首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A holistic protein-protein molecular docking approach, HoDock, was established, composed of such steps as binding site prediction, initial complex structure sampling, refined complex structure sampling, structure clustering, scoring and final structure selection. This article explains the detailed steps and applications for CAPRI Target 39. The CAPRI result showed that three predicted binding site residues, A191HIS, B512ARG and B531ARG, were correct, and there were five submitted structures with a high fraction of correct receptor-ligand interface residues, indicating that this docking approach may improve prediction accuracy for protein-protein complex structures.  相似文献   

2.
We present the seventh report on the performance of methods for predicting the atomic resolution structures of protein complexes offered as targets to the community-wide initiative on the Critical Assessment of Predicted Interactions. Performance was evaluated on the basis of 36 114 models of protein complexes submitted by 57 groups—including 13 automatic servers—in prediction rounds held during the years 2016 to 2019 for eight protein-protein, three protein-peptide, and five protein-oligosaccharide targets with different length ligands. Six of the protein-protein targets represented challenging hetero-complexes, due to factors such as availability of distantly related templates for the individual subunits, or for the full complex, inter-domain flexibility, conformational adjustments at the binding region, or the multi-component nature of the complex. The main challenge for the protein-peptide and protein-oligosaccharide complexes was to accurately model the ligand conformation and its interactions at the interface. Encouragingly, models of acceptable quality, or better, were obtained for a total of six protein-protein complexes, which included four of the challenging hetero-complexes and a homo-decamer. But fewer of these targets were predicted with medium or higher accuracy. High accuracy models were obtained for two of the three protein-peptide targets, and for one of the protein-oligosaccharide targets. The remaining protein-sugar targets were predicted with medium accuracy. Our analysis indicates that progress in predicting increasingly challenging and diverse types of targets is due to closer integration of template-based modeling techniques with docking, scoring, and model refinement procedures, and to significant incremental improvements in the underlying methodologies.  相似文献   

3.
The accurate scoring of rigid-body docking orientations represents one of the major difficulties in protein-protein docking prediction. Other challenges are the development of faster and more efficient sampling methods and the introduction of receptor and ligand flexibility during simulations. Overall, good discrimination of near-native docking poses from the very early stages of rigid-body protein docking is essential step before applying more costly interface refinement to the correct docking solutions. Here we explore a simple approach to scoring of rigid-body docking poses, which has been implemented in a program called pyDock. The scheme is based on Coulombic electrostatics with distance dependent dielectric constant, and implicit desolvation energy with atomic solvation parameters previously adjusted for rigid-body protein-protein docking. This scoring function is not highly dependent on specific geometry of the docking poses and therefore can be used in rigid-body docking sets generated by a variety of methods. We have tested the procedure in a large benchmark set of 80 unbound docking cases. The method is able to detect a near-native solution from 12,000 docking poses and place it within the 100 lowest-energy docking solutions in 56% of the cases, in a completely unrestricted manner and without any other additional information. More specifically, a near-native solution will lie within the top 20 solutions in 37% of the cases. The simplicity of the approach allows for a better understanding of the physical principles behind protein-protein association, and provides a fast tool for the evaluation of large sets of rigid-body docking poses in search of the near-native orientation.  相似文献   

4.
We participated in CARPI rounds 38-45 both as a server predictor and a human predictor. These CAPRI rounds provided excellent opportunities for testing prediction methods for three classes of protein interactions, that is, protein-protein, protein-peptide, and protein-oligosaccharide interactions. Both template-based methods (GalaxyTBM for monomer protein, GalaxyHomomer for homo-oligomer protein, GalaxyPepDock for protein-peptide complex) and ab initio docking methods (GalaxyTongDock and GalaxyPPDock for protein oligomer, GalaxyPepDock-ab-initio for protein-peptide complex, GalaxyDock2 and Galaxy7TM for protein-oligosaccharide complex) have been tested. Template-based methods depend heavily on the availability of proper templates and template-target similarity, and template-target difference is responsible for inaccuracy of template-based models. Inaccurate template-based models could be improved by our structure refinement and loop modeling methods based on physics-based energy optimization (GalaxyRefineComplex and GalaxyLoop) for several CAPRI targets. Current ab initio docking methods require accurate protein structures as input. Small conformational changes from input structure could be accounted for by our docking methods, producing one of the best models for several CAPRI targets. However, predicting large conformational changes involving protein backbone is still challenging, and full exploration of physics-based methods for such problems is still to come.  相似文献   

