首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Members of the Inhibitor of Apoptosis Protein (IAP) family block activation of the intrinsic cell death machinery by binding to and neutralizing the activity of pro-apoptotic caspases. In Drosophila melanogaster, the pro-apoptotic proteins Reaper (Rpr), Grim and Hid (head involution defective) all induce cell death by antagonizing the anti-apoptotic activity of Drosophila IAP1 (DIAP1), thereby liberating caspases. Here, we show that in vivo, the RING finger of DIAP1 is essential for the regulation of apoptosis induced by Rpr, Hid and Dronc. Furthermore, we show that the RING finger of DIAP1 promotes the ubiquitination of both itself and of Dronc. Disruption of the DIAP1 RING finger does not inhibit its binding to Rpr, Hid or Dronc, but completely abrogates ubiquitination of Dronc. Our data suggest that IAPs suppress apoptosis by binding to and targeting caspases for ubiquitination.  相似文献   

3.
The accumulation of inositol monophosphate (IP1) was measured after stimulation of 5-hydroxytryptamine2 (5-HT2) receptors on platelets from alcoholics and healthy controls. In controls, 5-HT induced a dose-dependent response with an EC50 = 2 x 10(-6) M and a maximal response at 10(-5) M. Ritanserin, a selective 5-HT2 antagonist, markedly reduced the accumulation. The IP1 formation after stimulation by 10(-5) M 5-HT was significantly impaired in platelets from alcoholics as compared to controls. This study indicates that the 5-HT2 receptor function is inhibited in alcoholics. It also illustrates the possibility of using IP1 formation in peripheral cells as a mean of studying receptor function in disease.  相似文献   

4.

Background  

Mycobacteria have been shown to contain an apparent redundancy of high-affinity phosphate uptake systems, with two to four copies of such systems encoded in all mycobacterial genomes sequenced to date. In addition, all mycobacteria also contain at least one gene encoding the low-affinity phosphate transporter, Pit. No information is available on a Pit system from a Gram-positive microorganism, and the importance of this system in a background of multiple other phosphate transporters is unclear.  相似文献   

5.
The exine of the pollen wall shows an intricate pattern, primarily comprising sporopollenin, a polymer of fatty acids and phenolic compounds. A series of enzymes synthesize sporopollenin precursors in tapetal cells, and the precursors are transported from the tapetum to the pollen surface. However, the mechanisms underlying the transport of sporopollenin precursors remain elusive. Here, we provide evidence that strongly suggests that the Arabidopsis ABC transporter ABCG26/WBC27 is involved in the transport of sporopollenin precursors. Two independent mutations at ABCG26 coding region caused drastic decrease in seed production. This defect was complemented by expression of ABCG26 driven by its native promoter. The severely reduced fertility of the abcg26 mutants was caused by a failure to produce mature pollen, observed initially as a defect in pollen-wall development. The reticulate pattern of the exine of wild-type microspores was absent in abcg26 microspores at the vacuolate stage, and the vast majority of the mutant pollen degenerated thereafter. ABCG26 was expressed specifically in tapetal cells at the early vacuolate stage of pollen development. It showed high co-expression with genes encoding enzymes required for sporopollenin precursor synthesis, i.e. CYP704B1, ACOS5, MS2 and CYP703A2. Similar to two other mutants with defects in pollen-wall deposition, abcg26 tapetal cells accumulated numerous vesicles and granules. Taken together, these results suggest that ABCG26 plays a crucial role in the transfer of sporopollenin lipid precursors from tapetal cells to anther locules, facilitating exine formation on the pollen surface.  相似文献   

