首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crop plants carry an enormous diversity of microbiota that provide massive benefits to hosts. Protists, as the main microbial consumers and a pivotal driver of biogeochemical cycling processes, remain largely understudied in the plant microbiome. Here, we characterized the diversity and composition of protists in sorghum leaf phyllosphere, and rhizosphere and bulk soils, collected from an 8-year field experiment with multiple fertilization regimes. Phyllosphere was an important habitat for protists, dominated by Rhizaria, Alveolata and Amoebozoa. Rhizosphere and bulk soils had a significantly higher diversity of protists than the phyllosphere, and the protistan community structure significantly differed among the three plant–soil compartments. Fertilization significantly altered specific functional groups of protistan consumers and parasites. Variation partitioning models revealed that soil properties, bacteria and fungi predicted a significant proportion of the variation in the protistan communities. Changes in protists may in turn significantly alter the compositions of bacterial and fungal communities from the top-down control in food webs. Altogether, we provide novel evidence that fertilization significantly affects the functional groups of protistan consumers and parasites in crop-associated microbiomes, which have implications for the potential changes in their ecological functions under intensive agricultural managements.  相似文献   

2.
Protists, functionally divided into consumers, phototrophs, and parasites act as integral components and vital regulators of microbiomes in soil–plant continuums. However, the drivers of community structure, assembly mechanisms, co-occurrence patterns, and the associations with human pathogens and different protistan trophic groups remain unknown. Here, we characterized the phyllosphere and soil protistan communities associated with three vegetables under different fertilization treatments (none and organic fertilization) at five growth stages. In this study, consumers were the most diverse soil protist group, had the role of inter-kingdom connector, and were the primary biomarker for rhizosphere soils which were subjected to decreasing deterministic processes during plant growth. In contrast, phototrophs had the greatest niche breadth and formed soil protistan hubs, and were the primary biomarkers for both bulk soils and the phyllosphere. Parasites had minimal input to microbial co-occurrence networks. Organic fertilization increased the relative abundance (RA) of pathogenic protists and the number of pathogen–consumer connections in rhizosphere soils but decreased protistan richness and the number of internal protistan links. This study advances our understanding of the ecological roles and potential links between human pathogens and protistan trophic groups associated with soil–plant continuums, which is fundamental to the regulation of soil–plant microbiomes and maintenance of environmental and human health.  相似文献   

3.
Although previous studies, mostly based on microscopy analyses of a few groups of protists, have suggested that protists are abundant and diverse in litter and moss habitats, the overall diversity of moss and litter associated protists remains elusive. Here, high‐throughput environmental sequencing was used to characterize the diversity and community structure of litter‐ and moss‐associated protists along a gradient of soil drainage and forest primary productivity in a temperate rainforest in British Columbia. We identified 3262 distinct protist OTUs from 36 sites. Protists were strongly structured along the landscape gradient, with a significant increase in alpha diversity from the blanket bog ecosystem to the zonal forest ecosystem. Among all investigated environmental variables, calcium content was the most strongly associated with the community composition of protists, but substrate composition, plant cover and other edaphic factors were also significantly correlated with these communities. Furthermore, a detailed phylogenetic analysis of unicellular opisthokonts identified OTUs covering most lineages, including novel OTUs branching with Discicristoidea, the sister group of Fungi, and with Filasterea, one of the closest unicellular relatives to animals. Altogether, this study provides unprecedented insight into the community composition of moss‐ and litter‐associated protists.  相似文献   

4.
Global biogeography of highly diverse protistan communities in soil   总被引:1,自引:0,他引:1  
Protists are ubiquitous members of soil microbial communities, but the structure of these communities, and the factors that influence their diversity, are poorly understood. We used barcoded pyrosequencing to survey comprehensively the diversity of soil protists from 40 sites across a broad geographic range that represent a variety of biome types, from tropical forests to deserts. In addition to taxa known to be dominant in soil, including Cercozoa and Ciliophora, we found high relative abundances of groups such as Apicomplexa and Dinophyceae that have not previously been recognized as being important components of soil microbial communities. Soil protistan communities were highly diverse, approaching the extreme diversity of their bacterial counterparts across the same sites. Like bacterial taxa, protistan taxa were not globally distributed, and the composition of these communities diverged considerably across large geographic distances. However, soil protistan and bacterial communities exhibit very different global-scale biogeographical patterns, with protistan communities strongly structured by climatic conditions that regulate annual soil moisture availability.  相似文献   

