首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
LTR retrotransposons may be important contributors to host gene evolution because they contain regulatory and coding signals. In an effort to assess the possible contribution of LTR retrotransposons to C. elegans gene evolution, we searched upstream and downstream of LTR retrotransposon sequences for the presence of predicted genes. Sixty-three percent of LTR retrotransposon sequences (79/124) are located within 1 kb of a gene or within gene boundaries. Most gene-retrotransposon associations were located along the chromosome arms. Our results are consistent with the hypothesis that LTR retrotransposons have contributed to the structural and/or regulatory evolution of genes in C. elegans.  相似文献   

2.
We studied the dynamics of hopi, Retrosat1, and RIRE3, three gypsy-like long terminal repeat (LTR) retrotransposons, in Oryza sativa L. genome. For each family, we assessed the phenetic relationships of the copies and estimated the date of insertion of the complete copies through the evaluation of their LTR divergence. We show that within each family, distinct phenetic groups have inserted at significantly different times, within the past 5 Myr and that two major amplification events may have occurred during this period. We show that solo-LTR formation through homologous unequal recombination has occurred in rice within the past 5 Myr for the three elements. We thus propose an increase/decrease model for rice genome evolution, in which both amplification and recombination processes drive variations in genome size.  相似文献   

3.
  总被引:2,自引:0,他引:2  
We report the identification and characterization of the major repeats in the centromeric and peri-centromeric heterochromatin of Brassica rapa. The analysis involved the characterization of 88 629 bacterial artificial chromosomes (BAC) end sequences and the complete sequences of two BAC clones. We identified centromere-specific retrotransposons of Brassica (CRB) and various peri-centromere-specific retrotransposons (PCRBr). Three copies of the CRB were identified in one BAC clone as nested insertions within a tandem array of 24 copies of a 176 bp centromeric repeat, CentBr. A complex mosaic structure consisting of nine PCRBr elements and large blocks of 238 bp degenerate tandem repeats (TR238) were found in or near a derivative of 5S-25S rDNA sequences. The chromosomal positions of selected repeats were determined using in situ hybridization. These revealed that CRB is a major component of all centromeres in three diploid Brassica species and their allotetraploid relatives. However, CentBr was not detected in the most distantly related of the diploid species analyzed, B. nigra. PCRBr and TR238 were found to be major components in the peri-centromeric heterochromatin blocks of four chromosomes of B. rapa. These repetitive elements were not identified in B. oleracea or B. nigra, indicating that they are A-genome-specific. GenBank accession numbers: KBrH001P13 (AC 166739); KBrH015B20 (AC 166740); end sequences of KBrH BAC library (CW 978640 - CW 988843); end sequences of KBrS BAC library (DU 826965 - DU 835595); end sequences of KBrB BAC library (DX 010661 - DX 083363).  相似文献   

4.
Several facets of spliceosomal intron in apicomplexans remain mysterious. First, intron numbers vary across species by 2 orders of magnitude, indicating massive intron loss and/or gain. Second, previous studies have shown very different evolutionary patterns over different timescales, with 100-fold higher rates of intron loss/gain between genera than within genera. Third, the timing and dynamics of nearly complete intron loss in Cryptosporidium species, as well as reasons for retention of the few remaining introns, remain unknown. We compared intron positions in 785 orthologous genes between 3 moderate to intron-rich apicomplexan species. We estimate that the Theileria-Plasmodium ancestor had 4.5 times as many introns as modern Plasmodium species and 38% more than modern Theileria species, and that subsequent intron losses have outnumbered intron gains by 5.8 to 1 in Theileria and by some 56 to 1 in Plasmodium. Several patterns suggest that these intron losses occurred by recombination with reverse-transcribed mRNAs. Intriguingly, this finding suggests significant retrotransposon activity in the lineages leading to both Theileria and Plasmodium, in contrast to the dearth of known retrotransposons and intron loss within modern species from both genera. We also compared genomes from Cryptosporidium parvum and C. hominis and found no evidence of ongoing intron loss, nor of intron gain. By contrast, Cryptosporidium introns are less evolutionary conserved with Toxoplasma than are introns from other apicomplexans; thus the few remaining introns are not simply indispensable ancestral introns.  相似文献   

5.
The evolution of apical dominance in maize during domestication from teosinte is associated with higher expression from the teosinte branched1 (tb1) gene that inhibits tiller bud outgrowth. Unlike many standard maize varieties, the sweet corn inbred P39 that carries a mutation in a starch biosynthesis gene sugary1 produces multiple tillers and providing an opportunity to explore the diversification of the tb1 signal in maize. Through gene expression analysis, we show that tiller buds in P39 continue to grow by overriding the high expression level of tb1 that arrests bud outgrowth in maize inbred B73. In addition, we demonstrate that while B73 is largely non-responsive to shade, both P39 and teosinte respond through tb1-independent and tb1-dependent molecular mechanisms, respectively, leading to inhibition of tiller bud outgrowth.  相似文献   

