首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen atoms are rarely seen in X-ray protein crystal structures, but are readily visualized by neutron crystallography, even at typical (1.5-2.5A) resolutions. Recent advances in neutron beamlines and deuterium labeling technologies have dramatically extended the scale and range of structures studied. High-quality neutron data can be collected to near atomic resolution ( approximately 1.5-2.5A) for proteins of 50-175kDa molecular weight, from perdeuterated samples, from crystals with volumes of 0.1mm(3) and at cryogenic temperatures (15K). These structures are providing unique and complementary insights into hydrogen-bonding interactions, protonation states, catalytic mechanisms and hydration states of biological structures that are not available from X-ray analysis alone. The new generation of spallation neutron sources promises further 10-50-fold gains in performance.  相似文献   

2.
Cholesterol oxidase (CO) is a FAD (flavin adenine dinucleotide) containing enzyme that catalyzes the oxidization and isomerization of cholesterol. Studies directed toward elucidating the catalytic mechanism of CO will provide an important general understanding of Flavin-assisted redox catalysis. Hydrogen atoms play an important role in enzyme catalysis; however, they are not readily visualized in protein X-ray diffraction structures. Neutron crystallography is an ideal method for directly visualizing hydrogen positions at moderate resolutions because hydrogen and deuterium have comparable neutron scattering lengths to other heavy atoms present in proteins. The negative coherent and large incoherent scattering lengths of hydrogen atoms in neutron diffraction experiments can be circumvented by replacing hydrogen atoms with its isotope, deuterium. The perdeuterated form of CO was successfully expressed from minimal medium, purified, and crystallized. X-ray crystallographic structures of the enzyme in the perdeuterated and hydrogenated states confirm that there are no apparent structural differences between the two enzyme forms. Kinetic assays demonstrate that perdeuterated and hydrogenated enzymes are functionally identical. Together, structural and functional studies indicate that the perdeuterated protein is suitable for structural studies by neutron crystallography directed at understanding the role of hydrogen atoms in enzyme catalysis.  相似文献   

3.
Recent progress in neutron protein crystallography such as the use of the Laue technique and improved neutron optics and detector technologies have dramatically improved the speed and precision with which neutron protein structures can now be determined. These studies are providing unique and complementary insights on hydrogen and hydration in protein crystal structures that are not available from X-ray structures alone. Parallel improvements in modern molecular biology now allow fully (per)deuterated protein samples to be produced for neutron scattering that essentially eradicate the large-and ultimately limiting-hydrogen incoherent scattering background that has hampered such studies in the past. High quality neutron data can now be collected to near atomic resolution (approximately 2.0 A) for proteins of up to approximately 50 kDa molecular weight using crystals of volume approximately 0.1 mm3 on the Laue diffractometer at ILL. The ability to flash-cool and collect high resolution neutron data from protein crystals at cryogenic temperature (15 K) has opened the way for kinetic crystallography on freeze trapped systems. Current instrument developments now promise to reduce crystal volume requirements by a further order of magnitude, making neutron protein crystallography a more accessible and routine technique.  相似文献   

4.
Bacteriophage T4 lysozyme (T4L) has been used as a paradigm for seminal biophysical studies on protein structure, dynamics, and stability. Approximately 700 mutants of this protein and their respective complexes have been characterized by X‐ray crystallography; however, despite the high resolution diffraction limits attained in several studies, no hydrogen atoms were reported being visualized in the electron density maps. To address this, a 2.2 Å‐resolution neutron data set was collected at 80 K from a crystal of perdeuterated T4L pseudo‐wild type. We describe a near complete atomic structure of T4L, which includes the positions of 1737 hydrogen atoms determined by neutron crystallography. The cryogenic neutron model reveals explicit detail of the hydrogen bonding interactions in the protein, in addition to the protonation states of several important residues.  相似文献   

5.
It is well known that water molecules surrounding a protein play important roles in maintaining its structural stability. Water molecules are known to participate in several physiological processes through the formation of hydrogen bonds. However, the hydration structures of most proteins are not known well at an atomic level at present because X-ray protein crystallography has difficulties to localize hydrogen atoms. In contrast, neutron crystallography has no problem in determining the position of hydrogens with high accuracy.1 In this article, the hydration structures of three proteins are described- myoglobin, wild-type rubredoxin, and a mutant rubredoxin-the structures of which were solved at 1.5- or 1.6-A resolution by neutron structure determination. These hydration patterns show fascinating features and the water molecules adopt a variety of shapes in the neutron Fourier maps, revealing details of intermolecular hydrogen bond formation and dynamics of hydration. Our results further show that there are strong relationships between these shapes and the water environments.  相似文献   