5.
姚保民  曾青  张丽梅 《生物多样性》2022,30(12):22353-254
原生生物广泛分布在土壤和不同生境中, 其数量庞大、种类繁多, 在生态系统物质循环和能量流动以及维持土壤和植物健康中起着举足轻重的作用。与土壤其他生物类群相比, 原生生物分类体系和生态类型复杂, 分类鉴定困难且分子检测技术不够成熟, 目前对原生生物的认识相对不足。本文对当前原生生物的相关研究进展进行了总结和梳理, 系统阐述了原生生物的分类系统和营养功能群特征、土壤原生生物的多样性分布特征及影响因子, 重点介绍了原生生物群落在参与土壤养分循环、维持土壤和植物健康等中的功能作用, 并对未来的研究方向与应用前景进行了展望。对土壤原生生物的研究有助于我们深入认识土壤生物多样性资源, 并进行保护性地开发和利用, 维护土壤和生态系统健康。  相似文献   

6.
Protists play a fundamental role in all ecosystems, but we are still far from estimating the total diversity of many lineages, in particular in highly diverse environments, such as freshwater. Here, we survey the protist diversity of the Paraná River using metabarcoding, and we applied an approach that includes sequence similarity and phylogeny to evaluate the degree of genetic novelty of the protists' communities against the sequences described in the reference database PR2. We observed that ~28% of the amplicon sequence variants were classified as novel according to their similarity with sequences from the reference database; most of them were related to heterotrophic groups traditionally overlooked in freshwater systems. This lack of knowledge extended to those groups within the green algae (Archaeplastida) that are well documented such as Mamiellophyceae, and also to the less studied Pedinophyceae, for which we found sequences representing novel deep-branching clusters. Among the groups with potential novel protists, Bicosoecida (Stramenopiles) were the best represented, followed by Codosiga (Opisthokonta), and the Perkinsea (Alveolata). This illustrates the lack of knowledge on freshwater planktonic protists and also the need for isolation and/or cultivation of new organisms to better understand their role in ecosystem functioning.  相似文献   

7.
Microbial communities in extreme environments often have low diversity and specialized physiologies suggesting a limited resistance to change. The McMurdo Dry Valleys (MDV) are a microbially dominated, extreme ecosystem currently undergoing climate change-induced disturbances, including the melting of massive buried ice, cutting through of permafrost by streams, and warming events. These processes are increasing moisture across the landscape, altering conditions for soil communities by mobilizing nutrients and salts and stimulating autotrophic carbon inputs to soils. The goal of this study was to determine the effects of resource addition (water/organic matter) on the composition and function of microbial communities in the MDV along a natural salinity gradient representing an additional gradient of stress in an already extreme environment. Soil respiration and the activity of carbon-acquiring extracellular enzymes increased significantly (P < 0.05) with the addition of resources at the low- and moderate-salinity sites but not the high-salinity site. The bacterial community composition was altered, with an increase in Proteobacteria and Firmicutes with water and organic matter additions at the low- and moderate-salinity sites and a near dominance of Firmicutes at the high-salinity site. Principal coordinate analyses of all samples using a phylogenetically informed distance matrix (UniFrac) demonstrated discrete clustering among sites (analysis of similarity [ANOSIM], P < 0.05 and R > 0.40) and among most treatments within sites. The results from this experimental work suggest that microbial communities in this environment will undergo rapid change in response to the altered resources resulting from climate change impacts occurring in this region.  相似文献   

