首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Aims:  To detect antimicrobial resistance genes in Salmonella isolates from turkey flocks using the microarray technology.
Methods and Results:  A 775 gene probe oligonucleotide microarray was used to detect antimicrobial resistance genes in 34 isolates. All tetracycline-resistant Salmonella harboured tet(A) , tet(C) or tet(R) , with the exception of one Salmonella serotype Heidelberg isolate. The sul1 gene was detected in 11 of 16 sulfisoxazole-resistant isolates. The aadA , aadA1 , aadA2 , strA or strB genes were found in aminoglycoside-resistant isolates of Salm. Heidelberg, Salmonella serotype Senftenberg and untypeable Salmonella . The prevalence of mobile genetic elements, such as class I integron and transposon genes, in drug-resistant Salmonella isolates suggested that these elements may contribute to the dissemination of antimicrobial resistance genes in the preharvest poultry environment. Hierarchical clustering analysis demonstrated a close relationship between drug-resistant phenotypes and the corresponding antimicrobial resistance gene profiles.
Conclusions:  Salmonella serotypes isolated from the poultry environment carry multiple genes that can render them resistant to several antimicrobials used in poultry and humans.
Significance and Impact of the Study:  Multiple antimicrobial resistance genes in environmental Salmonella isolates could be identified efficiently by microarray analysis. Hierarchical clustering analysis of the data was also found to be a useful tool for analysing emerging patterns of drug resistance.  相似文献   

3.
The global dissemination of the multiply-antibiotic-resistant Salmonella enterica serovar Typhimurium DT104 clone with the resistance genes located in a class 1 integron, here designated In104, within genomic island SGI1 is a significant public health issue. Here, we have shown that SGI1 and variants of it carrying different combinations of resistance genes are found in several Salmonella enterica serovars. These are serovars Cerro, Derby, Dusseldorf, Infantis, Kiambu, and Paratyphi B dT(+) isolated from human infections and serovar Emek from sewage effluent. Two new variants, SGI1-I and SGI1-J, both of which include the dfrA1-orfC cassette array, were identified.  相似文献   

4.
Comparison of phage types (PTs) determined by Felix and Callow's and Anderson's methods was performed testing 99 human strains of S. enterica serotype Typhimurium (S. typhimurium) isolated in Hungary. PT2 and PT2c--according to Felix-Callow--corresponded with Anderson's DT104 in case of 39 strains out of 40. Among 59 isolates belonging to other Felix-Callow's PTs only one strain was found which was DT 104. Similar unambiguous equalities could not be established between any other PTs comparing the two methods. The PTs of 17,877 human strains isolated between 1988 and 1999 were determined using Felix-Callow's method. On the basis of the above equality the emergence of DT104 could be followed retrospectively by means of the rate of PT2 and PT2c. The increase of DT104 began already in 1989, emerging first PT2c then PT2. It predominated since 1991 and it reached its maximum (78.3%) in 1999. The incidence of multiresistance among one of the groups of DT104 strains (Felix-Callow's PT2) was significantly higher in 1998 than the average of non-DT104 strains. The predominant R-type was ACST.  相似文献   

5.
The selective pressure imposed by the use of antimicrobials in both human and veterinary medicine promotes the spread of multiple antimicrobial resistance. The dissemination of antimicrobial resistance in Salmonella enterica strains, causing severe enteritis in human, has been reported worldwide and is largely attributed to conjugative DNA exchange. In the present review, the relevance of plasmids to the dissemination of antimicrobial resistance in S. enterica is discussed. Recent examples of plasmid-mediated resistance to expanded-spectrum cephalosporins are reported to illustrate the severity of current situation in enteric pathogens. The exchanges between plasmid(s) and the bacterial chromosome and the integration of resistance genes into specialised genetic elements, called integrons, play a major role in acquisition and dissemination of resistance genes. The evolution of a plasmid through the acquisition of integrons is reported, describing novel mechanisms for short-term accumulation of resistance determinants in plasmids circulating in Salmonella.  相似文献   