6.
Room temperature neutron diffraction data of the fully perdeuterated Toho-1 R274N/R276N double mutant β-lactamase in the apo form were used to visualize deuterium atoms within the active site of the enzyme. This perdeuterated neutron structure of the Toho-1 R274N/R276N reveals the clearest picture yet of the ground-state active site protonation states and the complete hydrogen-bonding network in a β-lactamase enzyme. The ground-state active site protonation states detailed in this neutron diffraction study are consistent with previous high-resolution X-ray studies that support the role of Glu166 as the general base during the acylation reaction in the class A β-lactamase reaction pathway.  相似文献   

7.
In electron crystallography, membrane protein structure is determined from two-dimensional crystals where the protein is embedded in a membrane. Once large and well-ordered 2D crystals are grown, one of the bottlenecks in electron crystallography is the collection of image data to directly provide experimental phases to high resolution. Here, we describe an approach to bypass this bottleneck, eliminating the need for high-resolution imaging. We use the strengths of electron crystallography in rapidly obtaining accurate experimental phase information from low-resolution images and accurate high-resolution amplitude information from electron diffraction. The low-resolution experimental phases were used for the placement of α helix fragments and extended to high resolution using phases from the fragments. Phases were further improved by density modifications followed by fragment expansion and structure refinement against the high-resolution diffraction data. Using this approach, structures of three membrane proteins were determined rapidly and accurately to atomic resolution without high-resolution image data.  相似文献   

8.
The mechanism by which class A β-lactamases hydrolyze β-lactam antibiotics has been the subject of intensive investigation using many different experimental techniques. Here, we report on the novel use of both neutron and high resolution x-ray diffraction to help elucidate the identity of the catalytic base in the acylation part of the catalytic cycle, wherein the β-lactam ring is opened and an acyl-enzyme intermediate forms. To generate protein crystals optimized for neutron diffraction, we produced a perdeuterated form of the Toho-1 β-lactamase R274N/R276N mutant. Protein perdeuteration, which involves replacing all of the hydrogen atoms in a protein with deuterium, gives a much stronger signal in neutron diffraction and enables the positions of individual deuterium atoms to be located. We also synthesized a perdeuterated acylation transition state analog, benzothiophene-2-boronic acid, which was also isotopically enriched with 11B, as 10B is a known neutron absorber. Using the neutron diffraction data from the perdeuterated enzyme-inhibitor complex, we were able to determine the positions of deuterium atoms in the active site directly rather than by inference. The neutron diffraction results, along with supporting bond-length analysis from high resolution x-ray diffraction, strongly suggest that Glu-166 acts as the general base during the acylation reaction.  相似文献   

9.
Electron cryomicroscopy is a high-resolution imaging technique that is particularly appropriate for the structural determination of large macromolecular assemblies, which are difficult to study by X-ray crystallography or NMR spectroscopy. For some biological molecules that form two-dimensional crystals, the application of electron cryomicroscopy and image reconstruction can help elucidate structures at atomic resolution. In instances where crystals cannot be formed, atomic-resolution information can be obtained by combining high-resolution structures of individual components determined by X-ray crystallography or NMR with image-derived reconstructions at moderate resolution. This can provide unique and crucial information on the mechanisms of these complexes. Finally, image reconstructions can be used to augment X-ray studies by providing initial models that facilitate phasing of crystals of large macromolecular machines such as ribosomes and viruses.  相似文献   

10.
OMEGA is a compilation of recent structural information on proteinsderived from X-ray crystallography or NMR and published in journalsreferenced by Current Contents. To date, 401 entries have beenincluded (334 X-ray, 28 NMR, 5 NMR + X-ray, S electron microscopy,3 neutron scattering, 2 neutron diffraction, 1 electron microscopy+ X-ray, 12 model, 11 miscellaneous), with 5–10 new proteinsbeing added each week. OMEGA can be accessed on Macintosh andis interrog ated through 32 key words (space group, resolution,secondary structure, number of residues, etc). This pool ofproteins could be used for various purposes, including searchesfor proteins with a particular set of secondary structures.OMEGA will be continuously updated (every 6 months) and maylater include all proteins already reported in the PDB, as wellas structures reported in journals with smaller readerships.  相似文献   