8.
Protists have scarcely been considered in traditional perspectives and strategies in environmental management and biodiversity conservation. This is a remarkable omission given that these tiny organisms are highly diverse, and have performed as key ecological players in evolutionary theatres for over a billion years of Earth history. Protists hold key roles in nearly all ecosystems, notably as participants in fluxes of energy and matter through foodwebs that centre on their predation on microbes. In spite of this, they have been largely ignored in conservation issues due to a widespread, naive belief that protists are ubiquitous and cosmopolitanously distributed. Nevertheless, recent research shows that many protists have markedly restricted distributions. These range from palaeoendemics (Gondwanan-Laurasian distribution) to local endemics. Our ignorance about the ultimate and proximate causes of such acute disparities in scale-dependent distributions of protists can be flagged as a singular reason to preserve these more cryptic participants in ecological and evolutionary dynamics. This argument is disturbing when one considers anthropogenic modifications of landscapes and the very poorly understood roles of protists in ecological processes in soils, not least in agroecolandscapes and hydrological systems. Major concerns include host specific symbiotic, symphoric and parasitic species which become extinct, unseen and largely unknown, alongside their metazoan hosts; change or loss of habitats; massive change or loss of type localities; and losses of unique genetic resources and evolutionary potential. These concerns are illustrated by examples to argue that conservation of protists should be integral to any strategy that traditionally targets vascular plants and animals. The ongoing decline in research capacity to inventory and classify protist diversity exemplifies a most acute symptom of the failures, at local, national and international levels, to support scientific responses to the biodiversity crisis. Responsible responses to these severe problems need to centre on the revival of natural history as the core discipline in biology. F. P. D. Cotterill: Formerly Principal Curator of Vertebrates, Natural History Museum of Zimbabwe, P.O. Box 240, Bulawayo, Zimbabwe Special Issue: Protist diversity and geographic distribution. Guest editor: W. Foissner  相似文献   

9.
10.
【背景】草地土壤微生物是维持草地生态系统功能和稳定的关键要素之一,探寻微生物在土壤剖面的垂直分布特征和构建规律对于理解其在草地生态系统的作用至关重要。【目的】在80cm深的土壤剖面内,全面分析微生物的总量、多样性和物种间的相互作用网络表现出的垂直分布特征。【方法】基于内蒙古农牧交错带上典型草原土壤中原核微生物的定量和高通量测序数据,比较微生物的总量和多样性,使用分子生态网络方法(molecular ecological network approach,MENA)探究微生物相互作用网络的垂直变化。【结果】原核生物的总量和多样性随深度增加而逐渐降低,且群落结构变异沿土壤剖面逐渐增大。网络结构在表层最为复杂,微生物物种间联系紧密;随着深度的增加,微生物间紧密的关联会逐渐变稀疏,网络结构变得简单。此外,酸杆菌是当地土壤生态系统中的优势种群以及网络核心微生物物种,可能对土壤生态服务功能的稳定发挥具有重要的作用。【结论】原核微生物的总量、多样性和物种间的互作网络都表现出高度一致的垂直变化规律,即总量、多样性与深度成负相关,且其群落结构变异会逐渐扩大,同时微生物网络相关性会减弱。这些结果为我们提供了微生物动态变化的重要见解,对典型农牧交错带草地的生态保护具有一定的参考价值。  相似文献   

11.
韩路  王海珍 《生态学报》2024,44(2):832-843
探讨荒漠河岸林土壤水分、物种多样性的空间变异性及其相互关系,可为干旱区天然林保护、可持续经营和生态恢复提供科学依据。以塔里木荒漠河岸林为研究对象,基于野外样带调查和采样测定,系统分析了地下水埋深(GWD)梯度下林地土壤水分与物种多样性的空间变异及其权衡关系。结果表明:随GWD增加和土壤水分减少,荒漠河岸林群落物种数减少、结构简化、群落发生退化,退化顺序为浅根系的中生草本植物和灌木,最后留存的是抗旱性较强的乔灌木或灌木;同时土壤水分和物种丰富度、物种多样性指数均呈显著的线性递减趋势,而物种均匀度指数降幅较小。GWD与土壤水分、物种多样性之间均呈极显著的相关(P<0.01),土壤水分与物种多样性的相对收益随GWD增加而逐渐降低,表明GWD是控制荒漠河岸林土壤水分和物种多样性空间变异的关键因素。荒漠河岸林土壤水分与物种多样性权衡关系的转折点为GWD 4.5m左右,转折点以下(GWD<4.5m)二者沿GWD以相同速率变化,呈协同关系;转折点以上(GWD>4.5m)土壤水分与物种多样性的权衡明显增大,土壤水分相对收益剧降,即维持当前相应的物种多样性以消耗土壤水分为代价,系统通过反馈调节使物种多样性降低。综上表明,维持塔里木荒漠河岸林物种多样性和生态系统功能的合理GWD在4.5m左右,这为塔里木河流域荒漠河岸林保育与生态输水工程实施提供科学依据。  相似文献   

