首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Habib Ur Rehman 《CMAJ》2008,179(5):447-448
Abstract: A patient was noted to have 2 different eye colours and miosis in her left eye. She ultimately received a diagnosis of congenital Horner syndrome. Determinants of eye colour and possible clinical significance are discussed.The case: A 35-year-old woman with a hypertensive emergency and confusion presented to the emergency department. Incidentally, we noted that she had 2 different coloured eyes (heterochomia) and miosis of her left eye (Figure 1). The patient reported that her eyes had been different colours since very early in her childhood.Open in a separate windowFigure 1: This 35-year-old woman had different coloured eyes since birth. The entire iris of her right eye is brown, and the iris of the left eye is greenish brown. Her left pupil is smaller than the right, which is consistent with the diagnosis of congenital Horner syndrome.Although some patients have pigment changes involving only 1 segment of the iris (segmental heterochromia or heterochromia iridium),1 our patient''s entire iris was involved (complete heterochromia or heterochromia iridis). Heterochromia iridis is rare, affecting fewer than 200 000 people in the United States.2 Although uncommon in humans, it is common in some breeds of cats, dogs and horses.Eye colour is determined by the concentration and distribution of melanin in the iris, with both genetic and physiologic factors affecting determination and maintenance of iris colour. Most human cases of heterochromia are sporadic and benign, and they occur without any detectable underlying abnormality. Congenital heterochromia occurs in a variety of syndromes, including Sturge–Weber syndrome, Waardenburg syndrome and Parry–Romberg syndrome (3Table 1Open in a separate windowDisruption of the sympathetic stimulation of the melanocytes in the superficial stroma of the iris (especially as a child) can lead to heterochromia. Horner syndrome from the unilateral impairment of sympathetic nerves leads to ptosis, miosis, a lag in pupil dilation, enopthalmos (the impression of a sunken eye) and facial anhidrosis (decreased sweating on 1 side of the face). Acquired heterochromia can occur in adults in rare cases as a result of acquired Horner syndrome. In contrast to patients with acquired Horner syndrome, patients with congenital Horner syndrome, such as our patient, often lack several features of the syndrome.In adults with acquired heterochromia and miosis, Fuchs heterochromic cyclitis and sympathetic heterochromia must be considered. Unilateral sympathetic nerve lesions such as paravertebral neurilemmoma and neuroblastoma should also be considered. Our patient''s clinical presentation was inconsistent with any of these causes. Sympathetic heterochromia was suspected but investigations, including urinary catecholamines and an MIBG (iodine-131-meta-iodobenzylguanidine) scan, did not reveal excess catecholamine secretion or a sympathetic tumour.The patient''s blood pressure was managed with appropriate medication, and she was ultimately discharged from our care with a reversal of her confusion. There was no further follow-up with regard to her eye colour.Habib Ur Rehman MBBS Department of Internal Medicine Regina General Hospital Qu''Appelle Health Region Regina, Sask.  相似文献   

2.
In this study, we present a new quantitative method to measure iris colour based on high‐resolution photographs. We applied this method to analyse iris colour variation in a sample of individuals of East Asian, European and South Asian ancestry. We show that measuring iris colour using the coordinates of the CIELAB colour space uncovers a significant amount of variation that is not captured using conventional categorical classifications, such as ‘brown’, ‘blue’ or ‘green’. We tested the association of a selected panel of polymorphisms with iris colour in each population group. Six markers showed significant associations with iris colour in the European sample, three in the South Asian sample and two in the East Asian sample. We also observed that the marker HERC2 rs12913832, which is the main determinant of ‘blue’ versus ‘brown’ iris colour in European populations, is also significantly associated with central heterochromia in the European sample.  相似文献   