6.
In order to understand the role of the mar locus in Salmonella with regard to multiple antibiotic resistance, cyclohexane resistance, and outer membrane protein F (OmpF) regulation, a marA::gfp reporter mutant was constructed in an antibiotic-sensitive Salmonella enterica serovar Typhimurium DT104 background. Salicylate induced marA, whereas a number of antibiotics, disinfectants, and various growth conditions did not. Increased antibiotic resistance was observed upon salicylate induction, although this was shown to be by both mar-dependent and mar-independent pathways. Cyclohexane resistance, however, was induced by salicylate by a mar-dependent pathway. Complementation studies with a plasmid that constitutively expressed marA confirmed the involvement of mar in Salmonella with low-level antibiotic resistance and cyclohexane resistance, although the involvement of mar in down regulation of OmpF was unclear. However, marA overexpression did increase the expression of a ca. 50-kDa protein, but its identity remains to be elucidated. Passage of the marA::gfp reporter mutant with increasing levels of tetracycline, a method reported to select for mar mutants in Escherichia coli, led to both multiple-antibiotic and cyclohexane resistance. Collectively, these data indicate that low-level antibiotic resistance, cyclohexane resistance, and modulation of OMPs in Salmonella, as in E. coli, can occur in both a mar-dependent and mar-independent manner.  相似文献   

7.
Salmonella genomic island 1 (SGI1) contains a multidrug resistance region conferring the ampicillin-chloramphenicol-streptomycin-sulfamethoxazole-tetracycline resistance phenotype encoded by bla(PSE-1), floR, aadA2, sul1, and tet(G). Its increasing spread via interbacterial transfer and the emergence of new variants are important public health concerns. We investigated the molecular properties of SGI1-carrying Salmonella enterica serovars selected from a European strain collection. A total of 38 strains belonging to S. enterica serovar Agona, S. enterica serovar Albany, S. enterica serovar Derby, S. enterica serovar Kentucky, S. enterica serovar Newport, S. enterica serovar Paratyphi B dT+, and S. enterica serovar Typhimurium, isolated between 2002 and 2006 in eight European countries from humans, animals, and food, were subjected to antimicrobial susceptibility testing, molecular typing methods (XbaI pulsed-field gel electrophoresis [PFGE], plasmid analysis, and multilocus variable-number tandem-repeat analysis [MLVA]), as well as detection of resistance and virulence determinants (PCR/sequencing and DNA microarray analysis). Typing experiments revealed wide heterogeneity inside the strain collection and even within serovars. PFGE analysis distinguished a total of 26 different patterns. In contrast, the characterization of the phenotypic and genotypic antimicrobial resistance revealed serovar-specific features. Apart from the classical SGI1 organization found in 61% of the strains, seven different variants were identified with antimicrobial resistance properties associated with SGI1-A (S. Derby), SGI1-C (S. Derby), SGI1-F (S. Albany), SGI1-L (S. Newport), SGI1-K (S. Kentucky), SGI1-M (S. Typhimurium), and, eventually, a novel variant similar to SGI1-C with additional gentamicin resistance encoded by aadB. Only minor serovar-specific differences among virulence patterns were detected. In conclusion, the SGI1 carriers exhibited pathogenetic backgrounds comparable to the ones published for susceptible isolates. However, because of their multidrug resistance, they may be more relevant in clinical settings.  相似文献   

8.
9.
The presence and genetic content of integrons was investigated in eight Salmonella enterica Typhimurium DT104 isolates from different pig herds in Denmark. Two different integrons were identified using PCR and sequencing. Each of the integrons carried a single resistance cassette in addition to the sul1 and qacEΔ1 genes characteristic of integrons. The first integron encoded the ant (3″)-Ia gene that specified resistance to spectinomycin and streptomycin. The second contained the pse-1 β-lactamase gene. All the multiresistant strains contained both integrons. The presence of these two integrons did not account for the total phenotypic resistance of all the isolates and does not exclude the presence of other mobile DNA elements.  相似文献   