6.
  总被引:32,自引:0,他引:32  
The nature of the role played by mobile elements in host genome evolution is reassessed considering numerous recent developments in many areas of biology. It is argued that easy popular appellations such as \"selfish DNA\" and \"junk DNA\" may be either inaccurate or misleading and that a more enlightened view of the transposable element-host relationship encompasses a continuum from extreme parasitism to mutualism. Transposable elements are potent, broad spectrum, endogenous mutators that are subject to the influence of chance as well as selection at several levels of biological organization. Of particular interest are transposable element traits that early evolve neutrally at the host level but at a later stage of evolution are co-opted for new host functions.  相似文献   

7.
8.
    
Ginseng (Panax ginseng) is a famous medicinal herb, but the composition and structure of its genome are largely unknown. Here we characterized the major repeat components and inspected their distribution in the ginseng genome. By analyzing three repeat‐rich bacterial artificial chromosome (BAC) sequences from ginseng, we identified complex insertion patterns of 34 long terminal repeat retrotransposons (LTR‐RTs) and 11 LTR‐RT derivatives accounting for more than 80% of the BAC sequences. The LTR‐RTs were classified into three Ty3/gypsy (PgDel, PgTat and PgAthila) and two Ty1/Copia (PgTork and PgOryco) families. Mapping of 30‐Gbp Illumina whole‐genome shotgun reads to the BAC sequences revealed that these five LTR‐RT families occupy at least 34% of the ginseng genome. The Ty3/Gypsy families were predominant, comprising 74 and 33% of the BAC sequences and the genome, respectively. In particular, the PgDel family accounted for 29% of the genome and presumably played major roles in enlargement of the size of the ginseng genome. Fluorescence in situ hybridization (FISH) revealed that the PgDel1 elements are distributed throughout the chromosomes along dispersed heterochromatic regions except for ribosomal DNA blocks. The intensity of the PgDel2 FISH signals was biased toward 24 out of 48 chromosomes. Unique gene probes showed two pairs of signals with different locations, one pair in subtelomeric regions on PgDel2‐rich chromosomes and the other in interstitial regions on PgDel2‐poor chromosomes, demonstrating allotetraploidy in ginseng. Our findings promote understanding of the evolution of the ginseng genome and of that of related species in the Araliaceae.  相似文献   

9.
Study on the evolution of the grande retrotransposon in the zea genus   总被引:5,自引:0,他引:5  
The study of Grande retrotransposon (RTN) variation reported here comprises the intrinsic element variability and the changes that element insertion provokes in the Zea genome, including its abundance among species. Sequence analysis of a defined long-terminal repeat (LTR) region from Grande RTN revealed a high level of sequence divergence since no identical sequences were found among the 65 clones examined that belong to different Zea species or maize inbred lines. Average diversity values within accessions ranged from 0.17 to 0.37 substitutions per nucleotide. Phylogenetic analysis revealed a lack of concordance between the phylogenetic tree obtained from LTR sequences and the conventional taxonomic tree, suggesting that different subfamilies of Grande elements existed before Zea speciation. When sequence-specific amplification polymorphism (SSAP) marker data, which combines genomic and RTN variation, are used, the derived trees reflect the established species phylogeny and allow, as well, differentiating among some maize lines. Finally, the evaluation of Grande abundance, using different element probes in all the Zea species but Z. luxurians, revealed around 5,700 copies per haploid genome in all the diploid species examined, indicating a similar expansion process of Grande in all the Zea genomes. This number of copies represents in all cases around a 3% of the genome, which implies that Grande RTN is an important component of the maize genome. The copy number ratio LTR/gag is around 2 in all the species analyzed, indicating that overwhelming majority of elements have internal region. Thus, mechanisms such as homologous recombination between LTRs of a single RTN, which would remove the internal region and one LTR, leaving behind a single recombinant LTR, seems not to be active in maize for Grande RTN.  相似文献   

10.
The restriction endonucleases Hpa II and Msp I were used to examine cytosine methylation in the ribosomal RNA genes (rDNA) of inbred lines of maize and species of teosinte. In all of the rDNAs examined, Msp I (not sensitive to mCpG) digestion yielded a distribution of lower molecular weight fragments indicative of multiple recognition sites. The majority of the rDNA arrays in an individual were inaccessible to Hpa II (sensitive to mCpG) cleavage, but a significant fraction (10–25%) was cleaved at least once by Hpa II into repeat unit length fragments (9.1 kbp). In some maize inbred lines, one or two additional fragment populations (less than 9.1 kbp in length) were also produced by Hpa II digestion. All of the unmethylated Hpa II sites mapped to the intergenic spacer (IGS), and the major unmethylated site was located approximately 800 bp 5 to the start of the 18S RNA coding sequence. An Eco RI polymorphism, present in the 26S gene of certain inbred lines and hybrids, was utilized to investigate the organization of unmethylated repeat units in the rDNA array. In double digest experiments with Hpa II/Eco RI, the fragments from repeat units with two Eco RI sites were sensitive to Hpa II digestion, whereas, the fragments from repeat units with a single Eco RI site were almost completely resistant to Hpa II digestion. Similar digestion patterns were also observed in Eco RII (sensitive to mCNG)/Eco RI digests. These results suggest that unmethylated and Eco RI polymorphic sites occur in the same repeat units.  相似文献   

