首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Several denitrifying Pseudomonas strains contained an NADP+-specific 2-oxoglutarate dehydrogenase, in contrast to an NAD+-specific pyruvate dehydrogenase, if the cells were grown anaerobically with aromatic compounds. With non-aromatic substrates or after aerobic growth the coenzyme specificity of 2-oxoglutarate dehydrogenase changed to NAD+-specificity. The reaction stoichiometry and the apparent K m-values of the enriched enzymes were determined: pyruvate 0.5 mM, coenzyme A 0.05 mM, NAD+ 0.25 mM; 2-oxoglutarate 0.6 mM, coenzyme A 0.05 mM, NADP+ 0.03 mM. Isocitrate dehydrogenase was NADP+-specific. The findings suggest that these strains contained at least two lipoamide dehydrogenases, one NAD+-specific, the other NADP+-specific.  相似文献   

2.
Hydroxysteroid dehydrogenases are of great interest as biocatalysts for transformations involving steroid substrates. They feature a high degree of stereo‐ and regio‐selectivity, acting on a defined atom with a specific configuration of the steroid nucleus. The crystal structure of 7β‐hydroxysteroid dehydrogenase from Collinsella aerofaciens reveals a loop gating active‐site accessibility, the bases of the specificity for NADP+, and the general architecture of the steroid binding site. Comparison with 7α‐hydroxysteroid dehydrogenase provides a rationale for the opposite stereoselectivity. The presence of a C‐terminal extension reshapes the substrate site of the β‐selective enzyme, possibly leading to an inverted orientation of the bound substrate. Proteins 2016; 84:859–865. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
The cofactor-binding site of the NAD+-dependent Arabidopsis thaliana aldehyde dehydrogenase ALDH3H1 was analyzed to understand structural features determining cofactor-specificity. Homology modeling and mutant analysis elucidated important amino acid residues. Glu149 occupies a central position in the cofactor-binding cleft, and its carboxylate group coordinates the 2′- and 3′-hydroxyl groups of the adenosyl ribose ring of NAD+ and repels the 2′-phosphate moiety of NADP+. If Glu149 is mutated to Gln, Asp, Asn or Thr the binding of NAD+ is altered and rendered the enzyme capable of using NADP+. This change is attributed to a weaker steric hindrance and elimination of the electrostatic repulsion force of the 2′-phosphate of NADP+. Simultaneous mutations of Glu149 and Ile200, which is situated opposite of the cofactor binding cleft, improved the enzyme efficiency with NADP+. The double mutant ALDH3H1Glu149Thr/Ile200Val showed a good catalysis with NADP+. Subsequently a triple mutation was generated by replacing Val178 by Arg in order to create a “closed” cofactor binding site. The cofactor specificity was shifted even further in favor of NADP+, as the mutant ALDH3H1E149T/V178R/I200V uses NADP+ with almost 7-fold higher catalytic efficiency compared to NAD+. Our experiments suggest that residues occupying positions equivalent to 149, 178 and 200 constitute a group of amino acids in the ALDH3H1 protein determining cofactor affinity.  相似文献   

4.
A NADP+-specific isocitrate dehydrogenase (EC 1.1.1.42) was isolated and purified over 400-fold from Anacystis nidulans. The enzyme activity responded slowly to rapid changes in ligand (NADP+, isocitrate, Mg2+-ions) or enzyme concentration as well as to rapid changes in temperature. These are properties characteristic of the hysteretic enzymes. In addition, the enzyme activity was subject to product (-ketoglutarate) inhibition. ATP, ADP and CDP also inhibited the enzyme. Unlike several other cyanobacterial enzymes, the isocitrate dehydrogenase of Anacystis is not under redox control.  相似文献   