6.
Zinc is an essential micronutrient, so it is important to elucidate the molecular mechanisms of zinc homeostasis, including the functional properties of zinc transporters. Mammalian zinc transporters are classified in two major families: the SLC30 (ZnT) family and the SLC39 family. The prevailing view is that SLC30 family transporters function to reduce cytosolic zinc concentration, either through efflux across the plasma membrane or through sequestration in intracellular compartments, and that SLC39 family transporters function in the opposite direction to increase cytosolic zinc concentration. We demonstrated that human ZnT5 variant B (ZnT5B (hZTL1)), an isoform expressed at the plasma membrane, operates in both the uptake and the efflux directions when expressed in Xenopus laevis oocytes. We measured increased activity of the zinc-responsive metallothionein 2a (MT2a) promoter when ZnT5b was co-expressed with an MT2a promoter-reporter plasmid construct in human intestinal Caco-2 cells, indicating increased total intracellular zinc concentration. Increased cytoplasmic zinc concentration mediated by ZnT5B, in the absence of effects on intracellular zinc sequestration by the Golgi apparatus or endoplasmic reticulum, was also confirmed by a dramatically enhanced signal from the zinc fluorophore Rhodzin-3 throughout the cytoplasm of Caco-2 cells overexpressing ZnT5B at the plasma membrane when compared with control cells. Our findings demonstrate clearly that, in addition to mediating zinc efflux, ZnT5B at the plasma membrane can function to increase cytoplasmic zinc concentration, thus indicating a need to reevaluate the current paradigm that SLC30 family zinc transporters operate exclusively to decrease cytosolic zinc concentration.  相似文献   

7.
8.
9.
L-Ara, an important constituent of plant cell walls, is found predominantly in the furanose rather than in the thermodynamically more stable pyranose form. Nucleotide sugar mutases have been demonstrated to interconvert UDP-Larabinopyranose (UDP-Arap) and UDP-L-arabinofuranose (UDP-Araf) in rice (Oryza sativa). These enzymes belong to a small gene family encoding the previously named Reversibly Glycosylated Proteins (RGPs). RGPs are plant-specific cytosolic proteins that tend to associate with the endomembrane system. In Arabidopsis thaliana, the RGP protein family consists of five closely related members. We characterized all five RGPs regarding their expression pattern and subcellular localizations in transgenic Arabidopsis plants. Enzymatic activity assays of recombinant proteins expressed in Escherichia coli identified three of the Arabidopsis RGP protein family members as UDP-L-Ara mutases that catalyze the formation of UDP-Araf from UDP-Arap. Coimmunoprecipitation and subsequent liquid chromatography-electrospray ionization-tandem mass spectrometry analysis revealed a distinct interaction network between RGPs in different Arabidopsis organs. Examination of cell wall polysaccharide preparations from RGP1 and RGP2 knockout mutants showed a significant reduction in total L-Ara content (12–31%) compared with wild-type plants. Concomitant downregulation of RGP1 and RGP2 expression results in plants almost completely deficient in cell wall–derived L-Ara and exhibiting severe developmental defects.  相似文献   

10.
The bacteriophage λ's cI mRNA was utilized to examine the importance of the 5'-terminal phosphate on expression of leadered and leaderless mRNA in Escherichia coli. A hammerhead ribozyme was used to produce leadered and leaderless mRNAs, in vivo and in vitro, that contain a 5'-hydroxyl. Although these mRNAs may not occur naturally in the bacterial cell, they allow for the study of the importance of the 5'-phosphorylation state in ribosome binding and translation of leadered and leaderless mRNAs. Analyses with mRNAs containing either a 5'-phosphate or a 5'-hydroxyl indicate that leaderless cI mRNA requires a 5'-phosphate for stable ribosome binding in vitro as well as expression in vivo. Ribosome-binding assays show that 30S subunits and 70S ribosomes do not bind as strongly to 5'-hydroxyl as they do to 5'-phosphate containing leaderless mRNA and the tRNA-dependent ternary complex is less stable. Additionally, filter-binding assays revealed that the 70S ternary complex formed with a leaderless mRNA containing a 5'-hydroxyl has a dissociation rate (k(off)) that is 4.5-fold higher compared with the complex formed with a 5'-phosphate leaderless mRNA. Fusion to a lacZ reporter gene revealed that leaderless cI mRNA expression with a 5'-hydroxyl was >100-fold lower than the equivalent mRNA with a 5'-phosphate. These data indicate that a 5'-phosphate is an important feature of leaderless mRNA for stable ribosome binding and expression.  相似文献   