5.
We investigate the extent to which the conformational fluctuations of proteins in solution reflect the conformational changes that they undergo when they form binary protein-protein complexes. To do this, we study a set of 41 proteins that form such complexes and whose three-dimensional structures are known, both bound in the complex and unbound. We carry out molecular dynamics simulations of each protein, starting from the unbound structure, and analyze the resulting conformational fluctuations in trajectories of 5 ns in length, comparing with the structure in the complex. It is found that fluctuations take some parts of the molecules into regions of conformational space close to the bound state (or give information about it), but at no point in the simulation does each protein as whole sample the complete bound state. Subsequent use of conformations from a clustered MD ensemble in rigid-body docking is nevertheless partially successful when compared to docking the unbound conformations, as long as the unbound conformations are themselves included with the MD conformations and the whole globally rescored. For one key example where sub-domain motion is present, a ribonuclease inhibitor, principal components analysis of the MD was applied and was also able to produce conformations for docking that gave enhanced results compared to the unbound. The most significant finding is that core interface residues show a tendency to be less mobile (by size of fluctuation or entropy) than the rest of the surface even when the other binding partner is absent, and conversely the peripheral interface residues are more mobile. This surprising result, consistent across up to 40 of the 41 proteins, suggests different roles for these regions in protein recognition and binding, and suggests ways that docking algorithms could be improved by treating these regions differently in the docking process.  相似文献   

6.
Protein-protein docking plays an important role in the computational prediction of the complex structure between two proteins. For years, a variety of docking algorithms have been developed, as witnessed by the critical assessment of prediction interactions (CAPRI) experiments. However, despite their successes, many docking algorithms often require a series of manual operations like modeling structures from sequences, incorporating biological information, and selecting final models. The difficulties in these manual steps have significantly limited the applications of protein-protein docking, as most of the users in the community are nonexperts in docking. Therefore, automated docking like a web server, which can give a comparable performance to human docking protocol, is pressingly needed. As such, we have participated in the blind CAPRI experiments for Rounds 38-45 and CASP13-CAPRI challenge for Round 46 with both our HDOCK automated docking web server and human docking protocol. It was shown that our HDOCK server achieved an “acceptable” or higher CAPRI-rated model in the top 10 submitted predictions for 65.5% and 59.1% of the targets in the docking experiments of CAPRI and CASP13-CAPRI, respectively, which are comparable to 66.7% and 54.5% for human docking protocol. Similar trends can also be observed in the scoring experiments. These results validated our HDOCK server as an efficient automated docking protocol for nonexpert users. Challenges and opportunities of automated docking are also discussed.  相似文献   

7.
Integration of template-based modeling, global sampling and precise scoring is crucial for the development of molecular docking programs with improved accuracy. We combined template-based modeling and ab-initio docking protocol as hybrid docking strategy called CoDock for the docking and scoring experiments of the seventh CAPRI edition. For CAPRI rounds 38-45, we obtained acceptable or better models in the top 10 submissions for eight out of the 16 evaluated targets as predictors, nine out of the 16 targets as scorers. Especially, we submitted acceptable models for all of the evaluated protein-oligosaccharide targets. For the CASP13-CAPRI experiment (round 46), we obtained acceptable or better models in the top 5 submissions for 10 out of the 20 evaluated targets as predictors, 11 out of the 20 targets as scorers. The failed cases for our group were mainly the difficult targets and the protein-peptide systems in CAPRI and CASP13-CAPRI experiments. In summary, this CAPRI edition showed that our hybrid docking strategy can be efficiently adapted to the increasing variety of challenges in the field of molecular interactions.  相似文献   

8.
The formation of specific protein-protein interactions is often a key to a protein's function. During complex formation, each protein component will undergo a change in the conformational state, for some these changes are relatively small and reside primarily at the sidechain level; however, others may display notable backbone adjustments. One of the classic problems in the protein-docking field is to be able to a priori predict the extent of such conformational changes. In this work, we investigated three protocols to find the most suitable input structure conformations for cross-docking, including a robust sampling approach in normal mode space. Counterintuitively, knowledge of the theoretically best combination of normal modes for unbound-bound transitions does not always lead to the best results. We used a novel spatial partitioning library, Aether Engine (see Supplementary Materials ), to efficiently search the conformational states of 56 receptor/ligand pairs, including a recent CAPRI target, in a systematic manner and selected diverse conformations as input to our automated docking server, SwarmDock, a server that allows moderate conformational adjustments during the docking process. In essence, here we present a dynamic cross-docking protocol, which when benchmarked against the simpler approach of just docking the unbound components shows a 10% uplift in the quality of the top docking pose.  相似文献   

