共查询到20条相似文献,搜索用时 0 毫秒
1.
Clémentine Préau Iris Nadeau Yann Sellier Francis Isselin-Nondedeu Romain Bertrand Marc Collas César Capinha Frédéric Grandjean 《Freshwater Biology》2020,65(2):304-315
- The white-clawed crayfish (Austropotamobius pallipes) is globally endangered due to the impacts of habitat modification and fragmentation, water pollution, climate change, and invasive species, particularly the signal crayfish (Pacifastacus leniusculus). These pressures have caused the decline of A. pallipes populations in Europe, demonstrating the importance of predicting the species' potential distribution under current and future conditions. Focusing on the watercourses of mainland France, we aimed to identify suitable areas for A. pallipes to guide the conservation of current populations and future introduction actions or protection measures.
- We applied ecological niche modelling to model the potential distribution of both A. pallipes and P. leniusculus and identified locations suitable for A. pallipes only. We also assessed the potential distribution of the species under two representative concentration pathway (RCP) scenarios: RCP 2.6 and RCP 8.5, respectively describing low-warming and high-warming conditions.
- We found that A. pallipes and P. leniusculus exploit equivalent niches in France. Despite this, under current conditions, about 5% of the study area simultaneously records a high suitability for A. pallipes and a low suitability for P. leniusculus and is therefore of significant conservation interest. This percentage remains relatively stable under RCP 2.6 for 2050 and 2100, but decreases to 2% under RCP 8.5 for 2100.
- Ecological niche modelling can supply crucial guidance for conservation actions aimed at protecting endangered species at a national scale by identifying sites most suitable for protection and sites where climate change and invasive species constitute a threat.
2.
Protected areas are essential conservation tools for mitigating the rapid decline of biodiversity. However, climate change represents one of the main challenges to their long-term effectiveness, as it induces rapid changes in the geographical distribution of many species. We used ecological niche modelling to predict the impacts of climate change on the distribution of five endemic owls in the Atlantic Forest and evaluated the effectiveness of the protected areas network for their conservation. The results indicate that the protected areas network is currently effective in terms of representativeness for most species; however, there will be a decline for all species in the coming decades because of climate change. We found that the ecoregions in the northern part of the Atlantic Forest will experience a higher loss of species, whereas those ecoregions in the southern part will be important stable climatic refuges in the future. Therefore, we emphasize the need to complement the network of protected areas to increase their representativeness in the distribution of species that will be affected by climate change, reducing species loss and increasing connectivity between suitable areas. We hope the results presented herein will serve as a basis for decision-makers to re-evaluate and improve current conservation policies and decisions in order to address the challenges posed by climate change and secure the survival of these species. 相似文献
3.
Hauanny Rodrigues Oliveira Vanessa G. Staggemeier Jair Eustquio Quintino Faria Guilherme de Oliveira Jos Alexandre F. Diniz‐Filho 《Austral ecology》2019,44(1):95-104
Human actions have caused the fragmentation of natural vegetation, habitat loss and climate change. The Cerrado, considered one of the global hotspots of diversity, has suffered great habitat loss due to these factors, which has been aggravated by the agricultural expansion that took place during the last 60 years. In this context, we chose species of the genus Eugenia L. (Myrtaceae) occurring in the Brazilian Cerrado to describe richness patterns and range loss, and determine conservation priorities for the Cerrado. Ecological niche models (ENMs) were applied to calculate the geographical range of each species in the past (Last Glacial Maximum – LGM, 21 000 years ago), present (PIP, representing current climatic conditions – 1760 years ago) and future (near future – NF, 2080–2100). These results were combined to calculate the richness of the group and also to estimate the range loss of these species in the future. Moreover, we evaluated the irreplaceability of areas for species conservation, aiming to maximize the biotic stability of Eugenia species. Our results showed that the highest species richness in the past was found in the southwestern region of the Cerrado and, currently, the richest regions are found in the central and southeastern areas. However, in the future, we predict a shift of the greatest values of richness towards the southeastern region, an area currently occupied by the Atlantic forest. Although areas with high conservation priorities were found scattered across the biome, this shift is worrisome due to the high fragmentation rate and intensive human occupation thoughout the Atlantic region. Thus, conservation efforts should focus on areas found within these limits. 相似文献
4.
5.