11.
12.
Current proposals for the catalytic mechanism of aspartic proteinases are largely based on X-ray structures of bound oligopeptide inhibitors possessing nonhydrolyzable analogues of the scissile peptide bond. However, the positions of protons on the catalytic aspartates and the ligand in these complexes have not been determined with certainty. Thus, our objective was to locate crucial protons at the active site of an inhibitor complex since this will have major implications for a detailed understanding of the mechanism of action. We have demonstrated that high-resolution neutron diffraction data can be collected from crystals of the fungal aspartic proteinase endothiapepsin bound to a transition state analogue (H261). The neutron structure of the complex has been refined at a resolution of 2.1 A to an R-factor of 23.5% and an R(free) of 27.4%. This work represents the largest protein structure studied to date by neutron crystallography at high resolution. The neutron data demonstrate that 49% of the main chain nitrogens have exchanged their hydrogen atoms with D2O in the mother liquor. The majority of residues resisting exchange are buried within core beta-sheet regions of the molecule. The neutron maps confirm that the protein has a number of buried ionized carboxylate groups which are likely to give the molecule a net negative charge even at very low pH, thereby accounting for its low pI. The functional groups at the catalytic center have clearly undergone H-D exchange despite being buried by the inhibitor occupying the active site cleft. Most importantly, the data provide convincing evidence that Asp 215 is protonated and that Asp 32 is the negatively charged residue in the transition state complex. This has an important bearing on mechanistic proposals for this class of proteinase.  相似文献   

13.
Macromolecular crystallography has been, for the last few decades, the main source of structural information of biological macromolecular systems and it is one of the most powerful techniques for the analysis of enzyme mechanisms and macromolecular interactions at the atomic level. In addition, it is also an extremely powerful tool for drug design. Recent technological and methodological developments in macromolecular X-ray crystallography have allowed solving structures that until recently were considered difficult or even impossible, such as structures at atomic or subatomic resolution or large macromolecular complexes and assemblies at low resolution. These developments have also helped to solve the 3D-structure of macromolecules from twin crystals. Recently, this technique complemented with cryo-electron microscopy and neutron crystallography has provided the structure of large macromolecular machines with great precision allowing understanding of the mechanisms of their function.  相似文献   

14.
Deuterium is a natural low abundance stable hydrogen isotope that in high concentrations negatively affects growth of cells. Here, we have studied growth of Escherichia coli MG1655, a wild‐type laboratory strain of E. coli K‐12, in deuterated glycerol minimal medium. The growth rate and final biomass in deuterated medium is substantially reduced compared to cells grown in ordinary medium. By using a multi‐generation adaptive laboratory evolution‐based approach, we have isolated strains that show increased fitness in deuterium‐based growth media. Whole‐genome sequencing identified the genomic changes in the obtained strains and show that there are multiple routes to genetic adaptation to growth in deuterium‐based media. By screening a collection of single‐gene knockouts of nonessential genes, no specific gene was found to be essential for growth in deuterated minimal medium. Deuteration of proteins is of importance for NMR spectroscopy, neutron protein crystallography, neutron reflectometry, and small angle neutron scattering. The laboratory evolved strains, with substantially improved growth rate, were adapted for recombinant protein production by T7 RNA polymerase overexpression systems and shown to be suitable for efficient production of perdeuterated soluble and membrane proteins for structural biology applications.  相似文献   

15.
Hydrogen atoms and hydration water molecules in proteins are indispensable for many biochemical processes, especially enzymatic catalysis. The locations of hydrogen atoms in proteins are usually predicted based on X-ray structures, but it is still very difficult to know the ionization states of the catalytic residues, the hydration structure of the protein, and the characteristics of hydrogen-bonding interactions. Neutron crystallography allows the direct observation of hydrogen atoms that play crucial roles in molecular recognition and the catalytic reactions of enzymes. In this review, we present the current status of neutron crystallography in structural biology and recent neutron structural analyses of three enzymes: ascorbate peroxidase, the main protease of severe acute respiratory syndrome coronavirus 2, and copper-containing nitrite reductase.  相似文献   