11.
12.
The Candida albicans gene PGA26 encodes a small cell wall protein and is upregulated during de novo wall synthesis in protoplasts. Disruption of PGA26 caused hypersensitivity to cell wall-perturbing compounds (Calcofluor white and Congo red) and to zymolyase, which degrades the cell wall β-1,3-glucan network. However, susceptibility to caspofungin, an inhibitor of β-1,3-glucan synthesis, was decreased. In addition, pga26Δ mutants show increased susceptibility to antifungals (fluconazol, posaconazol or amphotericin B) that target the plasma membrane and have altered sensitivities to environmental (heat, osmotic and oxidative) stresses. Except for a threefold increase in β-1,6-glucan and a slightly widened outer mannoprotein layer, the cell wall composition and structure was largely unaltered. Therefore, Pga26 is important for proper cell wall integrity, but does not seem to be directly involved in the synthesis of cell wall components. Deletion of PGA26 further leads to hyperfilamentation, increased biofilm formation and reduced virulence in a mouse model of disseminated candidiasis. We propose that deletion of PGA26 may cause an imbalance in the morphological switching ability of Candida, leading to attenuated dissemination and infection.  相似文献   

13.
The Arabidopsis genome contains a family of v-SNAREs: VTI11, VTI12, and VTI13. Only VTI11 and VTI12 are expressed at appreciable levels. Although these two proteins are 60% identical, they complement different transport pathways when expressed in the yeast vti1 mutant. VTI11 was identified recently as the mutated gene in the shoot gravitropic mutant zig. Here, we show that the vti11 zig mutant has defects in vascular patterning and auxin transport. An Arabidopsis T-DNA insertion mutant, vti12, had a normal phenotype under nutrient-rich growth conditions. However, under nutrient-poor conditions, vti12 showed an accelerated senescence phenotype, suggesting that VTI12 may play a role in the plant autophagy pathway. VTI11 and VTI12 also were able to substitute for each other in their respective SNARE complexes, and a double-mutant cross between zig and vti12 was embryo lethal. These results suggest that some VTI1 protein was necessary for plant viability and that the two proteins were partially functionally redundant.  相似文献   

14.
Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in the glucose-6-phosphate transporter (G6PT). Sequence alignments identify a signature motif shared by G6PT and a family of transporters of phosphorylated metabolites. Two null signature motif mutations have been identified in the G6PT gene of GSD-Ib patients. In this study, we characterize the activity of seven additional mutants within the motif. Five mutants lack microsomal G6P uptake activity and one retains residual activity, suggesting that in G6PT the signature motif is a functional element required for microsomal glucose-6-phosphate transport.  相似文献   

15.
Sasaki A  Yamaji N  Yokosho K  Ma JF 《The Plant cell》2012,24(5):2155-2167
Paddy rice (Oryza sativa) is able to accumulate high concentrations of Mn without showing toxicity; however, the molecular mechanisms underlying Mn uptake are unknown. Here, we report that a member of the Nramp (for the Natural Resistance-Associated Macrophage Protein) family, Nramp5, is involved in Mn uptake and subsequently the accumulation of high concentrations of Mn in rice. Nramp5 was constitutively expressed in the roots and encodes a plasma membrane-localized protein. Nramp5 was polarly localized at the distal side of both exodermis and endodermis cells. Knockout of Nramp5 resulted in a significant reduction in growth and grain yield, especially when grown at low Mn concentrations. This growth reduction could be partially rescued by supplying high concentrations of Mn but not by the addition of Fe. Mineral analysis showed that the concentration of Mn and Cd in both the roots and shoots was lower in the knockout line than in wild-type rice. A short-term uptake experiment revealed that the knockout line lost the ability to take up Mn and Cd. Taken together, Nramp5 is a major transporter of Mn and Cd and is responsible for the transport of Mn and Cd from the external solution to root cells.  相似文献   