10.
The presence and genetic content of integrons was investigated in eight Salmonella enteritica Typhimurium DT104 isolates from different pig herds in Denmark. Two different integrons were identified using PCR and sequencing. Each of the integrons carried a single resistance cassette in addition to the sul1 and qacEΔ1 genes characteristic of integrons. The first integron encoded the ant (3″)-Ia gene that specified resistance to spectinomycin and streptomycin. The second contained the pse-1 β-lactamase gene. All the multiresistant strains contained both integrons. The presence of these two integrons did not account for the total phenotypic resistance of all the isolates and does not exclude the presence of other mobile DNA elements.  相似文献   

11.
A total of 84 Salmonella enterica serovar Enteritidis (S. Enteritidis) isolates, 42 of human and 42 of poultry origin, were characterized for antimicrobial resistance patterns and class I integrons. Among them, 58 (69%) S. Enteritidis were multidrug-resistant (MDR) and showed resistance to two or more antibiotic classes. By PCR assays and DNA sequencing, 50 (59.5%) S. Enteritidis isolates were found to carry class I integrons. Amplification of internal variable regions of class I integrons revealed five different arrays (0.75 kb only, 1 kb only, 1.3 kb only, both 1 and 1.2 kb, and both 1 and 1.3 kb). The integrons were further sequenced and the dfrA25 (0.75 kb), aadA1 (1 kb), aadA2 (1 kb), bla(PSE1) (1.2 kb) aadA6-orfD (1.3 kb) gene cassette arrays were identified. Ciprofloxacin minimum inhibitory concentration (MIC) values for the three isolates that showed resistance or reduced susceptibility via the disc diffusion method were 0.5-4 μg mL(-1), although only three isolates exhibited resistance to cefteriaxone (MIC: 128-256 μg mL(-1)) and four isolates were resistant to florfenicol (MIC: 32-128 μg mL(-1)). In conclusion, the high rates of multidrug-resistance and class I integrons found among S. Enteritidis isolates in humans and poultry in Tehran suggest that efforts are needed to confine the prevalence of MDR Salmonella isolates.  相似文献   

12.
AIMS: Acid resistance could be an indicator of virulence since acid resistant strains are able to better survive the human stomach passage and in macrophages. We studied the acid resistance of several Salmonella Typhimurium DT104 strains isolated from food and humans and identified cellular parameters contributing to the enhanced acid resistance of these isolates. METHODS AND RESULTS: Acid resistance was tested in 37 Salmonella enterica Typhimurium serovar DT104 (S. Typhimurium DT104) strains. Acid adaptation at pH 5 followed by exposure for 2 h at pH 2.5 in the 27 human, nine nonhuman, and in two reference strains, revealed strong variation of acid survival. After 2 h at pH 2.5 six strains of S. Typhimurium DT104 were considered high acid resistant as they displayed a level of survival >10%, 14 strains were considered intermediate acid resistant (level of survival was <10% and >0.01%) and 19 strains were considered low acid resistant (level of survival <0.01%). Six strains were selected for further studies and proteomics revealed a relatively high amount of phase 2 flagellin in an acid-sensitive strain and a relatively high amount of the beta component of the H(+)/ATPase in an acid-resistant strain. Two strains were slightly more heat resistant possibly as the result of increased levels of DnaK or GroEL. CONCLUSIONS: A significant difference could be detected between human and food isolates regarding their acid resistance; all high acid-resistant strains were human isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: S. Typhimurium DT104 is known for two decades and has a great impact on human health causing serious food-borne diseases. Our results suggest the existence of a positive correlation between acid resistance and pathogenicity in S. Typhimurium DT104 as all high acid-resistant strains were isolated from humans.  相似文献   

