundle protein.   总被引:13,自引:11,他引:2       下载免费PDF全文
Rationally redesigned variants of the 4-helix-bundle protein Rop are described. The novel proteins have simplified, repacked, hydrophobic cores and yet reproduce the structure and native-like physical properties of the wild-type protein. The repacked proteins have been characterized thermodynamically and their equilibrium and kinetic thermal and chemical unfolding properties are compared with those of wild-type Rop. The equilibrium stability of the repacked proteins to thermal denaturation is enhanced relative to that of the wild-type protein. The rate of chemically induced folding and unfolding of wild-type Rop is extremely slow when compared with other small proteins. Interestingly, although the repacked proteins are more thermally stable than the wild type, their rates of chemically induced folding and unfolding are greatly increased in comparison to wild type. Perhaps as a consequence of this, their equilibrium stabilities to chemical denaturants are slightly reduced in comparison to the wild type.  相似文献   

11.
The ability to design specific amino acid sequences that fold into desired structures is central to engineering novel proteins. Protein design is also a good method to assess our understanding of sequence-structure and structure-function relationships. While beta-sheet structures are important elements of protein architecture, it has traditionally been more difficult to design beta-proteins than alpha-helical proteins. Taking advantage of the tandem repeated sequences that form the structural building blocks in a group of beta-propeller proteins; we have used a consensus design approach to engineer modular and relatively large scaffolds. An idealized WD repeat was designed from a structure-based sequence alignment with a set of structural guidelines. Using a plasmid sequential ligation strategy, artificial concatemeric genes with up to 10 copies of this idealized repeat were then constructed. Corresponding proteins with 4 through to 10 WD repeats were soluble when over-expressed in Escherichia coli. Notably, they were sufficiently stable in vivo surviving attack from endogenous proteases, and maintained a homogeneous, non-aggregated form in vitro. The results show that the beta-propeller scaffold is an attractive platform for future engineering work, particularly in experiments in which directed evolution techniques might improve the stability of the molecules and/or tailor them for a specific function.  相似文献   

12.
The role of electrostatic interactions in determining the stability of designed proteins was studied by constructing and analyzing a set of designed variants of the Drosophila engrailed homeodomain. Computational redesign of 29 surface positions results in a 25-fold mutant with moderate stability, similar to the wild-type protein. Incorporating helix dipole and N-capping considerations into the design algorithm by restricting amino acid composition at the helix termini and N-capping positions yields a ninefold mutant of the initial design (a 23-fold mutant of wild-type) that is over 3 kcal mol(-1) more stable than the protein resulting from the unbiased design. Four additional proteins were constructed and analyzed to isolate the effects of helix dipole and N-capping interactions in each helix. Based on the results of urea-denaturation experiments and calculations using the finite difference Poisson-Boltzmann method, both classes of interaction are found to increase the stability of the designed proteins significantly. The simple electrostatic model used in the optimization of rotamers by iterative techniques (ORBIT) force-field, which is similar to the electrostatic models used in other protein design force-fields, is unable to predict the experimentally determined stabilities of the designed variants. The helix dipole and N-capping restrictions provide a simple but effective method to incorporate two types of electrostatic interactions that impact protein stability significantly.  相似文献   

13.
The majority of mitochondrial proteins are synthesized with amino-terminal signal sequences. The presequence translocase of the inner membrane (TIM23 complex) mediates the import of these preproteins. The essential TIM23 core complex closely cooperates with partner protein complexes like the presequence translocase-associated import motor and the respiratory chain. The inner mitochondrial membrane also contains a large number of metabolite carriers, but their association with preprotein translocases has been controversial. We performed a comprehensive analysis of the TIM23 interactome based on stable isotope labeling with amino acids in cell culture. Subsequent biochemical studies on identified partner proteins showed that the mitochondrial ADP/ATP carrier associates with the membrane-embedded core of the TIM23 complex in a stoichiometric manner, revealing an unexpected connection of mitochondrial protein biogenesis to metabolite transport. Our data indicate that direct TIM23-AAC coupling may support preprotein import into mitochondria when respiratory activity is low.  相似文献   

14.
Using a protein design algorithm that considers side-chain packing quantitatively, the effect of explicit backbone motion on the selection of amino acids in protein design was assessed in the core of the streptococcal protein G beta 1 domain (G beta 1). Concerted backbone motion was introduced by varying G beta 1's supersecondary structure parameter values. The stability and structural flexibility of seven of the redesigned proteins were determined experimentally and showed that core variants containing as many as 6 of 10 possible mutations retain native-like properties. This result demonstrates that backbone flexibility can be combined explicitly with amino acid side-chain selection and that the selection algorithm is sufficiently robust to tolerate perturbations as large as 15% of G beta 1's native supersecondary structure parameter values.  相似文献   