16.
Zhang X  Qu S 《PloS one》2012,7(1):e30961

Background

Excitatory amino acid transporter 1 (EAAT1) is a glutamate transporter which is a key element in the termination of the synaptic actions of glutamate. It serves to keep the extracellular glutamate concentration below neurotoxic level. However the functional significance and the change of accessibility of residues in transmembrane domain (TM) 5 of the EAAT1 are not clear yet.

Methodology/Principal Findings

We used cysteine mutagenesis with treatments with membrane-impermeable sulfhydryl reagent MTSET [(2-trimethylammonium) methanethiosulfonate] to investigate the change of accessibility of TM5. Cysteine mutants were introduced from position 291 to 300 of the cysteine-less version of EAAT1. We checked the activity and kinetic parameters of the mutants before and after treatments with MTSET, furthermore we analyzed the effect of the substrate and blocker on the inhibition of the cysteine mutants by MTSET. Inhibition of transport by MTSET was observed in the mutants L296C, I297C and G299C, while the activity of K300C got higher after exposure to MTSET. Vmax of L296C and G299C got lower while that of K300C got higher after treated by MTSET. The L296C, G299C, K300C single cysteine mutants showed a conformationally sensitive reactivity pattern. The sensitivity of L296C to MTSET was potentiated by glutamate and TBOA,but the sensitivity of G299C to MTSET was potentiated only by TBOA.

Conclusions/Significance

All these facts suggest that the accessibility of some positions of the external part of the TM5 is conformationally sensitive during the transport cycle. Our results indicate that some residues of TM5 take part in the transport pathway during the transport cycle.  相似文献   

17.
Pollen exine, mainly composed of sporopollenin, plays important roles during microspore development. It has been reported that Acyl-CoA Synthetase5 (ACOS5) is required for sporopollenin biosynthesis in Arabidopsis. Here we show that ACOS5 is essential for primexine formation during Arabidopsis microspore development. Through genetic screen, we identified a point mutation of ACOS5 allele, acos5-2, showing abnormal microspore development. Its microspores were degenerated and aborted after released from the tetrads. Transmission electron microscopy showed that primexine formation was reduced in acos5-2 mutant as compared to that of the wild-type. Consequently, sporopollenin was aggregated and randomly deposited on the microspores. In situ hybridization indicated that the key regulators of tapetum development, DYT1 and TDF1, are required for the expression of ACOS5 in tapetum. Furthermore, the GUS reporter showed that the 593-bp promoter sequence was sufficient for the expression of ACOS5 in the anther. Our data provide evidence that ACOS5 is required for primexine formation and sporopollenin deposition during microspore development.  相似文献   

18.
19.
20.
We studied the expression of the human cellular glutathione peroxidase (GPx) gene, from which a key enzyme containing selenocysteine (Scy) at the active site is produced. Expression of some human GPx gene mutants in COS-7 cells revealed that the 5' untranslated region (utr) was necessary for expression of the GPx gene, since mutant genes having 10 base pairs (bps) at the 5'utr (the complete had 311 bps) expressed GPx at very low levels. The genes with 311 or 408 bps at the 5'utr were better expressed than those having 257 bps. The GPx gene having 133 bps at the 3'utr (80 bps shorter than the entire length) was highly expressed. This deletion did not influence expression. We constructed some mutants in which 3 bases were altered at the upstream region of the Scy UGA codon in the frame of the GPx gene, by site-directed mutagenesis. GPx expression decreased but the expression was restored. Therefore, the upstream region of the in-frame Scy codon was not essential in the Scy decoding mechanisms. Finally, the 5'utr was essential for the expression of GPx gene. However, the deletion of a part of the 3'utr and the site-directed mutation upstream of the Scy codon did not show drastic effects on the expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号