13.
Little is known about the genetic diversity of Salmonella enterica serovar Typhi (S. Typhi) circulating in Latin America. It has been observed that typhoid fever is still endemic in this part of the world; however, a lack of standardized blood culture surveillance across Latin American makes estimating the true disease burden problematic. The Colombian National Health Service established a surveillance system for tracking bacterial pathogens, including S. Typhi, in 2006. Here, we characterized 77 representative Colombian S. Typhi isolates collected between 1997 and 2018 using pulse field gel electrophoresis (PFGE; the accepted genotyping method in Latin America) and whole genome sequencing (WGS). We found that the main S. Typhi clades circulating in Colombia were clades 2.5 and 3.5. Notably, the sequenced S. Typhi isolates from Colombia were closely related in a global phylogeny. Consequently, these data suggest that these are endemic clades circulating in Colombia. We found that AMR in S. Typhi in Colombia was uncommon, with a small subset of organisms exhibiting mutations associated with reduced susceptibility to fluoroquinolones. This is the first time that S. Typhi isolated from Colombia have been characterized by WGS, and after comparing these data with those generated using PFGE, we conclude that PFGE is unsuitable for tracking S. Typhi clones and mapping transmission. The genetic diversity of pathogens such as S. Typhi is limited in Latin America and should be targeted for future surveillance studies incorporating WGS.  相似文献   

14.
Aminoglycoside resistance in bacteria can be acquired by several mechanisms, including drug modification, target alteration, reduced uptake and increased efflux. Here we demonstrate that increased resistance to the aminoglycosides streptomycin and spectinomycin in Salmonella enterica can be conferred by increased expression of an aminoglycoside adenyl transferase encoded by the cryptic, chromosomally located aadA gene. During growth in rich medium the wild-type strain was susceptible but mutations that impaired electron transport and conferred a small colony variant (SCV) phenotype or growth in glucose/glycerol minimal media resulted in activation of the aadA gene and aminoglycoside resistance. Expression of the aadA gene was positively regulated by the stringent response regulator guanosine penta/tetraphosphate ((p)ppGpp). SCV mutants carrying stop codon mutations in the hemA and ubiA genes showed a streptomycin pseudo-dependent phenotype, where growth was stimulated by streptomycin. Our data suggest that this phenotype is due to streptomycin-induced readthrough of the stop codons, a resulting increase in HemA/UbiA levels and improved electron transport and growth. Our results demonstrate that environmental and mutational activation of a cryptic resistance gene can confer clinically significant resistance and that a streptomycin-pseudo-dependent phenotype can be generated via a novel mechanism that does not involve the classical rpsL mutations.  相似文献   

15.
Aims: While considerable foodborne pathogen research has been conducted on conventionally produced broilers and turkeys, few studies have focused on free‐range (organic) or pastured poultry. The current surveillance study was designed to isolate, identify and genetically characterize Salmonella from pastured poultry farm environment and from retail samples. Methods and Results: In this study, 59 isolates were collected from two pastured poultry farms (n = 164; pens, feed, water and insect traps) and retail carcasses (n = 36) from a local natural foods store and a local processing plant. All isolates were serotyped and analysed phenotypically (antimicrobial resistance profiles) and genotypically (DNA fingerprints, plasmid profiles and integron analysis). Salmonella enterica was detected using standard microbiological methods. Salmonella Kentucky was the most prevalent serotype detected from the sampled sources (53%), followed by Salmonella Enteritidis (24%), Bareilly (10%), Mbandaka (7%), Montevideo (5%) or Newport (2%). All isolates were resistant to sulfisoxazole and novobiocin, and the majority (40/59) possessed class I integrons shown by PCR detection. Each Salmonella serotype elicited a distinct pulsed‐field gel electrophoresis fingerprint profile, and unique differences were observed among the serotypes. Conclusions: The findings of this study show that Salmonella serotypes isolated from pasture‐raised poultry exhibit antimicrobial resistance and class I integrons. Significance and Impact of the Study: This study demonstrates that despite the cessation of antibiotic usage in poultry production, antibiotic resistant Salmonella may still be recovered from the environment and poultry products.  相似文献   