JAN CHRISTIAN HABEL DENNIS RÖDDER THOMAS SCHMITT GABRIEL NÈVE 《Global Change Biology》2011,17(1):194-205
The climate warming of the postglacial has strongly reduced the distribution of cold‐adapted species over most of Central Europe. Such taxa have therefore become extinct over most of the lowlands and shifted to higher altitudes where they have survived to the present day. The lycaenid butterfly Lycaena helle follows this pattern of former widespread distribution and later restriction to mountain areas such as the European middle mountains. We sampled 203 individuals from 10 populations representing six mountain ranges (Pyrenees, Jura, Massif Central, Morvan, Vosges and Ardennes) over the species' western distribution. Allozyme and microsatellite polymorphisms were analysed to study the genetic status of these highly fragmented populations. Both molecular marker systems revealed a strong genetic differentiation among the analysed populations, coinciding with the orographic structure and highly restricted gene flow among them. The large‐scale genetic differentiation is more pronounced in allozymes (FCT: 0.326) than in microsatellites (RCT: 0.113), but microsatellites show a higher resolution on the regional scale (RSC: 0.082) compared with allozymes (FSC: n.s.). For both analytical tools, we found private alleles occurring exclusively in a single mountain area. The highly fragmented and isolated occurrence of populations is supported by the distribution pattern of potentially suitable climate suggested by species distribution models. Model projections under two climate warming scenarios predict a decline of climatically suitable areas, which will result in the extinction of most of the populations showing unique genetic characteristics. 相似文献
6.
Aim
Abiotic conditions are key components that determine the distribution of species. However, co‐occurring species can respond differently to the same factors, and determining which climate components are most predictive of geographic distributions is important for understanding community response to climate change. Here, we estimate and compare climate niches of ten subdominant, herbaceous forb species common in sagebrush steppe systems, asking how niches differ among co‐occurring species and whether more closely related species exhibit higher niche overlap.Location
Western United States.Methods
We used herbarium records and ecological niche modelling to estimate area of occupancy, niche breadth and overlap, and describe characteristics of suitable climate. We compared mean values and variability in summer precipitation and minimum temperatures at occurrence locations among species, plant families, and growth forms, and related estimated phylogenetic distances to niche overlap.Results
Species varied in the size and spatial distribution of suitable climate and in niche breadth. Species also differed in the variables contributing to their suitable climate and in mean values, spatial variation and interannual variation in highly predictive climate variables. Only two of ten species shared comparable climate niches. We found family‐level differences associated with variation in summer precipitation and minimum temperatures, as well as in mean minimum temperatures. Growth forms differed in their association with variability in summer precipitation and minimum temperatures. We found no relationship between phylogenetic distance and niche overlap among our species.Main conclusions
We identified contrasting climate niches for ten Great Basin understorey forbs, including differences in both mean values and climate variability. These estimates can guide species selection for restoration by identifying species with a high tolerance for climate variability and large climatic niches. They can also help conservationists to understand which species may be least tolerant of climate variability, and potentially most vulnerable to climate change.7.
C. Sérgio C. A. Garcia C. Vieira H. Hespanhol M. Sim-Sim S. Stow 《Plant biosystems》2013,147(4):837-850
Knowledge of bryophyte diversity can be an important tool for identifying overall biodiversity hotspots. The distribution of red-listed species is an essential data for biodiversity conservation actions, and the assessment of species' response to climate change scenarios is also a key tool in future conservation strategies. In this study, we examine the response of four phytogeographic assemblages of all Portuguese red-listed bryophytes whose distributions are well documented in Portugal. The red-listed species were selected based on their vulnerability as listed in the new Atlas and Red Data book of Portuguese bryophytes according to the IUCN criteria. The main purpose of this study is to develop predictive distributions of threatened bryophytes grouped according to phytogeographic trends aiming to conserve this bryoflora in future. This is achieved by the identification of relationships between specimens' distributions and environmental ecologically meaningful data, which is known to influence different phytogeographic assemblages. Significant differences were found in all distribution models based on future climate scenarios. Several variables play a vital role in the species' distribution models in present and future environmental conditions. 相似文献
8.