3.
On a sample of n = 25,346 individuals from Vienna (10,855 males, 14,491 females) the iris pigmentation has been typed by the author. In this sample 65 cases of different types of heterochromia were found. The frequency of the occurrence of the different types of this anomaly could be calculated for the first time. Neglecting age, sex, and type of heterochromia the total frequency amounts to 0.256 (males: 0.157; females: 0.37) %. The variants of heterochromia very from cases of total heterochromia to those of various size; in addition to it a number of special types could be observed. The localization of the heterochrome parts of the iris shows certain variations; mostly, however, it is seen in the lower half of the iris. The nasal part is concerned in only one case; the temporal region never. Thus, the partial heterochromia is characteristic by a marked dependency of its localization. The colour of heterochromia varies from 2 a-14 according to the Martin-Schultz standard set of coloured eyes. However, No. 9 (ca. 50%) and No. 7 (ca. 20%) were the most frequent colours. The age variations are considerable. 5/6 of all heterochromias were found between the age from 2-19 years. Finally, a marked sexual dimorphism was observed, as in females heterochromia is much more frequent than in males.  相似文献   

4.
Age-related macular degeneration (AMD) is more prevalent among the elderly Caucasians than in Africans. A significant association between light iris colour, fundus pigmentation and incidence of AMD is reported, suggesting a possible correlation with melanin pigment. Zinc is known to bind to melanin in pigmented tissues and to enhance antioxidant capacity by function as a cofactor or gene expression factor of antioxidant enzymes in the eye. In this in vitro study, we investigated the uptake and storage of zinc in human irides. Irides of blue and brown human eyes were used. The number of melanocytes was measured. Tissues without any treatment served as controls. The irides were incubated with 100 microM zinc chloride in culture medium for 24 h. Specimens of the tissues were stored for the uptake examination. The remained pieces were further incubated for 3 and 7 d to investigate the storage of zinc. The concentration of zinc was measured by inductively coupled plasma mass spectrometry (ICP-MS). Melanocytes count was significantly higher in the brown tissues (P < 0.0001). Zinc concentration of blue coloured irides after 24 h zinc treatment was close to the controls. We did not observe any significant storing. In contrast, the concentration of zinc in brown irides was significantly increased after 24 h (P < or = 0.01) and remained at a high level for 7 d. The uptake of zinc is likely dependent on the amount of pigmentation in human iris. Therefore, we assume that in patients suffering from AMD the degree of pigmentation of the irides and eventually fundi should be under consideration when the patients are treated with zinc supplementation.  相似文献   

5.
Attempts to modify experimentally the variegated phenotypes of the mutantsz inDrosophila melanogaster andw m2 inD. hydei, were largely unsuccessful. Transplanted eyes ofz were found to be more intensely pigmented, but this effect was not influenced by treatment of the imaginal disks or by the host's genotype. Inw m2, increased pigmentation was observed after treatment with 5-bromo-uracil.Thew m2 phenotype is strongly modified by supernumerary Y chromosomes. One Y shifts the eye colour from yellow to brown, two Y's, to dark red. In the Malpighian tubules, two Y's have a similarly strong effect, but one Y a slight effect only. Malpighian tubules ofw m2 larvae were used for a quantitative analysis of mottling. An average clonal cluster size of 1.1 was found. This indicates that the state of pigmentation is determined around the last cell division in the embryo.  相似文献   

6.
The tissue-specific effects of 17 mutations affecting the synthesis of brown eye pigment (xanthommatin) have been investigated by combining them with chocolate and red cells, two mutations causing ectopic pigmentation of the Malpighian tubules and larval fat body (which normally only synthesize pigment precursors). The majority of mutations block the pigmentation of four organs; the normally pigmented eyes and ocelli, and ectopically pigmented tubules and fat body. They represent genes that would appear to be required for the normal operation of the pathway per se and are likely to encode structural proteins. Mutations at 5 loci affect pigmentation of a subset of organs: cd and po affect only the eyes and ocelli; kar affects the eyes, ocelli and fat body; car causes excretion of pigment from tubules; and z affects pigmentation of the eyes alone. Of these loci, only z has been shown to encode a regulatory protein and the role of the remaining four gene products is not clear. Two mutations affecting the red eye pigments (drosopterins), bw and mal, do not substantially perturb brown pigment synthesis in any of the four organs.  相似文献   