9.
The protein-protein interaction energy of 12 nonhomologous serine protease-inhibitor and 15 antibody-antigen complexes is calculated using a molecular mechanics formalism and dissected in terms of the main-chain vs. side-chain contribution, nonrotameric side-chain contributions, and amino acid residue type involvement in the interface interaction. There are major differences in the interactions of the two types of protein-protein complex. Protease-inhibitor complexes interact predominantly through a main-chain-main-chain mechanism while antibody-antigen complexes interact predominantly through a side-chain-side-chain or a side-chain-main-chain mechanism. However, there is no simple correlation between the main-chain-main-chain interaction energy and the percentage of main-chain surface area buried on binding. The interaction energy is equally effected by the presence of nonrotameric side-chain conformations, which constitute approximately 20% of the interaction energy. The ability to reproduce the interface interaction energy of the crystal structure if original side-chain conformations are removed from the calculation is much greater in the protease-inhibitor complexes than the antibody-antigen complexes. The success of a rotameric model for protein-protein docking appears dependent on the extent of the main-chain-main-chain contribution to binding. Analysis of (1) residue type and (2) residue pair interactions at the interface show that antibody-antigen interactions are very restricted with over 70% of the antibody energy attributable to just six residue types (Tyr > Asp > Asn > Ser > Glu > Trp) in agreement with previous studies on residue propensity. However, it is found here that 50% of the antigen energy is attributable to just four residue types (Arg = Lys > Asn > Asp). On average just 12 residue pair interactions (6%) contribute over 40% of the favorable interaction energy in the antibody-antigen complexes, with charge-charge and charge/polar-tyrosine interactions being prominent. In contrast protease inhibitors use a diverse set of residue types and residue pair interactions.  相似文献   

10.
11.
Proteins frequently interact with each other, and the knowledge of structures of the corresponding protein complexes is necessary to understand how they function. Computational methods are increasingly used to provide structural models of protein complexes. Not surprisingly, community-wide Critical Assessment of protein Structure Prediction (CASP) experiments have recently started monitoring the progress in this research area. We participated in CASP13 with the aim to evaluate our current capabilities in modeling of protein complexes and to gain a better understanding of factors that exert the largest impact on these capabilities. To model protein complexes in CASP13, we applied template-based modeling, free docking and hybrid techniques that enabled us to generate models of the topmost quality for 27 of 42 multimers. If templates for protein complexes could be identified, we modeled the structures with reasonable accuracy by straightforward homology modeling. If only partial templates were available, it was nevertheless possible to predict the interaction interfaces correctly or to generate acceptable models for protein complexes by combining template-based modeling with docking. If no templates were available, we used rigid-body docking with limited success. However, in some free docking models, despite the incorrect subunit orientation and missed interface contacts, the approximate location of protein binding sites was identified correctly. Apparently, our overall performance in docking was limited by the quality of monomer models and by the imperfection of scoring methods. The impact of human intervention on our results in modeling of protein complexes was significant indicating the need for improvements of automatic methods.  相似文献   

12.
Targets in the protein docking experiment CAPRI (Critical Assessment of Predicted Interactions) generally present new challenges and contribute to new developments in methodology. In rounds 38 to 45 of CAPRI, most targets could be effectively predicted using template-based methods. However, the server ClusPro required structures rather than sequences as input, and hence we had to generate and dock homology models. The available templates also provided distance restraints that were directly used as input to the server. We show here that such an approach has some advantages. Free docking with template-based restraints using ClusPro reproduced some interfaces suggested by weak or ambiguous templates while not reproducing others, resulting in correct server predicted models. More recently we developed the fully automated ClusPro TBM server that performs template-based modeling and thus can use sequences rather than structures of component proteins as input. The performance of the server, freely available for noncommercial use at https://tbm.cluspro.org , is demonstrated by predicting the protein-protein targets of rounds 38 to 45 of CAPRI.  相似文献   