Luís Reino Pedro Beja Miguel B. Araújo Stéphane Dray Pedro Segurado 《Diversity & distributions》2013,19(4):423-432
Aim
Although the negative effects of habitat fragmentation have been widely documented at the landscape scale, much less is known about its impacts on species distributions at the biogeographical scale. We hypothesize that fragmentation influences the large‐scale distribution of area‐ and edge‐sensitive species by limiting their occurrence in regions with fragmented habitats , despite otherwise favourable environmental conditions. We test this hypothesis by assessing the interplay of climate and landscape factors influencing the distribution of the calandra lark, a grassland specialist that is highly sensitive to habitat fragmentation.Location
Iberia Peninsula, Europe.Methods
Ecological niche modelling was used to investigate the relative influence of climate/topography, landscape fragmentation and spatial structure on calandra lark distribution. Modelling assumed explicitly a hierarchically structured effect among explanatory variables, with climate/topography operating at broader spatial scales than landscape variables. An eigenvector‐based spatial filtering approach was used to cancel bias introduced by spatial autocorrelation. The information theoretic approach was used in model selection, and variation partitioning was used to isolate the unique and shared effects of sets of explanatory variables.Results
Climate and topography were the most influential variables shaping the distribution of calandra lark, but incorporating landscape metrics contributed significantly to model improvement. The probability of calandra lark occurrence increased with total habitat area and declined with the number of patches and edge density. Variation partitioning showed a strong overlap between variation explained by climate/topography and landscape variables. After accounting for spatial structure in species distribution, the explanatory power of environmental variables remained largely unchanged.Main conclusions
We have shown here that landscape fragmentation can influence species distributions at the biogeographical scale. Incorporating fragmentation metrics into large‐scale ecological niche models may contribute for a better understanding of mechanism driving species distributions and for improving predictive modelling of range shifts associated with land use and climate changes.9.
Modelled spatial distribution of marine fish and projected modifications in the North Atlantic Ocean
The objectives of this work were to examine the past, current and potential influence of global climate change on the spatial distribution of some commercially exploited fish and to evaluate a recently proposed new ecological niche model (ENM) called nonparametric probabilistic ecological niche model (NPPEN). This new technique is based on a modified version of the test called Multiple Response Permutation Procedure (MRPP) using the generalized Mahalanobis distance. The technique was applied in the extratropical regions of the North Atlantic Ocean on eight commercially exploited fish species using three environmental parameters (sea surface temperature, bathymetry and sea surface salinity). The numerical procedure and the model allowed a better characterization of the niche (sensu Hutchinson) and an improved modelling of the spatial distribution of the species. Furthermore, the technique appeared to be robust to incomplete or bimodal training sets. Despite some potential limitations related to the choice of the climatic scenarios (A2 and B2), the type of physical model (ECHAM 4) and the absence of consideration of biotic interactions, modelled changes in species distribution explained some current observed shifts in dominance that occurred in the North Atlantic sector, and particularly in the North Sea. Although projected changes suggest a poleward movement of species, our results indicate that some species may not be able to track their climatic envelope and that climate change may have a prominent influence on fish distribution during this century. The phenomenon is likely to trigger locally major changes in the dominance of species with likely implications for socio‐economical systems. In this way, ENMs might provide a new management tool against which changes in the resource might be better anticipated. 相似文献
10.
Heather L. Hulton VanTassel Michael D. Bell John Rotenberry Robert Johnson Michael F. Allen 《Ecology and evolution》2017,7(23):10326-10338
Many species have already experienced distributional shifts due to changing environmental conditions, and analyzing past shifts can help us to understand the influence of environmental stressors on a species as well as to analyze the effectiveness of conservation strategies. We aimed to (1) quantify regional habitat associations of the California gnatcatcher (Polioptila californica ); (2) describe changes in environmental variables and gnatcatcher distributions through time; (3) identify environmental drivers associated with habitat suitability changes; and (4) relate habitat suitability changes through time to habitat conservation plans. Southern California's Western Riverside County (WRC ), an approximately 4,675 km2 conservation planning area. We assessed environmental correlates of distributional shifts of the federally threatened California gnatcatcher (hereafter, gnatcatcher) using partitioned Mahalanobis D 2 niche modeling for three time periods: 1980–1997, 1998–2003, and 2004–2012, corresponding to distinct periods in habitat conservation planning. Highly suitable gnatcatcher habitat was consistently warmer and drier and occurred at a lower elevation than less suitable habitat and consistently had more CSS , less agriculture, and less chaparral. However, its relationship to development changed among periods, mainly due to the rapid change in this variable. Likewise, other aspects of highly suitable habitat changed among time periods, which became cooler and higher in elevation. The gnatcatcher lost 11.7% and 40.6% of highly suitable habitat within WRC between 1980–1997 to 1998–2003, and 1998–2003 to 2004–2012, respectively. Unprotected landscapes lost relatively more suitable habitat (?64.3%) than protected landscapes (30.5%). Over the past four decades, suitable habitat loss within WRC , especially between the second and third time periods, was associated with temperature‐related factors coupled with landscape development across coastal sage scrub habitat; however, development appears to be driving change more rapidly than climate change. Our study demonstrates the importance of providing protected lands for potential suitable habitat in future scenarios. 相似文献
11.
12.