7.
Position-effect variegation for the white locus was studied in normally shaped eyes and in reduced eyes of Bar (B) and Drop (Dr) flies. The average number of spots per eye is successively lower in +, B, and Dr eyes; moreover, B eyes show a relatively strong pigmentation. No simple relation seems to be present between the degree of pigmentation and the number of facets, either between +, B, and Dr eyes or within classes of Dr eyes that have been analysed.The chance that ommatidia will become pigmented follows a gradient across mottled eyes of wild-type shape that seems fixed early in development. The gradient is less clear or absent in B eyes.The results are best interpreted on the basis of the cell-lineage theory and an early one-sided action of B on the developing eye disc after fixation of the gradient.  相似文献   

8.
Almost all mammals have brown or darkly‐pigmented eyes (irises), but among primates, there are some prominent blue‐eyed exceptions. The blue eyes of some humans and lemurs are a striking example of convergent evolution of a rare phenotype on distant branches of the primate tree. Recent work on humans indicates that blue eye color is associated with, and likely caused by, a single nucleotide polymorphism (rs12913832) in an intron of the gene HERC2, which likely regulates expression of the neighboring pigmentation gene OCA2. This raises the immediate question of whether blue eyes in lemurs might have a similar genetic basis. We addressed this by sequencing the homologous genetic region in the blue‐eyed black lemur (Eulemur macaco flavifrons; N = 4) and the closely‐related black lemur (Eulemur macaco macaco; N = 4), which has brown eyes. We then compared a 166‐bp segment corresponding to and flanking the human eye‐color‐associated region in these lemurs, as well as other primates (human, chimpanzee, orangutan, macaque, ring‐tailed lemur, mouse lemur). Aligned sequences indicated that this region is strongly conserved in both Eulemur macaco subspecies as well as the other primates (except blue‐eyed humans). Therefore, it is unlikely that this regulatory segment plays a major role in eye color differences among lemurs as it does in humans. Although convergent phenotypes can sometimes come about via the same or similar genetic changes occurring independently, this does not seem to be the case here, as we have shown that the genetic basis of blue eyes in lemurs differs from that of humans. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Characterizing and comparing developmental progress across different species helps to interpret how different or similar body forms evolved. We present an embryonic table for the oviparous African Sand Snake Psammophis sibilans from the Lamprophidae family, describing its postovipositional in ovo development. Psammophis is a good model of a genus that is widely distributed in Africa and Asia and includes 22 species. We describe ten embryonic stages based on the development of externally visible morphological characteristics such as; pharyngeal arches, facial processes, eyes, scales, body pigmentation and body colour pattern development. This study discusses the development of this snake and compares it with that of the closely related brown house snake Lamprophis fulliginosus (Lamprophidae) and the medically important venomous cobras Naja haje haje and Naja kaouthia from the sister lineage Elapidae. The distantly related basal snake Python sebae, which displays different morphology and behaviour, was chosen for deeper insight into the evolution of body structures within the snake clade. We found interspecific differences in the relative stage of development of embryonic structures at the time of oviposition and during postovipositional embryonic development. One of the outcomes of this study is that embryonic structures such as the pharyngeal processes, eye pigmentation and scales are interspecifically conservative in regard to timing of morphodifferentiation, while body pigmentation, colour and colour pattern are interspecifically plastic in their temporospatial development.  相似文献   