5.
Characteristics of the three major ammonia assimilatory enzymes, glutamate dehydrogenase (GDH), glutamine synthetase (GS) and glutamate synthase (GOGAT) in Corynebacterium callunae (NCIB 10338) were examined. The GDH of C. callunae specifically required NADPH and NADP+ as coenzymes in the amination and deamination reactions, respectively. This enzyme showed a marked specificity for -ketoglutarate and glutamate as substrates. The optimum pH was 7.2 for NADPH-GDH activity (amination) and 9.0 for NADP+-GDH activity (deamination). The results showed that NADPH-GDH and NADP+-GDH activities were controlled primarily by product inhibition and that the feedback effectors alanine and valine played a minor role in the control of NADPH-GDH activity. The transferase activity of GS was dependent on Mn+2 while the biosynthetic activity of the enzyme was dependent on Mg2+ as essential activators. The pH optima for transferase and biosynthetic activities were 8.0 and 7.0, respectively. In the transfer reaction, the K m values were 15.2 mM for glutamine, 1.46 mM for hydroxylamine, 3.5×10-3 mM for ADP and 1.03 mM for arsenate. Feedback inhibition by alanine, glycine and serine was also found to play an important role in controlling GS activity. In addition, the enzyme activity was sensitive to ATP. The transferase activity of the enzyme was responsive to ionic strength as well as the specific monovalent cation present. GOGAT of C. callunae utilized either NADPH or NADH as coenzymes, although the latter was less effective. The enzyme specifically required -ketoglutarate and glutamine as substrates. In cells grown in a medium with glutamate as the nitrogen source, the optimum pH was 7.6 for NADPH-GOGAT activity and 6.8 for NADH-GOGAT activity. Findings showed that NADPH-GOGAT and NADH-GOGAT activities were controlled by product inhibition caused by NADP+ and NAD+, respectively, and that ATP also had an important role in the control of NADPH-GOGAT activity. Both activities of GOGAT were found to be inhibited by azaserine.Abbreviations GDH glutamate dehydrogenase - GOGAT glutamate synthase - GS glutamine synthetase  相似文献   

6.
The ‘high ammonia pathway’ enzyme glutamate dehydrogenase (NADP+) is inactivated in cells of Pseudomonas aeruginosa when the stationary phase of growth in reached. Purified glutamate dehydrogenase (NADP+) appeared to be a protein composed of six identical subunits with a molecular weight of 54 000. With antibodies raised against purified enzyme it was found that glutamate dehydrogenase (NADP+) inactivation is accompanied by a parallel decrease in immunologically reactive material. This suggests that glutamate dehydrogenase (NADP+) inactivation is caused or followed by rapid proteolysis.  相似文献   

7.
Two distinct dihydrolipoamide dehydrogenases (E3s, EC 1.8.1.4) have been detected in pea (Pisum sativum L. cv. Little Marvel) leaf extracts and purified to at or near homogeneity. The major enzyme, a homodimer with an apparent subunit Mr value 56 000 (80–90% of overall activity), corresponded to the mitochondrial isoform studied previously, as confirmed by electrospray mass spectrometry and N-terminal sequence analysis. The minor activity (10–20%), which also behaved as a homodimer, copurified with chloroplasts, and displayed a lower subunit Mr value of 52 000 which was close to the Mr value of 52 614±9.89 Da determined by electrospray mass spectrometry. The plastidic enzyme was also present at low levels in root extracts where it represented only 1–2% of total E3 activity. The specific activity of the chloroplast enzyme was three-to fourfold lower than its mitochondrial counterpart. In addition, it displayed a markedly higher affinity for NAD+ and was more sensitive to product inhibition by NADH. It exhibited no activity with NADP+ as cofactor nor was it inhibited by the presence of high concentrations of NADP+ or NADPH. Antibodies to the mitochondrial enzyme displayed little or no cross-reactivity with its plastidic counterpart and available amino acid sequence data were also suggestive of only limited sequence similarity between the two enzymes. In view of the dual location of the pyruvate dehydrogenase multienzyme complex (PDC) in plant mitochondria and chloroplasts, it is likely that the distinct chloroplastic E3 is an integral component of plastidic PDC, thus representing the first component of this complex to be isolated and characterised to date.Abbreviations E1 pyruvate dehydrogenase - E2 dihydrolipoamide acetyltransferase - E3 dihydrolipoamide dehydrogenase - PDC pyruvate dehydrogenase complex - OGDC 2-oxoglutarate dehydrogenase complex - GDC glycine decarboxylase complex - SDS-PAGE sodium dodecyl sulphate/polyacrylamide gel electrophoresis - TDP thiamine diphosphate - Mr relative molecular mass J.G.L. is grateful to the Biotechnology and Biological Sciences Research Council (BBSRC), U.K. for continuing financial support. M.C. is the holder of a BBSRC-funded earmarked Ph.D. studentship.  相似文献   