16.
Electron microscopy and X-ray crystallography are revealing the structure of photosystem II. Electron crystallography has yielded a 3D structure at sufficient resolution to identify subunit positioning and transmembrane organization of the reaction-centre core complex of spinach. Single-particle analyses are providing 3D structures of photosystem II-light-harvesting complex II supercomplexes that can be used to incorporate high-resolution structural data emerging from electron and X-ray crystallography. The positions of the chlorins and metal centres within photosystem II are now available. It can be concluded that photosystem II is a dimeric complex with the transmembrane helices of CP47/D2 proteins related to those of the CP43/D1 proteins by a twofold axis within each monomer. Further, both electron microscopy and X-ray analyses show that P(680) is not a 'special pair' and that cytochrome b559 is located on the D2 side of the reaction centres some distance from P(680). However, although comparison of the electron microscopy and X-ray models for spinach and Synechococcus elongatus show considerable similarities, there seem to be differences in the number and positioning of some small subunits.  相似文献   

17.
High-resolution solid-state NMR spectroscopy can provide structural information of proteins that cannot be studied by X-ray crystallography or solution NMR spectroscopy. Here we demonstrate that it is possible to determine a protein structure by solid-state NMR to a resolution comparable to that by solution NMR. Using an iterative assignment and structure calculation protocol, a large number of distance restraints was extracted from (1)H/(1)H mixing experiments recorded on a single uniformly labeled sample under magic angle spinning conditions. The calculated structure has a coordinate precision of 0.6 A and 1.3 A for the backbone and side chain heavy atoms, respectively, and deviates from the structure observed in solution. The approach is expected to be applicable to larger systems enabling the determination of high-resolution structures of amyloid or membrane proteins.  相似文献   

18.
One of the major challenges facing structural biologists today is the determination of high-resolution 3D structures of membrane proteins. The requirement for detergent molecules to be present makes X-ray crystallography particularly difficult, coupled with the added problems of isolating sufficient (viable) protein samples at high enough concentrations to yield 3D crystals. One technique that enables structural determination with fewer constraints is electron crystallography of two-dimensional crystals, in which small amounts of membrane proteins can be studied in native form in lipid bilayers.  相似文献   

19.
生物三维电子显微学主要由三个部分组成——电子晶体学、单颗粒技术和电子断层成像术,其结构解析对象的尺度范围介于x射线晶体学与光学显微镜之间,适合从蛋白质分子结构到细胞和组织结构的解析。以冷冻电镜技术与三维重构技术为基础的低温电子显微学代表了生物电子显微学的前沿。低温单颗粒技术对于高度对称的病毒颗粒的解析最近已达到3.8A分辨率,正在成为解析分子量很大的蛋白质复合体高分辨结构的有效技术手段。低温电子断层成像技术目前对于真核细胞样品的结构解析已达到约40A的分辨率,在今后5年有望达到20A。这样,把x射线晶体学、NMR以及电镜三维重构获得的蛋白质分子及复合体的高分辨率的结构,锚定到较低分辨率的电子断层成像图像中,从而在细胞水平上获得高精确的蛋白质空间定位和原子分辨率的蛋白质相互作用的结构信息。这将成为把分子水平的结构研究与细胞水平的生命活动衔接起来的可行途径。  相似文献   

20.
Analytical ultracentrifugation and solution scattering provide different multi-parameter structural and compositional information on proteins. The joint application of the two methods supplements high resolution structural studies by crystallography and NMR. We summarise the procedures required to obtain equivalent ultracentrifugation and X-ray and neutron scattering data. The constrained modelling of ultracentrifugation and scattering data is important to confirm the experimental data analysis and yields families of best-fit molecular models for comparison with crystallography and NMR structures. This modelling of ultracentrifugation and scattering data is described in terms of starting models, their conformational randomisation in trial-and-error fits, and the identification of the final best-fit models. Seven applications of these methods are described to illustrate the current state-of-the-art. These include the determination of antibody solution structures (the human IgG4 subclass, and oligomeric forms of human IgA and its secretory component), the solution structures of the complement proteins of innate immunity (Factor H and C3/C3u) and their interactions with macromolecular ligands (C-reactive protein), and anionic polysaccharides (heparin). Complementary features of joint ultracentrifugation and scattering experiments facilitate an improved understanding of crystal structures (illustrated for C3/C3u, C-reactive protein and heparin). If a large protein or its complex cannot be crystallised, the joint ultracentrifugation-scattering approach provides a means to obtain an overall macromolecular structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号