10.
Experiments were designed to compare the effects of recombinant newt fibroblast growth factor-1 (rnFGF-1) and recombinant human glial growth factor (rhGGF) on lens and retina regeneration in the eyes of adult newts. Both eyes were retinectomized and lentectomized. Beginning 3 days after the operation, one eye was given either 0.1 microg of rnFGF-1 or 0.1 microg of rhGGF in 1 microl of phosphate-buffered saline (PBS) per injection, three per week. Contralateral operated eyes served as controls and were treated with PBS alone or were not injected. In eyes that were not injected, injected with PBS alone, or with PBS containing rhGGF, regeneration of both the retina and the lens proceeded normally as described in the literature. In these control eyes, the entire retinal pigmented epithelium (RPE) depigmented/dedifferentiated and a retina rudiment formed from which a new retina regenerated by the end of the experiment at day 41 post-operation. Likewise, only a small area of dorsal iris depigmented/dedifferentiated and formed a lens vesicle from which a lens subsequently regenerated. The vitreous remained relatively free of loose cells.In eyes given rnFGF-1, the RPE depigmented/dedifferentiated and formed what appeared to be a retina rudiment but a new retina did not regenerate. Instead, vesicles were seen associated with the retina rudiment. In eyes given rnFGF-1, both the dorsal iris and ventral iris depigmented/dedifferentiated and lens regeneration occurred but the new lenses had abnormal fiber cells and the lens epithelium was very thin or absent. In addition, ectopic lenses usually regenerated in rnFGF-1-treated eyes. An abundance of loose cells were present in the vitreous of rnFGF-1-treated eyes associated largely with the RPE and the dorsal and ventral irises.The results are consistent with the view that the timely expression of FGFs is involved in the depigmentation/dedifferentiation of the RPE and dorsal iris and is necessary for proper regeneration of the lens and neural retina. Continued presence of FGF results in continued and excessive dedifferentiation, resulting in the lack of retina regeneration and abnormal lens regeneration.  相似文献   

11.
The Mangalitza lard‐type pig breed is well known for its fat appearance and curly hair, and it is mainly distributed in Eastern Europe. Four main lines were created in the nineteenth century by artificial selection: Blond Mangalitza, Black Mangalitza, Swallow‐Belly Mangalitza and Red Mangalitza. The Swallow‐Belly line has a black coat combined with yellow‐blond throat and underbelly. In the current work, we aimed to investigate if the colourations of Mangalitza pigs are genetically determined by one or a few loci whose frequencies have been modified by artificial selection. The results of selection scans, with Hap FLK and BayeScan , and of a GWAS for coat colour highlighted the existence of one region on SSC16 (18–20 Mb) with potential effects on hair pigmentation (Red vs. Blond contrast). The analysis of the gene content of this region allowed us to detect the solute carrier family 45 member 2 (SLC45A2) locus as a candidate gene for this trait. The polymorphism of the SLC45A2 locus has been associated with reduced levels or the absence of melanin in several mammalian species. The genotyping of four missense polymorphisms evidenced that rs341599992:G > A and rs693695020:G > A SNPs are strongly but not fully associated with the red and blond coat colours of Mangalitza pigs, a result that was confirmed by performing a haplotype association test. The near fixation of alternative SLC45A2 genotypes in Red and Blond Mangalitza pigs provides a compelling example of the consequences of a divergent directional selection for coat colour in a domestic species.  相似文献   

12.
When a lens is removed from the newt eye, a new lens is regenerated from the pigmented epithelial cells of the dorsal iris, whereas the ventral iris never shows such an ability. It is important to clarify the nature of signaling molecules which act directly on the iris cells to accomplish lens regeneration from the iris and also to gain insight into the mechanism of dorso-ventral difference of the regeneration potential. To examine the effects of exogenous factors, we established an in vitro culture of reaggregates made from dissociated pigmented epithelial cells of dorsal or ventral halves of newt iris. Foci of depigmented cells appeared within the cell reaggregates, regardless of their origins, when the cell reaggregates were cultured with FGF2 or FGF4. In contrast, only the depigmented cells in the dorsal iris cell reaggregates underwent extensive proliferation and developed a lens with the synthesis of lens-specific crystallins, recapitulating the normal lens regeneration. On the other hand, neither FGF8, FGF10, EGF, VEGF, nor IGF promoted lens development from iris cell reaggregates. Consistent with the FGF-specific action, FGFR-specific inhibitor SU5402 suppressed the lens development from the cultured cell reaggregates. These results demonstrated that FGF2 or FGF4 is essential for the in vitro lens regeneration from the pigmented cells of the dorsal iris. In addition, these findings indicated that unequal competence in the dorsal and ventral iris to FGF2/4 contributes to the difference in lens forming ability between them.  相似文献   