Nian Wang James S. Borrell William J. A. Bodles Anasuya Kuttapitiya Richard A. Nichols Richard J. A. Buggs 《Molecular ecology》2014,23(11):2771-2782
Past reproductive interactions among incompletely isolated species may leave behind a trail of introgressed alleles, shedding light on historical range movements. Betula pubescens is a widespread native tetraploid tree species in Britain, occupying habitats intermediate to those of its native diploid relatives, B. pendula and B. nana. Genotyping 1134 trees from the three species at 12 microsatellite loci, we found evidence of introgression from both diploid species into B. pubescens, despite the ploidy difference. Surprisingly, introgression from B. nana, a dwarf species whose present range is highly restricted in northern, high‐altitude peat bogs, was greater than introgression from B. pendula, which is morphologically similar to B. pubescens and has a substantially overlapping range. A cline of introgression from B. nana was found extending into B. pubescens populations far to the south of the current B. nana range. We suggest that this genetic pattern is a footprint of a historical decline and/or northwards shift in the range of B. nana populations due to climate warming in the Holocene. This is consistent with pollen records that show a broader, more southerly distribution of B. nana in the past. Ecological niche modelling predicts that B. nana is adapted to a larger range than it currently occupies, suggesting additional factors such as grazing and hybridization may have exacerbated its decline. We found very little introgression between B. nana and B. pendula, despite both being diploid, perhaps because their distributions in the past have rarely overlapped. Future conservation of B. nana may partly depend on minimization of hybridization with B. pubescens, and avoidance of planting B. pendula near B. nana populations. 相似文献
13.
Wade K. Stanton-Jones;Graham J. Alexander; 《Austral ecology》2024,49(8):e13577
The sungazer (Smaug giganteus) is a strict grassland specialist lizard endemic to South Africa's highveld grasslands. It is currently listed as Vulnerable (IUCN) and is primarily threatened by anthropogenic activities. Because sungazers are habitat specialists, climate change may be detrimental to the species, considering their life-history traits, and the area of available suitable habitat. We assessed how climate change may impact the sungazers' geographic range by first producing an ecological niche model (ENM) for the species within a buffered region of its extent of occurrence (buffered EOO). The ENM was then projected to 2040, 2060, 2080 and 2100 under two climate change scenarios using Shared Socioeconomic Pathways (SSP); SSP245 (moderate-case) and SSP585 (worst-case). A mean ensemble of three global circulation models for each time period and scenario was used to create habitat suitability maps which were refined using a natural grassland variable overlay. Resulting maps were clipped to the sungazers' EOO and interpreted distribution. Within the interpreted distribution, models predicted an area of 10 198 km2 of current suitable habitat. At this scale, future habitat suitability is predicted to remain relatively stable (area: 9910 km2; 3% decline) under SSP245 by 2100. However, a 24% decline (area: 7705 km2) in habitat suitability was predicted under SSP585. Within the buffered EOO, habitat suitability increased in south-western regions, which was more prominent under SSP585. Although this finding suggests that sungazers could track favourable conditions, their life history and low dispersal ability makes climate tracking unlikely. Because sungazers only occur in primary grasslands, regions dominated by agricultural activities, further land use developments are likely to affect the species survival. Thus, careful conservation management is essential, and we recommend the establishment of protected areas with cognizance of our predictions for current and future suitable habitat within the sungazers' interpreted distribution. 相似文献
14.
Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? 总被引:12,自引:1,他引:12
Modelling strategies for predicting the potential impacts of climate change on the natural distribution of species have often focused on the characterization of a species’ bioclimate envelope. A number of recent critiques have questioned the validity of this approach by pointing to the many factors other than climate that play an important part in determining species distributions and the dynamics of distribution changes. Such factors include biotic interactions, evolutionary change and dispersal ability. This paper reviews and evaluates criticisms of bioclimate envelope models and discusses the implications of these criticisms for the different modelling strategies employed. It is proposed that, although the complexity of the natural system presents fundamental limits to predictive modelling, the bioclimate envelope approach can provide a useful first approximation as to the potentially dramatic impact of climate change on biodiversity. However, it is stressed that the spatial scale at which these models are applied is of fundamental importance, and that model results should not be interpreted without due consideration of the limitations involved. A hierarchical modelling framework is proposed through which some of these limitations can be addressed within a broader, scale‐dependent context. 相似文献
15.