13.
Computational structural prediction of macromolecular interactions is a fundamental tool toward the global understanding of cellular processes. The Critical Assessment of PRediction of Interactions (CAPRI) community-wide experiment provides excellent opportunities for blind testing computational docking methods and includes original targets, thus widening the range of docking applications. Our participation in CAPRI rounds 38 to 45 enabled us to expand the way we include evolutionary information in structural predictions beyond our standard free docking InterEvDock pipeline. InterEvDock integrates a coarse-grained potential that accounts for interface coevolution based on joint multiple sequence alignments of two protein partners (co-alignments). However, even though such co-alignments could be built for none of the CAPRI targets in rounds 38 to 45, including host-pathogen and protein-oligosaccharide complexes and a redesigned interface, we identified multiple strategies that can be used to incorporate evolutionary constraints, which helped us to identify the most likely macromolecular binding modes. These strategies include template-based modeling where only local adjustments should be applied when query-template sequence identity is above 30% and larger perturbations are needed below this threshold; covariation-based structure prediction for individual protein partners; and the identification of evolutionarily conserved and structurally recurrent anchoring interface motifs. Overall, we submitted correct predictions among the top 5 models for 12 out of 19 interface challenges, including four High- and five Medium-quality predictions. Our top 20 models included correct predictions for three out of the five targets we missed in the top 5, including two targets for which misleading biological data led us to downgrade correct free docking models.  相似文献   

14.
Gao M  Skolnick J 《Proteins》2011,79(5):1623-1634
With the development of many computational methods that predict the structural models of protein-protein complexes, there is a pressing need to benchmark their performance. As was the case for protein monomers, assessing the quality of models of protein complexes is not straightforward. An effective scoring scheme should be able to detect substructure similarity and estimate its statistical significance. Here, we focus on characterizing the similarity of the interfaces of the complex and introduce two scoring functions. The first, the interfacial Template Modeling score (iTM-score), measures the geometric distance between the interfaces, while the second, the Interface Similarity score (IS-score), evaluates their residue-residue contact similarity in addition to their geometric similarity. We first demonstrate that the IS-score is more suitable for assessing docking models than the iTM-score. The IS-score is then validated in a large-scale benchmark test on 1562 dimeric complexes. Finally, the scoring function is applied to evaluate docking models submitted to the Critical Assessment of Prediction of Interactions (CAPRI) experiments. While the results according to the new scoring scheme are generally consistent with the original CAPRI assessment, the IS-score identifies models whose significance was previously underestimated.  相似文献   

15.
Shih ES  Hwang MJ 《Proteins》2012,80(1):194-205
Protein-protein docking (PPD) is a computational process that predicts the structure of a complex of two interacting proteins from their unbound structures. The accuracy of PPD predictions is low, but can be greatly enhanced if experimentally determined distance data are available for incorporation into the prediction. However, the specific effects of distance constraints on PPD predictions are largely uncharacterized. In this study, we systematically simulated the effects of using distance constraints both on a new distance constraint-driven PPD approach, called DPPD, and also, by re-ranking, on a well-established grid-based global search approach. Our results for a PPD benchmark dataset of 84 protein complexes of known structures showed that near 100% docking success rates could be obtained when the number of distance constraints exceeded six, the degrees of freedom of the system, but the success rate was significantly reduced by long distance constraints, large binding-induced conformational changes, and large errors in the distance data. Our results also showed that, under most conditions simulated, even two or three distance constraints were sufficient to achieve a much better success rate than those using a sophisticated physicochemical function to re-rank the results of the global search. Our study provides guidelines for the practical incorporation of experimental distance data to aid PPD predictions.  相似文献   

16.
  1. Download : Download high-res image (189KB)
  2. Download : Download full-size image
  相似文献   

17.
Protein recognition is one of the most challenging and intriguing problems in structural biology. Despite all the available structural, sequence and biophysical information about protein-protein complexes, the physico-chemical patterns, if any, that make a protein surface likely to be involved in protein-protein interactions, remain elusive. Here, we apply protein docking simulations and analysis of the interaction energy landscapes to identify protein-protein interaction sites. The new protocol for global docking based on multi-start global energy optimization of an all-atom model of the ligand, with detailed receptor potentials and atomic solvation parameters optimized in a training set of 24 complexes, explores the conformational space around the whole receptor without restrictions. The ensembles of the rigid-body docking solutions generated by the simulations were subsequently used to project the docking energy landscapes onto the protein surfaces. We found that highly populated low-energy regions consistently corresponded to actual binding sites. The procedure was validated on a test set of 21 known protein-protein complexes not used in the training set. As much as 81% of the predicted high-propensity patch residues were located correctly in the native interfaces. This approach can guide the design of mutations on the surfaces of proteins, provide geometrical details of a possible interaction, and help to annotate protein surfaces in structural proteomics.  相似文献   