11.
    
Sesame (Sesamum indicum L.) is an important oil crop renowned for its high oil content and quality. Recently, genome assemblies for five sesame varieties including two landraces (S. indicum cv. Baizhima and Mishuozhima) and three modern cultivars (S. indicum var. Zhongzhi13, Yuzhi11 and Swetha), have become available providing a rich resource for comparative genomic analyses and gene discovery. Here, we employed a reference‐assisted assembly approach to improve the draft assemblies of four of the sesame varieties. We then constructed a sesame pan‐genome of 554.05 Mb. The pan‐genome contained 26 472 orthologous gene clusters; 15 409 (58.21%) of them were core (present across all five sesame genomes), whereas the remaining 41.79% (11 063) clusters and the 15 890 variety‐specific genes were dispensable. Comparisons between varieties suggest that modern cultivars from China and India display significant genomic variation. The gene families unique to the sesame modern cultivars contain genes mainly related to yield and quality, while those unique to the landraces contain genes involved in environmental adaptation. Comparative evolutionary analysis indicates that several genes involved in plant‐pathogen interaction and lipid metabolism are under positive selection, which may be associated with sesame environmental adaption and selection for high seed oil content. This study of the sesame pan‐genome provides insights into the evolution and genomic characteristics of this important oilseed and constitutes a resource for further sesame crop improvement.  相似文献   

12.
    
Aside from polyploidy, transposable elements are the major drivers of genome size increases in plants. Thus, understanding the diversity and evolutionary dynamics of transposable elements in sunflower (Helianthus annuus L.), especially given its large genome size (~3.5 Gb) and the well‐documented cases of amplification of certain transposons within the genus, is of considerable importance for understanding the evolutionary history of this emerging model species. By analyzing approximately 25% of the sunflower genome from random sequence reads and assembled bacterial artificial chromosome (BAC) clones, we show that it is composed of over 81% transposable elements, 77% of which are long terminal repeat (LTR) retrotransposons. Moreover, the LTR retrotransposon fraction in BAC clones harboring genes is disproportionately composed of chromodomain‐containing Gypsy LTR retrotransposons (‘chromoviruses’), and the majority of the intact chromoviruses contain tandem chromodomain duplications. We show that there is a bias in the efficacy of homologous recombination in removing LTR retrotransposon DNA, thereby providing insight into the mechanisms associated with transposable element (TE) composition in the sunflower genome. We also show that the vast majority of observed LTR retrotransposon insertions have likely occurred since the origin of this species, providing further evidence that biased LTR retrotransposon activity has played a major role in shaping the chromatin and DNA landscape of the sunflower genome. Although our findings on LTR retrotransposon age and structure could be influenced by the selection of the BAC clones analyzed, a global analysis of random sequence reads indicates that the evolutionary patterns described herein apply to the sunflower genome as a whole.  相似文献   

13.
A possible involvement of retroelements in the epigenetic regulation of human gene expression was considered by the example of methylation of long terminal repeats (LTRs) of the human endogenous retrovirus family K (HERV-K). The methylation status of six HERV-K LTRs was determined in various gene-enriched regions of the human genome. The methylation of four LTRs was shown to be tissue-specific. Our results correlated with published data on the tissue-specific changes in the expression level of human genes adjacent to the LTRs under study.  相似文献   

14.
15.
In humans and mice, there are 11 genes derived from sushi-ichi related retrotransposons, some of which are known to play essential roles in placental development. Interestingly, this family of retrotransposons was thought to exist only in eutherian mammals, indicating their significant contributions to the eutherian evolution, but at least one, PEG10, is conserved between marsupials and eutherians. Here we report a novel sushi-ichi retrotransposon-derived gene, SIRH12, in the tammar wallaby, an Australian marsupial species of the kangaroo family. SIRH12 encodes a protein highly homologous to the sushi-ichi retrotransposon Gag protein in the tammar wallaby, while SIRH12 in the South American short-tailed grey opossum is a pseudogene degenerated by accumulation of multiple nonsense mutations. This suggests that SIRH12 retrotransposition occurred only in the marsupial lineage but acquired and retained some as yet unidentified novel function, at least in the lineage of the tammar wallaby.  相似文献   