15.
The ability to design stable proteins with custom-made functions is a major goal in biochemistry with practical relevance for our environment and society. Understanding and manipulating protein stability provide crucial information on the molecular determinants that modulate structure and stability, and expand the applications of de novo proteins. Since the (β/⍺)8-barrel or TIM-barrel fold is one of the most common functional scaffolds, in this work we designed a collection of stable de novo TIM barrels (DeNovoTIMs), using a computational fixed-backbone and modular approach based on improved hydrophobic packing of sTIM11, the first validated de novo TIM barrel, and subjected them to a thorough folding analysis. DeNovoTIMs navigate a region of the stability landscape previously uncharted by natural TIM barrels, with variations spanning 60 degrees in melting temperature and 22 kcal per mol in conformational stability throughout the designs. Significant non-additive or epistatic effects were observed when stabilizing mutations from different regions of the barrel were combined. The molecular basis of epistasis in DeNovoTIMs appears to be related to the extension of the hydrophobic cores. This study is an important step towards the fine-tuned modulation of protein stability by design.  相似文献   

16.
The energetic consequences of site-specific replacement of a residue at a partially buried site in the two homologous HPr proteins from Escherichia coli and Bacillus subtilis is described. We determined previously that the replacement of a partially buried Lys residue with Glu at position 49 in E.coli HPr increased the conformational stability of the protein substantially because the side-chain of the latter residue could act as a hydrogen-bond acceptor. Here, we extend this analysis to other side-chains with different chemical properties and abilities to form hydrogen bonds to compare the properties of this position in the backgrounds of two different homologous HPr proteins. We find that the variants with polar residues that can form a tertiary hydrogen bond with a nearby site in the protein are more stable than either hydrophobic residues or polar residues that become buried yet are incapable of forming a new hydrogen bond. Furthermore, the protein with the wild-type residue in each HPr variant is not among the most stable of the proteins studied. These results suggest a general strategy for designing variants in which the overall stability of a protein can be modulated in a defined fashion.  相似文献   

17.
An important goal of protein design is to understand the forces that stabilize a particular fold in preference to alternative folds. Here, we describe an extension of earlier studies in which we successfully designed a stable, native-like helical protein that is 50% identical in sequence to a predominantly beta-sheet protein, the B1 domain of Streptococcal IgG-binding protein G. We report the characteristics of a series of variants of our original design that have even higher sequence identity to the B1 domain. Their properties illustrate the extent to which protein stability and conformation can be modulated through careful manipulation of key amino acid residues. Our results have implications for understanding conformational change phenomena of central biological importance and in probing the malleability of the sequence/structure relationship.  相似文献   

18.
Studies in vitro show that globular proteins can experience the formation of native-like conformational states able to self-assemble with no need of transitions across the energy barrier for unfolding, and that such processes can lead eventually to the formation of amyloid-like species. Circumstantial evidence collected in vivo suggests that aggregation of native-like states can be a concrete possibility for living organisms and thus more relevant than previously thought. In this review we summarize the key observations collected on the “native-like aggregation” of the acylphosphatase from Sulfolobus solfataricus, a protein that has allowed the direct monitoring and analysis of native-like aggregates for its propensity to form rapidly native-like aggregates and their slow conversion into amyloid-like aggregates.  相似文献   

19.
Charged amino acids are mostly exposed on a protein surface, thereby forming a network of interactions with the surrounding amino acids as well as with water. In particular, positively charged arginine and lysine have different side chain geometries and provide a different number of potential electrostatic interactions. This study reports a comparative analysis of the difference in the number of two representative electrostatic interactions, such as salt-bridges and hydrogen bonds, contributed by surface arginine and lysine, as well as their effect on protein stability using molecular modeling and dynamics simulation techniques. Two in silico variants, the R variant with all arginines and the K variant with all lysines on the protein surface, were modeled by mutating all the surface lysines to arginines and the surface arginines to lysines, respectively, for each of the 10 model proteins. A structural comparison of the respective two variants showed that the majority of R variants possessed more salt-bridges and hydrogen bond interactions than the K variants, indicating that arginine provides a higher probability of electrostatic interactions than lysine owing to its side chain geometry. Molecular dynamics simulations of these variants revealed the R variants to be more stable than the K variants at room temperature but this effect was not prominent under protein denaturating conditions, such as 353 and 333 K with 8 M urea. These results suggest that the arginine residues on a protein surface contribute to the protein stability slightly more than lysine by enhancing the electrostatic interactions.  相似文献   

20.
A fundamental test of our current understanding of protein folding is to rationally redesign protein folding pathways. We use a computer-based design strategy to switch the folding pathway of protein G, which normally involves formation of the second, but not the first, beta-turn at the rate limiting step in folding. Backbone conformations and amino acid sequences that maximize the interaction density in the first beta-hairpin were identified, and two variants containing 11 amino acid replacements were found to be approximately 4 kcal mol-1 more stable than wild type protein G. Kinetic studies show that the redesigned proteins fold approximately 100 x faster than wild type protein and that the first beta-turn is formed and the second disrupted at the rate limiting step in folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号