8.
The aim of the present study was the investigation of the occurrence of NADPH-generating pathways in the endoplasmic reticulum others then hexose-6-phosphate dehydrogenase. A significant isocitrate and a moderate malate-dependent NADP+ reduction were observed in endoplasmic reticulum-derived rat liver microsomes. The isocitrate-dependent activity was very likely attributable to the appearance of the cytosolic isocitrate dehydrogenase isozyme in the lumen. The isocitrate dehydrogenase activity of microsomes was present in the luminal fraction; it showed a strong preference towards NADP+versus NAD+, and it was almost completely latent. Antibodies against the cytosolic isoform of isocitrate dehydrogenase immunorevealed a microsomal protein of identical molecular weight; the microsomal enzyme showed similar kinetic parameters and oxalomalate inhibition as the cytosolic one. Measurable luminal isocitrate dehydrogenase activity was also present in microsomes from rat epididymal fat. The results suggest that isocitrate dehydrogenase is an important NADPH-generating enzyme in the endoplasmic reticulum.  相似文献   

9.
Structural analysis of glucose dehydrogenase from Haloferax mediterranei revealed that the adenosine 2′-phosphate of NADP+ was stabilized by the side chains of Arg207 and Arg208. To investigate the structural determinants for coenzyme specificity, several mutants involving residues Gly206, Arg207 and Arg208 were engineered and kinetically characterized. The single mutants G206D and R207I were less efficient with NADP+ than the wild type, and the double and triple mutants G206D/R207I and G206D/R207I/R208N showed no activity with NADP+.In the single mutant G206D, the relation kcat/KNAD+ was 1.6 times higher than in the wild type, resulting in an enzyme that preferred NAD+ over NADP+. The single mutation was sufficient to modify coenzyme specificity, whereas other dehydrogenases usually required more than one or two mutations to change coenzyme specificity. However, the highest reaction rates were reached with the double mutant G206D/R207I and with coenzyme NAD+, where the kcat was 1.6 times higher than the kcat of the wild-type enzyme with NADP+. However, catalytic efficiency with NAD+ was lower, as the Km value for coenzyme was 77 times higher than the wild type with NADP+.  相似文献   

10.
In the tricarboxylic acid (TCA) cycle, NADP+-specific isocitrate dehydrogenase (NADP+-ICDH) catalyzes oxidative decarboxylation of isocitric acid to form α-ketoglutaric acid with NADP+ as a cofactor. We constructed an NADP+-ICDH gene (icdA)-overexpressing strain (OPI-1) using Aspergillus niger WU-2223L as a host and examined the effects of increase in NADP+-ICDH activity on citric acid production. Under citric acid-producing conditions with glucose as the carbon source, the amounts of citric acid produced and glucose consumed by OPI-1 for the 12-d cultivation period decreased by 18.7 and 10.5%, respectively, compared with those by WU-2223L. These results indicate that the amount of citric acid produced by A. niger can be altered with the NADP+-ICDH activity. Therefore, NADP+-ICDH is an important regulator of citric acid production in the TCA cycle of A. niger. Thus, we propose that the icdA gene is a potentially valuable tool for modulating citric acid production by metabolic engineering.  相似文献   

11.
(R)-3-hydroxybutyryl-CoA dehydrogenase PhaB from Ralstonia eutropha H16 (RePhaB) is an enzyme that catalyzes the NADPH-dependent reduction of acetoacetyl-CoA, an intermediate of polyhydroxyalkanoates (PHA) synthetic pathways. Polymeric PHA is used to make bioplastics, implant biomaterials, and biofuels. Here, we report the crystal structures of RePhaB apoenzyme and in complex with either NADP+ or acetoacetyl-CoA, which provide the catalytic mechanism of the protein. RePhaB contains a Rossmann fold and a Clamp domain for binding of NADP+ and acetoacetyl-CoA, respectively. The NADP+-bound form of RePhaB structure reveals that the protein has a unique cofactor binding mode. Interestingly, in the RePhaB structure in complex with acetoacetyl-CoA, the conformation of the Clamp domain, especially the Clamp-lid, undergoes a large structural change about 4.6 Å leading to formation of the substrate pocket. These structural observations, along with the biochemical experiments, suggest that movement of the Clamp-lid enables the substrate binding and ensures the acetoacetyl moiety is located near to the nicotinamide ring of NADP+.  相似文献   