16.
Feature article     
Domesticated maize emerged from human selection, exploitation, and cultivation of natural recombinants between two wild grasses that had novel characteristics desired by humans for food. Crossing experiments reconstructing prototypes of ancient archaeological specimens demonstrate how the simple flowering spike of the wild relatives of maize was transformed into the prolific grain-bearing ear within a few generations of intergenomic recombination between teosinte andTripsacum. The high degree of morphological similarities of segregating intercross progeny to archaeological specimens from Tehuacán, Oaxaca, and Tamaulipas provides strong support for this evolutionary scenario. Comparative genomic analysis of maize, teosinte, andTripsacum confirms that maize has inherited unique polymorphisms from aTripsacum ancestor and other unique polymorphisms from a teosinte progenitor. This supports the hypothesis thatTripsacum introgression provided the mutagenic action for the transformation of the teosinte spike into the maize ear. This model for the origin of maize explains its sudden appearance, rapid evolutionary trajectory, and genesis of its spectacular biodiversity.  相似文献   

17.
人类基因组中的反转录转座子   总被引:1,自引:0,他引:1       下载免费PDF全文
人类基因组中有35%以上的序列为转座子序列.反转录转座子是引起人类疾病的潜在病因.人类基因组中的主导转座子——L1反转录转座子内部有二个开放读框,其编码蛋白具有RNA结合蛋白、反转录酶和内切酶活性.L1可能通过靶引物反转录机制整合到染色体中;Alu等非自主性反转录转座子可能利用L1反转录酶的反式互补作用进行转座.  相似文献   

18.
用水稻(Oryza sativa L.)内源反转座子Tos17为探针,经Southern杂交在5种含有野生稻(Zizania latifolia Griseb)(菰)DNA片段的水稻渐渗杂交系中检测到了可遗传DNA甲基化变异.在分析的4种甲基化敏感限制性内切酶中,每种酶切都发生了亲本杂交片段的消失和新片段的出现.发生甲基化变异的位点包括对称和不对称的胞嘧啶碱基,也包括腺嘌呤碱基.序列分析表明,与水稻亲本比较,所研究的5种渐渗杂交系在Tos17的2个重要区域(5'-LTR和RT)均未发生序列变异.但甲基化敏感-序列特异性PCR分析证实,每种渐渗杂交系在这2个区域内均发生了广泛的DNA甲基化变异.而且,在2种渐渗杂交系中发现5'-LTR和RT区域的甲基化变异存在协同性.甲基化变异可稳定遗传给后代.因为已有的研究表明,在这5种渐渗杂交系中异源DNA导入均导致了Tos17的激活和转座,因此可以推测DNA甲基化在调控Tos17活性中可能具有一定作用.但反转座子激活和甲基化变异之间的确切关系尚有待进一步研究.  相似文献   

19.
    
The tea plant (Camellia sinensis) is a thermophilic cash crop and contains a highly duplicated and repeat-rich genome. It is still unclear how DNA methylation regulates the evolution of duplicated genes and chilling stress in tea plants. We therefore generated a single-base-resolution DNA methylation map of tea plants under chilling stress. We found that, compared with other plants, the tea plant genome is highly methylated in all three sequence contexts, including CG, CHG and CHH (where H = A, T, or C), which is further proven to be correlated with its repeat content and genome size. We show that DNA methylation in the gene body negatively regulates the gene expression of tea plants, whereas non-CG methylation in the flanking region enables a positive regulation of gene expression. We demonstrate that transposable element-mediated methylation dynamics significantly drives the expression divergence of duplicated genes in tea plants. The DNA methylation and expression divergence of duplicated genes in the tea plant increases with evolutionary age and selective pressure. Moreover, we detect thousands of differentially methylated genes, some of which are functionally associated with chilling stress. We also experimentally reveal that DNA methyltransferase genes of tea plants are significantly downregulated, whereas demethylase genes are upregulated at the initial stage of chilling stress, which is in line with the significant loss of DNA methylation of three well-known cold-responsive genes at their promoter and gene body regions. Overall, our findings underscore the importance of DNA methylation regulation and offer new insights into duplicated gene evolution and chilling tolerance in tea plants.  相似文献   

20.
New protein functions in yeast chromosome VIII.   总被引:2,自引:0,他引:2       下载免费PDF全文
The analysis of the 269 open reading frames of yeast chromosome VIII by computational methods has yielded 24 new significant sequence similarities to proteins of known function. The resulting predicted functions include three particularly interesting cases of translation-associated proteins: peptidyl-tRNA hydrolase, a ribosome recycling factor homologue, and a protein similar to cytochrome b translational activator CBS2. The methodological limits of the meaningful transfer of functional information between distant homologues are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号