18.
Improved side-chain modeling for protein-protein docking   总被引:1,自引:0,他引:1  
Success in high-resolution protein-protein docking requires accurate modeling of side-chain conformations at the interface. Most current methods either leave side chains fixed in the conformations observed in the unbound protein structures or allow the side chains to sample a set of discrete rotamer conformations. Here we describe a rapid and efficient method for sampling off-rotamer side-chain conformations by torsion space minimization during protein-protein docking starting from discrete rotamer libraries supplemented with side-chain conformations taken from the unbound structures, and show that the new method improves side-chain modeling and increases the energetic discrimination between good and bad models. Analysis of the distribution of side-chain interaction energies within and between the two protein partners shows that the new method leads to more native-like distributions of interaction energies and that the neglect of side-chain entropy produces a small but measurable increase in the number of residues whose interaction energy cannot compensate for the entropic cost of side-chain freezing at the interface. The power of the method is highlighted by a number of predictions of unprecedented accuracy in the recent CAPRI (Critical Assessment of PRedicted Interactions) blind test of protein-protein docking methods.  相似文献   

19.
The methods of continuum electrostatics are used to calculate the binding free energies of a set of protein-protein complexes including experimentally determined structures as well as other orientations generated by a fast docking algorithm. In the native structures, charged groups that are deeply buried were often found to favor complex formation (relative to isosteric nonpolar groups), whereas in nonnative complexes generated by a geometric docking algorithm, they were equally likely to be stabilizing as destabilizing. These observations were used to design a new filter for screening docked conformations that was applied, in conjunction with a number of geometric filters that assess shape complementarity, to 15 antibody-antigen complexes and 14 enzyme-inhibitor complexes. For the bound docking problem, which is the major focus of this paper, native and near-native solutions were ranked first or second in all but two enzyme-inhibitor complexes. Less success was encountered for antibody-antigen complexes, but in all cases studied, the more complete free energy evaluation was able to identify native and near-native structures. A filter based on the enrichment of tyrosines and tryptophans in antibody binding sites was applied to the antibody-antigen complexes and resulted in a native and near-native solution being ranked first and second in all cases. A clear improvement over previously reported results was obtained for the unbound antibody-antigen examples as well. The algorithm and various filters used in this work are quite efficient and are able to reduce the number of plausible docking orientations to a size small enough so that a final more complete free energy evaluation on the reduced set becomes computationally feasible.  相似文献   

20.
Protein docking procedures carry out the task of predicting the structure of a protein–protein complex starting from the known structures of the individual protein components. More often than not, however, the structure of one or both components is not known, but can be derived by homology modeling on the basis of known structures of related proteins deposited in the Protein Data Bank (PDB). Thus, the problem is to develop methods that optimally integrate homology modeling and docking with the goal of predicting the structure of a complex directly from the amino acid sequences of its component proteins. One possibility is to use the best available homology modeling and docking methods. However, the models built for the individual subunits often differ to a significant degree from the bound conformation in the complex, often much more so than the differences observed between free and bound structures of the same protein, and therefore additional conformational adjustments, both at the backbone and side chain levels need to be modeled to achieve an accurate docking prediction. In particular, even homology models of overall good accuracy frequently include localized errors that unfavorably impact docking results. The predicted reliability of the different regions in the model can also serve as a useful input for the docking calculations. Here we present a benchmark dataset that should help to explore and solve combined modeling and docking problems. This dataset comprises a subset of the experimentally solved ‘target’ complexes from the widely used Docking Benchmark from the Weng Lab (excluding antibody–antigen complexes). This subset is extended to include the structures from the PDB related to those of the individual components of each complex, and hence represent potential templates for investigating and benchmarking integrated homology modeling and docking approaches. Template sets can be dynamically customized by specifying ranges in sequence similarity and in PDB release dates, or using other filtering options, such as excluding sets of specific structures from the template list. Multiple sequence alignments, as well as structural alignments of the templates to their corresponding subunits in the target are also provided. The resource is accessible online or can be downloaded at http://cluspro.org/benchmark , and is updated on a weekly basis in synchrony with new PDB releases. Proteins 2016; 85:10–16. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号