12.
Biotic communities and ecosystem dynamics in terrestrial Antarctica are limited by an array of extreme conditions including low temperatures, moisture and organic matter availability, high salinity, and a paucity of biodiversity to facilitate key ecological processes. Recent studies have discovered that the prokaryotic communities in these extreme systems are highly diverse with patchy distributions. Investigating the physical and biological controls over the distribution and activity of microbial biodiversity in Victoria Land is essential to understanding ecological functioning in this region. Currently, little information on the distribution, structure and activity of soil communities anywhere in Victoria Land are available, and their sensitivity to potential climate change remains largely unknown. We investigated soil microbial communities from low- and high-productivity habitats in an isolated Antarctic location to determine how the soil environment impacts microbial community composition and structure. The microbial communities in Luther Vale, Northern Victoria Land were analysed using bacterial 16S rRNA gene clone libraries and were related to soil geochemical parameters and classical morphological analysis of soil metazoan invertebrate communities. A total of 323 16S rRNA gene sequences analysed from four soils spanning a productivity gradient indicated a high diversity (Shannon-Weaver values > 3) of phylotypes within the clone libraries and distinct differences in community structure between the two soil productivity habitats linked to water and nutrient availability. In particular, members of the Deinococcus/Thermus lineage were found exclusively in the drier, low-productivity soils, while Gammaproteobacteria of the genus Xanthomonas were found exclusively in high-productivity soils. However, rarefaction curves indicated that these microbial habitats remain under-sampled. Our results add to the recent literature suggesting that there is a higher biodiversity within Antarctic soils than previously expected.  相似文献   

13.
Assessing the ecological importance of clouds has substantial implications for our basic understanding of ecosystems and for predicting how they will respond to a changing climate. This study was conducted in a coastal Bishop pine forest ecosystem that experiences regular cycles of stratus cloud cover and inundation in summer. Our objective was to understand how these clouds impact ecosystem metabolism by contrasting two sites along a gradient of summer stratus cover. The site that was under cloud cover ~15% more of the summer daytime hours had lower air temperatures and evaporation rates, higher soil moisture content, and received more frequent fog drip inputs than the site with less cloud cover. These cloud‐driven differences in environmental conditions translated into large differences in plant and microbial activity. Pine trees at the site with greater cloud cover exhibited less water stress in summer, larger basal area growth, and greater rates of sap velocity. The difference in basal area growth between the two sites was largely due to summer growth. Microbial metabolism was highly responsive to fog drip, illustrated by an observed ~3‐fold increase in microbial biomass C with increasing summer fog drip. In addition, the site with more cloud cover had greater total soil respiration and a larger fractional contribution from heterotrophic sources. We conclude that clouds are important to the ecological functioning of these coastal forests, providing summer shading and cooling that relieve pine and microbial drought stress as well as regular moisture inputs that elevate plant and microbial metabolism. These findings are important for understanding how these and other seasonally dry coastal ecosystems will respond to predicted changes in stratus cover, rainfall, and temperature.  相似文献   