16.
Aims: The aims of this communication were to study characterization of serogroups among Salmonella isolates and the relationship of antimicrobial resistance to serogroups. Multiple antimicrobial resistance (MAR) was performed on 189 Salmonella enterica isolates associated with 38 different serovars that were recovered from poultry and four types of indigenous vegetables. Methods and Results: Disc diffusion analysis was performed with a selection of 10 different antimicrobial agents. Isolates recovered from indigenous vegetables showed 100% (134/134) resistant to erythromycin and followed by 42%, 34%, 19% for tetracycline, streptomycin and trimethroprim‐sulfamethoxazole respectively. In general, 90·1% (50/55) and 56·7% (76/134) of Salmonella isolated from poultry and indigenous vegetables, respectively, exhibited MAR index more than 0·2. Conclusions: Characterization of Salmonella isolates based on the MAR results indicated that poultry still remains as the main reservoir for multi‐drug‐resistant Salmonella. Four isolates from the indigenous vegetables showed the highest MAR index in this study. Further investigations need to be conducted to determine if Salmonella isolates recovered from indigenous vegetables were gaining more antimicrobial resistance. Significance and Impact of the Study: The study enabled us to determine antimicrobial patterns and trends in Salmonella from poultry and indigenous vegetables in Malaysia.  相似文献   

17.
Non-typhoidal Salmonella enterica is a common cause of diarrhoeal disease; in humans, consumption of contaminated poultry meat is believed to be a major source. Brazil is the world’s largest exporter of chicken meat globally, and previous studies have indicated the introduction of Salmonella serovars through imported food products from Brazil. Here we provide an in-depth genomic characterisation and evolutionary analysis to investigate the most prevalent serovars and antimicrobial resistance (AMR) in Brazilian chickens and assess the impact to public health of products contaminated with S. enterica imported into the United Kingdom from Brazil. To do so, we examine 183 Salmonella genomes from chickens in Brazil and 357 genomes from humans, domestic poultry and imported Brazilian poultry products isolated in the United Kingdom. S. enterica serovars Heidelberg and Minnesota were the most prevalent serovars in Brazil and in meat products imported from Brazil into the UK. We extended our analysis to include 1,259 publicly available Salmonella Heidelberg and Salmonella Minnesota genomes for context. The Brazil genomes form clades distinct from global isolates, with temporal analysis suggesting emergence of these Salmonella Heidelberg and Salmonella Minnesota clades in the early 2000s, around the time of the 2003 introduction of the Enteritidis vaccine in Brazilian poultry. Analysis showed genomes within the Salmonella Heidelberg and Salmonella Minnesota clades shared resistance to sulphonamides, tetracyclines and beta-lactams conferred by sul2, tetA and blaCMY-2 genes, not widely observed in other co-circulating serovars despite similar selection pressures. The sul2 and tetA genes were concomitantly carried on IncC plasmids, whereas blaCMY-2 was either co-located with the sul2 and tetA genes on IncC plasmids or independently on IncI1 plasmids. Long-term surveillance data collected in the UK showed no increase in the incidence of Salmonella Heidelberg or Salmonella Minnesota in human cases of clinical disease in the UK following the increase of these two serovars in Brazilian poultry. In addition, almost all of the small number of UK-derived genomes which cluster with the Brazilian poultry-derived sequences could either be attributed to human cases with a recent history of foreign travel or were from imported Brazilian food products. These findings indicate that even should Salmonella from imported Brazilian poultry products reach UK consumers, they are very unlikely to be causing disease. No evidence of the Brazilian strains of Salmonella Heidelberg or Salmonella Minnesota were observed in UK domestic chickens. These findings suggest that introduction of the Salmonella Enteritidis vaccine, in addition to increasing antimicrobial use, could have resulted in replacement of salmonellae in Brazilian poultry flocks with serovars that are more drug resistant, but less associated with disease in humans in the UK. The plasmids conferring resistance to beta-lactams, sulphonamides and tetracyclines likely conferred a competitive advantage to the Salmonella Minnesota and Salmonella Heidelberg serovars in this setting of high antimicrobial use, but the apparent lack of transfer to other serovars present in the same setting suggests barriers to horizontal gene transfer that could be exploited in intervention strategies to reduce AMR. The insights obtained reinforce the importance of One Health genomic surveillance.  相似文献   