12.
Aldehyde dehydrogenases are found in all organisms and play an important role in the metabolic conversion and detoxification of endogenous and exogenous aldehydes. Genomes of many organisms including Escherichia coli and Salmonella typhimurium encode two succinate semialdehyde dehydrogenases with low sequence similarity and different cofactor preference (YneI and GabD). Here, we present the crystal structure and biochemical characterization of the NAD(P)+‐dependent succinate semialdehyde dehydrogenase YneI from S. typhimurium. This enzyme shows high activity and affinity toward succinate semialdehyde and exhibits substrate inhibition at concentrations of SSA higher than 0.1 mM. YneI can use both NAD+ and NADP+ as cofactors, although affinity to NAD+ is 10 times higher. High resolution crystal structures of YneI were solved in a free state (1.85 Å) and in complex with NAD+ (1.90 Å) revealing a two domain protein with the active site located in the interdomain interface. The NAD+ molecule is bound in the long channel with its nicotinamide ring positioned close to the side chain of the catalytic Cys268. Site‐directed mutagenesis demonstrated that this residue, as well as the conserved Trp136, Glu365, and Asp426 are important for activity of YneI, and that the conserved Lys160 contributes to the enzyme preference to NAD+. Our work has provided further insight into the molecular mechanisms of substrate selectivity and activity of succinate semialdehyde dehydrogenases. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
The reaction of NADP+ with periodate yields a coenzyme analog that can be bound to the NADP+ binding site of 6-phosphogluconate dehydrogenase from Candida utilis. This coenzyme analog can be irreversibly bound to the enzyme by reduction with sodium borohydride. The binding of one molecule of inhibitor to only one of the two subunits of the enzyme causes the inactivation of this subunit but does not alter the catalytic activity of the other subunit. Thus the two subunits do not have apparent catalytic interactions. When the reaction between the enzyme and the coenzyme analog is carried out in the presence of the substrate, the covalent modification of only one subunit causes the inactivation of both subunits. In this case the two subunits show an extreme negative cooperativity. It is suggested that the binding of the substrate induces in the enzyme molecule a conformational change that is stabilized by the irreversible binding of the coenzyme analog.  相似文献   

14.
Experiments designed to elucidate the nature of 17β-hydroxysteroid dehydrogenase from human red blood cells have shown that NADP+ activates and protects the enzyme, while also serving as substrate for the reaction. Enzyme activity was measured by the conversion of 17β-estradiol to estrone and by the production of NADPH with 17β-estradiol-3-sulfate as substrate. It appears that the reaction sequence is first, binding with NADP+ and second, binding with the steroid. The binding with NADP+ is essentially irreversible: the activated enzyme is completely protected against loss of activity by dilution. On dilution of the unactivated enzyme, much of the activity is lost. The bireactant rate equation of the sequential type has been restated for the case of activation by one of the reactants. Since it has been found that activation of enzyme is linear with NADP+ concentration, it follows that the Michaelis constant for the steroid substrate is independent of the concentration of NADP+ activating the enzyme. This is substantiated by the determination of the Michaelis constant for 17β-estradiol-3-sulfate from data on double-reciprocal plots of activated and unactivated enzyme with limiting amounts of steroid. The activating effect increases linearly up to a concentration of 1.2 × 10?5m of NADP+ and then levels off. The activation is highly specific for NADP+; neither NAD+, ATP, NADPH, nicotinic acid, ncr nicotinamide prevent the loss of activity after storing the enzyme for 1 hr at 37 °C. The steroid substrate appears to interfere with the activation of NADP+.  相似文献   

15.
Chlorobenzenecis-dihydrodiol dehydrogenase was purified to homogeneity fromXanthobacter flavus 14p1, which used 1,4-dichlorobenzene as the sole source of carbon and energy. The enzyme converted a number of halogenated substrates with high specific activity. The pI of the native chlorobenzenecis-dihydrodiol dehydrogenase was 5.4, and the molecular mass was approximately 100 kDa, as determined by gel filtration. The enzyme was composed of four apparently identical subunits with a molecular mass of 26.5 kDa. The Michaelis constant for 3,6-dichlorobenzenecis-dihydrodiol (210 M) was lower than for benzenecis-dihydrodiol (780 M), while the specific activity with benzenecis-dihydrodiol (63 units/mg) was higher than with 3,6-dichlorobenzenecis-dihydrodiol (32 units/mg). Chlorobenzenecis-dihydrodiol dehydrogenase accepted also NADP+ as cosubstrate; however, the activity was reduced to 14% of that with NAD+. The enzymic activity was inhibited by mercuric chloride and to a lesser extent by the metal-ion chelators 8-hydroxy-quinoline and KCN.Abbreviation DDH Dihydrodiol dehydrogenase  相似文献   