Correlative ecological niche models are increasingly used to estimate potential distributions during the Last Glacial Maximum (LGM) for biogeographical research. In the case of presence‐background/pseudoabsences techniques, cold environments that are poorly represented in existing geography can complicate the process of model calibration and transfer into more extreme cold environments that were very common during the LGM (non‐analog conditions). This may lead to biologically unrealistic estimations. Using one cold‐adapted North American mammal, we explore a real scenario to better understand the effect of restricting the range of environmental conditions over which niche models are calibrated and then transferred to LGM conditions. We performed two sets of experiments in Maxent: 1) we calibrated models in the context of only present‐day climate conditions, which is the most common practice, and compared predictions under LGM conditions based on two extrapolation methods (clamping versus unconstrained); 2) we calibrated single models using both present‐day and LGM conditions as part of the same background in order to include more extreme environments in the model calibration. Our experiments led to dramatically different estimates of species’ potential distributions, showing notable differences with respect to latitudinal and elevational shifts during the LGM. Models calibrated using present‐day climates yielded biologically unrealistic estimations, suggesting that species survived in the glaciers during the LGM. Even more unrealistic estimations were achieved when clamping was enforced as the method to extrapolate. Models calibrated in the context of both modern and past climates reduced the required degree of extrapolation and allowed more realistic potential distributions, suggesting that the species avoided extremely cold conditions during the LGM. This study alerts to the possibility of obtaining implausible potential distributions during the LGM due to restricted background datasets and offers recommendations that should promote better strategies to estimate distributional changes during glaciations. 相似文献
16.
Felipe W. Pereira;Matheus L. Araujo;Fernanda T. Brum;Gabriel A. R. Melo;Mauricio O. Moura;Rodrigo B. Gonçalves; 《Journal of Biogeography》2024,51(11):2259-2273
To provide an assessment of climate change impacts on a set of wild pollinators restricted to one of the regions with the greatest diversity of bees in the world. Also, we aimed to test whether functional groups responded differently to climate projections. 相似文献
17.
Robert J. Wilson Zoe G. Davies Chris D. Thomas 《Proceedings. Biological sciences / The Royal Society》2009,276(1661):1421-1427
There is an increasing need for conservation programmes to make quantitative predictions of biodiversity responses to changed environments. Such predictions will be particularly important to promote species recovery in fragmented landscapes, and to understand and facilitate distribution responses to climate change. Here, we model expansion rates of a test species (a rare butterfly, Hesperia comma) in five landscapes over 18 years (generations), using a metapopulation model (the incidence function model). Expansion rates increased with the area, quality and proximity of habitat patches available for colonization, with predicted expansion rates closely matching observed rates in test landscapes. Habitat fragmentation constrained expansion, but in a predictable way, suggesting that it will prove feasible both to understand variation in expansion rates and to develop conservation programmes to increase rates of range expansion in such species. 相似文献
18.
M. Temunović N. Frascaria‐Lacoste J. Franjić Z. Satovic J. F. Fernández‐Manjarrés 《Molecular ecology》2013,22(8):2128-2142
Populations occurring in areas of overlap between the current and future distribution of a species are particularly important because they can represent “refugia from climate change”. We coupled ecological and range‐wide genetic variation data to detect such areas and to evaluate the impacts of habitat suitability changes on the genetic diversity of the transitional Mediterranean‐temperate tree Fraxinus angustifolia. We sampled and genotyped 38 natural populations comprising 1006 individuals from across Europe. We found the highest genetic diversity in western and northern Mediterranean populations, as well as a significant west to east decline in genetic diversity. Areas of potential refugia that correspond to approximately 70% of the suitable habitat may support the persistence of more than 90% of the total number of alleles in the future. Moreover, based on correlations between Bayesian genetic assignment and climate, climate change may favour the westward spread of the Black Sea gene pool in the long term. Overall, our results suggest that the northerly core areas of the current distribution contain the most important part of the genetic variation for this species and may serve as in situ macrorefugia from ongoing climate change. However, rear‐edge populations of the southern Mediterranean may be exposed to a potential loss of unique genetic diversity owing to habitat suitability changes unless populations can persist in microrefugia that have facilitated such persistence in the past. 相似文献
19.
Manuel Esperon-Rodriguez;Mark G. Tjoelker;Jonathan Lenoir;Bree Laugier;Rachael V. Gallagher; 《Global Ecology and Biogeography》2024,33(6):e13833
Eucalypts are important and popular urban tree species across cities worldwide. However, little is known about how their climatic niche breadth (CNB) and functional traits predict their success, and vulnerability, to current climate change in cities. We assessed the relationship between the CNB of eucalypts and key traits to understand their tolerance to climate change. 相似文献
20.
Ram C. Poudel Michael Möller Jie Liu Lian‐Ming Gao Sushim R. Baral De‐Zhu Li 《Diversity & distributions》2014,20(11):1270-1284