18.
AIMS: A simple DNA macroarray system was developed for detection of antibiotic resistance and other marker genes associated with the multidrug-resistant food pathogen Salmonella enterica subsp. enterica serotype Typhimurium DT104. METHODS AND RESULTS: A multiplex polymerase chain reaction (PCR) incorporating digoxigenin-dUTP was used to simultaneously amplify seven marker sequences, with subsequent rapid detection of the amplicons by hybridization with an array of probes immobilized on polyester cloth and immunoenzymatic assay of the bound label. This system provided sensitive detection of the different genetic markers in the S. Typhimurium DT104 genome, giving positive reactions with as few as 10 CFU, and the hybridizations were highly specific, with no reactions of amplicons with heterologous probes on the array. CONCLUSIONS: This cloth-based hybridization array system (CHAS) provides a simple, cost-effective tool for monitoring S. Typhimurium DT104 in foods and their production environment. SIGNIFICANCE AND IMPACT OF THE STUDY: The CHAS is a simple and cost-effective tool for the simultaneous detection of amplicons generated in a multiplex PCR, and the concept is broadly applicable to the detection and characterization of food pathogens.  相似文献   

19.
Fresh and processed poultry have been frequently implicated in cases of human salmonellosis. Furthermore, increased consumption of meat and poultry has increased the potential for exposure to Salmonella enterica. While advances have been made in reducing the prevalence and frequency of Salmonella contamination in processed poultry, there is mounting pressure on commercial growers to prevent and/or eliminate these human pathogens in preharvest production facilities. Several factors contribute to Salmonella colonization in commercial poultry, including the serovar and the infectious dose. In the early 1900s, Salmonella enterica serovars Pullorum and Gallinarum caused widespread diseases in poultry, but vaccination and other voluntary programs helped eradicate pullorum disease and fowl typhoid from commercial flocks. However, the niche created by the eradication of these serovars was likely filled by S. Enteritidis, which proliferated in the bird populations. While this pathogen remains a significant problem in commercial egg and poultry production, its prevalence among poultry has been declining since the 1990s. Coinciding with the decrease of S. Enteritidis, S. Heidelberg and S. Kentucky have emerged as the predominant serovars in commercial broilers. In this review, we have highlighted bacterial genetic and host-related factors that may contribute to such shifts in Salmonella populations in commercial poultry and intervention strategies that could limit their colonization.  相似文献   

20.
A combination of phage typing and pulsed-field gel electrophoresis of Xbal-digested chromosomal DNA has been used to study the epidemiological relationships of multidrug-resistant Salmonella enterica serotype typhimurium from Nairobi (64 isolates) and Kilifi (40 isolates) collected over the period 1994-1997. Isolates from Nairobi belonged to 11 definitive phage types (DTs) encompassing eight different PFGE patterns. In contrast, isolates from Kilifi were mainly DT 56 (60%) and all fell into a single PFGE pattern. The remaining isolates did not conform to a recognisable phage type. We conclude that multidrug-resistant S. typhimurium infections from Nairobi were caused by multiple strains while those from Kilifi were likely to be from a microepidemic caused by a single clone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号