16.
The activities and kinetics of the enzymes G6PDH (glucose-6-phosphate dehydrogenase) and 6PGDH (6-phosphogluconate dehydrogenase) from the mesophilic cyanobacterium Synechococcus 6307 and the thermophilic cyanobacterium Synechococcus 6716 are studied in relation to temperature. In Synechococcus 6307 the apparent K m's are for G6PDH: 80M (substrate) and 20M (NADP+); for 6PGDH: 90M (substrate) and 25M (NADP+). In Synechococcus 6716 the apparent K m's are for G6PDH: 550M (substrate) and 30M (NADP+); for 6PGDH: 40M (substrate) and 10M (NADP+). None of the K m's is influenced by the growth temperature and only the K m's of G6PDH for G6P are influenced by the assay temperature in both organisms. The idea that, in general, thermophilic enzymes possess a lower affinity for their substrates and co-enzymes than mesophilic enzymes is challenged.Although ATP, ribulose-1,5-bisphosphate, NADPH and pH can all influence the activities of G6PDH and 6PGDH to a certain extent (without any difference between the mesophilic and the thermophilic strain), they cannot be responsible for the total deactivation of the enzyme activities observed in the light, thus blocking the pentose phosphate pathway.Abbreviations G6PDH glucose-6-phosphate, dehydrogenase - 6PGDH 6-phosphogluconate dehydrogenase - G6P glucose-6-phosphate - 6PG 6-phosphogluconate - RUDP ribulose-1,5-bisphosphate - Tricine N-Tris (hydroxymethyl)-methylglycine  相似文献   

17.
Succinic semialdehyde dehydrogenases (SSADHs) are ubiquitous enzymes that catalyze the NAD(P)+-coupled oxidation of succinic semialdehyde (SSA) to succinate, the last step of the γ-aminobutyrate shunt. Mycobacterium tuberculosis encodes two paralogous SSADHs (gabD1 and gabD2). Here, we describe the first mechanistic characterization of GabD1, using steady-state kinetics, pH-rate profiles, 1H NMR, and kinetic isotope effects. Our results confirmed SSA and NADP+ as substrates and demonstrated that a divalent metal, such as Mg2+, linearizes the time course. pH-rate studies failed to identify any ionizable groups with pKa between 5.5 and 10 involved in substrate binding or rate-limiting chemistry. Primary deuterium, solvent and multiple kinetic isotope effects revealed that nucleophilic addition to SSA is very fast, followed by a modestly rate-limiting hydride transfer and fast thioester hydrolysis. Proton inventory studies revealed that a single proton is associated with the solvent-sensitive rate-limiting step. Together, these results suggest that product dissociation and/or conformational changes linked to it are rate-limiting. Using structural information for the human homolog enzyme and 1H NMR, we further established that nucleophilic attack takes place at the Si face of SSA, generating a thiohemiacetal with S stereochemistry. Deuteride transfer to the Pro-R position in NADP+ generates the thioester intermediate and [4A-2H, 4B-1H] NADPH. A chemical mechanism based on these data and the structural information available is proposed.  相似文献   

18.
Thermoproteus tenax is a hyperthermophilic, facultative heterotrophic archaeum. In this organism the utilization of the two catabolic pathways, a variant of the Embden-Meyerhof-Parnas (EMP) pathway and the modified (nonphosphorylative) Entner-Doudoroff (ED) pathway, was investigated and the first enzyme of the ED pathway, glucose dehydrogenase, was characterized. The distribution of the 13C label in alanine synthesized by cells grown with [1-13C]glucose indicated that in vivo the EMP pathway and the modified ED pathway operate parallel, with glucose metabolization via the EMP pathway being prominent. To initiate studies on the regulatory mechanisms governing carbon flux via these pathways, the first enzyme of the ED pathway, glucose dehydrogenase, was purified to homogeneity and its phenotypic properties were characterized. The pyridine-nucleotide-dependent enzyme used both NAD+ and NADP+ as cosubstrates, showing a 100-fold higher affinity for NADP+. Besides glucose, xylose was used as substrate, but with significantly lower affinity. These data suggest that the physiological function of the enzyme is the oxidation of glucose by NADP+. A striking feature was the influence of NADP+ and NAD+ on the quaternary structure and activity state of the enzyme. Without cosubstrate, the enzyme was highly aggregated (mol. mass > 600 kDa) but inactive, whereas in the presence of the cosubstrate the aggregates dissociated into enzymatically active, homomeric dimers with a mol. mass of 84 kDa (mol. mass of subunits: 41 kDa). The N-terminal amino acid sequence showed striking similarity to the respective partial sequences of alcohol dehydrogenases and sorbitol dehydrogenases, but no resemblance to the known pyridine-nucleotide-dependent archaeal and bacterial glucose dehydrogenases. Received: 25 October 1996 / Accepted: 15 April 1997  相似文献   