14.
Protists are abundant and play key trophic functions in soil. Documenting how their trophic contributions vary across large environmental gradients is essential to understand and predict how biogeochemical cycles will be impacted by global changes. Here, using amplicon sequencing of environmental DNA in open habitat soil from 161 locations spanning 2600 m of elevation in the Swiss Alps (from 400 to 3000 m), we found that, over the whole study area, soils are dominated by consumers, followed by parasites and phototrophs. In contrast, the proportion of these groups in local communities shows large variations in relation to elevation. While there is, on average, three times more consumers than parasites at low elevation (400–1000 m), this ratio increases to 12 at high elevation (2000–3000 m). This suggests that the decrease in protist host biomass and diversity toward mountains tops impact protist functional composition. Furthermore, the taxonomic composition of protists that infect animals was related to elevation while that of protists that infect plants or of protist consumers was related to soil pH. This study provides a first step to document and understand how soil protist functions vary along the elevational gradient.  相似文献   

15.
Herbicides are one of the most widely used chemicals in agriculture. While they are known to be harmful to nontarget organisms, the effects of herbicides on the composition and functioning of soil microbial communities remain unclear. Here we show that application of three widely used herbicides—glyphosate, glufosinate, and dicamba—increase the prevalence of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in soil microbiomes without clear changes in the abundance, diversity and composition of bacterial communities. Mechanistically, these results could be explained by a positive selection for more tolerant genotypes that acquired several mutations in previously well-characterized herbicide and ARGs. Moreover, herbicide exposure increased cell membrane permeability and conjugation frequency of multidrug resistance plasmids, promoting ARG movement between bacteria. A similar pattern was found in agricultural soils across 11 provinces in China, where herbicide application, and the levels of glyphosate residues in soils, were associated with increased ARG and MGE abundances relative to herbicide-free control sites. Together, our results show that herbicide application can enrich ARGs and MGEs by changing the genetic composition of soil microbiomes, potentially contributing to the global antimicrobial resistance problem in agricultural environments.  相似文献   

16.
Studying patterns of species distributions along elevation gradients is frequently used to identify the primary factors that determine the distribution, diversity and assembly of species. However, despite their crucial role in ecosystem functioning, our understanding of the distribution of below‐ground fungi is still limited, calling for more comprehensive studies of fungal biogeography along environmental gradients at various scales (from regional to global). Here, we investigated the richness of taxa of soil fungi and their phylogenetic diversity across a wide range of grassland types along a 2800 m elevation gradient at a large number of sites (213), stratified across a region of the Western Swiss Alps (700 km2). We used 454 pyrosequencing to obtain fungal sequences that were clustered into operational taxonomic units (OTUs). The OTU diversity–area relationship revealed uneven distribution of fungal taxa across the study area (i.e. not all taxa are everywhere) and fine‐scale spatial clustering. Fungal richness and phylogenetic diversity were found to be higher in lower temperatures and higher moisture conditions. Climatic and soil characteristics as well as plant community composition were related to OTU alpha, beta and phylogenetic diversity, with distinct fungal lineages suggesting distinct ecological tolerances. Soil fungi, thus, show lineage‐specific biogeographic patterns, even at a regional scale, and follow environmental determinism, mediated by interactions with plants.  相似文献   

17.
全球变化和人类活动导致物种生境的萎缩, 造成很多植物种群数量缩减, 遗传多样性快速丧失。对于物种多样性低的生态系统, 优势种的遗传多样性可能比物种多样性对生态系统功能产生更大的影响。因此, 了解遗传多样性和生态系统功能的关系(GD-EF)及其机制对生物多样性保护、应对环境变化和生态修复具有指导意义。该文综述了植物遗传多样性对生态系统结构(高营养级生物群落结构)和生态系统功能(初级生产力、养分循环和稳定性)的影响及机制、功能多样性对GD-EF的影响、遗传多样性效应和物种多样性效应的比较, 以及GD-EF在生态修复等实际应用的研究进展。最后指出当前研究的不足之处, 以期为后续研究提供参考: 1)还需深入研究GD-EF机制; 2)未评估遗传多样性对生态系统多功能性的影响; 3)不同遗传多样性测度对生态系统功能的影响不明确; 4)缺少长期的和多空间尺度结合的GD-EF实验; 5)遗传多样性效应相对于其他因子的作用不清楚。  相似文献   