19.
Production of the compatible solute glycine betaine from its precursors choline or glycine betaine aldehyde confers a considerable level of tolerance against high osmolarity stress to the soil bacterium Bacillus subtilis. The glycine betaine aldehyde dehydrogenase GbsA is an integral part of the osmoregulatory glycine betaine synthesis pathway. We strongly overproduced this enzyme in an Escherichia coli strain that expressed a plasmid-encoded gbsA gene under T7φ10 control. The recombinant GbsA protein was purified 23-fold to apparent homogeneity by fractionated ammonium sulfate precipitation, ion-exchange chromatography on Q-Sepharose, and subsequent hydrophobic interaction chromatography on phenyl-Sepharose. Molecular sieving through Superose 12 and sedimentation centrifugation through a glycerol gradient suggested that the native enzyme is a homodimer with 53.7-kDa subunits. The enzyme was specific for glycine betaine aldehyde and could use both NAD+ and NADP+ as cofactors, but NAD+ was strongly preferred. A kinetic analysis of the GbsA-mediated oxidation of glycine betaine aldehyde to glycine betaine revealed K m values of 125 μM and 143 μM for its substrates glycine betaine aldehyde and NAD+, respectively. Low concentrations of salts stimulated the GbsA activity, and the enzyme was highly tolerant of high ionic conditions. Even in the presence of 2.4 M KCl, 88% of the initial enzymatic activity was maintained. B. subtilis synthesizes high levels of proline when grown at high osmolarity, and the presence of this amino acid strongly stimulated the GbsA activity in vitro. The enzyme was stimulated by moderate concentrations of glycine betaine, and its activity was highly tolerant against molar concentrations of this osmolyte. The high salt tolerance and its resistance to its own reaction product are essential features of the GbsA enzyme and ensure that B. subtilis can produce high levels of the compatible solute glycine betaine under conditions of high osmolarity stress. Received: 2 May 1997 / Accepted: 2 July 1997  相似文献   

20.
Despite significant influence of secondary bile acids on human health and disease, limited structural and biochemical information is available for the key gut microbial enzymes catalyzing its synthesis. Herein, we report apo‐ and cofactor bound crystal structures of BaiA2, a short chain dehydrogenase/reductase from Clostridium scindens VPI 12708 that represent the first protein structure of this pathway. The structures elucidated the basis of cofactor specificity and mechanism of proton relay. A conformational restriction involving Glu42 located in the cofactor binding site seems crucial in determining cofactor specificity. Limited flexibility of Glu42 results in imminent steric and electrostatic hindrance with 2′‐phosphate group of NADP(H). Consistent with crystal structures, steady state kinetic characterization performed with both BaiA2 and BaiA1, a close homolog with 92% sequence identity, revealed specificity constant (kcat/KM) of NADP+ at least an order of magnitude lower than NAD+. Substitution of Glu42 with Ala improved specificity toward NADP+ by 10‐fold compared to wild type. The cofactor bound structure uncovered a novel nicotinamide‐hydroxyl ion (NAD+‐OH?) adduct contraposing previously reported adducts. The OH? of the adduct in BaiA2 is distal to C4 atom of nicotinamide and proximal to 2′‐hydroxyl group of the ribose moiety. Moreover, it is located at intermediary distances between terminal functional groups of active site residues Tyr157 (2.7 Å) and Lys161 (4.5 Å). Based on these observations, we propose an involvement of NAD+‐OH? adduct in proton relay instead of hydride transfer as noted for previous adducts. Proteins 2014; 82:216–229. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号