18.
《植物生态学报》2018,42(10):977
全球变化和人类活动导致物种生境的萎缩, 造成很多植物种群数量缩减, 遗传多样性快速丧失。对于物种多样性低的生态系统, 优势种的遗传多样性可能比物种多样性对生态系统功能产生更大的影响。因此, 了解遗传多样性和生态系统功能的关系(GD-EF)及其机制对生物多样性保护、应对环境变化和生态修复具有指导意义。该文综述了植物遗传多样性对生态系统结构(高营养级生物群落结构)和生态系统功能(初级生产力、养分循环和稳定性)的影响及机制、功能多样性对GD-EF的影响、遗传多样性效应和物种多样性效应的比较, 以及GD-EF在生态修复等实际应用的研究进展。最后指出当前研究的不足之处, 以期为后续研究提供参考: 1)还需深入研究GD-EF机制; 2)未评估遗传多样性对生态系统多功能性的影响; 3)不同遗传多样性测度对生态系统功能的影响不明确; 4)缺少长期的和多空间尺度结合的GD-EF实验; 5)遗传多样性效应相对于其他因子的作用不清楚。  相似文献   

19.
Understanding the relationships between biodiversity and ecosystem functioning has major implications. Biodiversity–ecosystem functioning relationships are generally investigated at the interspecific level, although intraspecific diversity (i.e. within‐species diversity) is increasingly perceived as an important ecological facet of biodiversity. Here, we provide a quantitative and integrative synthesis testing, across diverse plant and animal species, whether intraspecific diversity is a major driver of community dynamics and ecosystem functioning. We specifically tested (i) whether the number of genotypes/phenotypes (i.e. intraspecific richness) or the specific identity of genotypes/phenotypes (i.e. intraspecific variation) in populations modulate the structure of communities and the functioning of ecosystems, (ii) whether the ecological effects of intraspecific richness and variation are strong in magnitude, and (iii) whether these effects vary among taxonomic groups and ecological responses. We found a non‐linear relationship between intraspecific richness and community and ecosystem dynamics that follows a saturating curve shape, as observed for biodiversity–function relationships measured at the interspecific level. Importantly, intraspecific richness modulated ecological dynamics with a magnitude that was equal to that previously reported for interspecific richness. Our results further confirm, based on a database containing more than 50 species, that intraspecific variation also has substantial effects on ecological dynamics. We demonstrated that the effects of intraspecific variation are twice as high as expected by chance, and that they might have been underestimated previously. Finally, we found that the ecological effects of intraspecific variation are not homogeneous and are actually stronger when intraspecific variation is manipulated in primary producers than in consumer species, and when they are measured at the ecosystem rather than at the community level. Overall, we demonstrated that the two facets of intraspecific diversity (richness and variation) can both strongly affect community and ecosystem dynamics, which reveals the pivotal role of within‐species biodiversity for understanding ecological dynamics.  相似文献   

20.
The loss of genetic diversity is accelerating due to habitat loss and population reduction caused by global change and anthropologenic activities. For species-poor ecosystems, the effect of genetic diversity on ecosystem functioning may not be smaller than that of species diversity. Therefore, understanding the relationship between genetic diversity and ecosystem functioning (GD-EF) and its underlying mechanisms is important for biodiversity conservation, responses of ecosystems to environmental change and ecological restoration. Here, we reviewed the studies on the effects of plant genetic diversity on ecosystem structures (community structure of the higher tropic level) and ecosystem functions (primary production, nutrient cycling and ecosystem stability), and the mechanisms underlying these relationships. We also discussed the influence of functional diversity on GD-EF, the comparison of effects of the genetic and species diversity on ecosystem functioning, and the application of GD-EF in the ecological restorations. We finally pointed out the limitations in current studies to provide references for the future: (1) further studies on the mechanisms of GD-EF are needed; (2) no study has evaluated the influence of genetic diversity on maltifunctinarity; (3) the impacts of different measurements of genetic diversity on ecosystem functioning are unclear; (4) there are lack of long-time GD-EF studies and GD-EF studies conducted at multidimensional scales; (5) the relative importance of genetic diversity and other factors on ecosystem functioning in the nature is unclear. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All Rights Reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号