13.
The presence of melanin pigment within the iris is responsible for the visual impression of human eye colouration with complex patterns also evident in this tissue, including Fuchs’ crypts, nevi, Wolfflin nodules and contraction furrows. The genetic basis underlying the determination and inheritance of these traits has been the subject of debate and research from the very beginning of quantitative trait studies in humans. Although segregation of blue‐brown eye colour has been described using a simple Mendelian dominant‐recessive gene model this is too simplistic, and a new molecular genetic perspective is needed to fully understand the biological complexities of this process as a polygenic trait. Nevertheless, it has been estimated that 74% of the variance in human eye colour can be explained by one interval on chromosome 15 that contains the OCA2 gene. Fine mapping of this region has identified a single base change rs12913832 T/C within intron 86 of the upstream HERC2 locus that explains almost all of this association with blue‐brown eye colour. A model is presented whereby this SNP, serving as a target site for the SWI/SNF family member HLTF, acts as part of a highly evolutionary conserved regulatory element required for OCA2 gene activation through chromatin remodelling. Major candidate genes possibly effecting iris patterns are also discussed, including MITF and PAX6.  相似文献   

14.
doi: 10.1111/j.1741‐2358.2010.00473.x
Influence of artificial accelerated ageing on the colour stability of paints used for ocular prosthesis iris painting Objectives: To evaluate the colour stability of paints used for ocular prosthesis iris painting submitted for accelerated artificial ageing (AAA). Materials and methods: Forty specimens of acrylic resin for sclera (16 × 2 mm) were made and separated into eight groups (n = 10) according to the type of paint (gouache, GP; oil, OP; acrylic AP; and composite resin for characterisation, CR) and the colours used (blue/brown). After drying (72 h), a new layer of colourless acrylic resin was applied and the initial colour readout was performed (Spectrophotometer PCB 6807). New colour readouts were performed after AAA, and ΔE was calculated. Results: Statistical analysis (two‐way anova –Bonferroni, p < 0.05) demonstrated that the brown colour showed lower ΔE means in comparison with the blue colour, with statistically significant difference for AP only. Blue colour showed no statistically significant difference with regard to the type of paint used. Brown AP showed lower ΔE than the other groups, with significant difference for OP and GP. GP showed greater alteration in ΔE for the brown colour, being statistically similar only to OP. Conclusions: Only the AP group for brown pigment shows clinically acceptable values for colour stability after AAA.  相似文献   

15.
Waardenburg syndrome (WS) is a rare genetic disorder. Patients have heterochromia or eyes with iris of different color, increased inter-canthal distance, distopia canthorum, pigmentation anomalies, and varying degree of deafness. It usually follows autosomal dominant pattern. In this report, two cases have been discussed but no familial history of WS has been found. Counseling of the patient is necessary and cases of irreversible deafness have been treated.  相似文献   

16.
Eye color is determined as a polymorphism and polygenic trait. Brown is the most common eye color in the world, accounting for about 79%, blue eye color for about 8–10%, hazel for 5%, and green for 2%. Rare-colored eyes include gray and red/violet. Different factors are involved in determining eye color. The two most important factors are the iris pigment and the way light is scattered from the iris. Gene expression determines the iris pigmentation and how much melanin is present in the eye, which is the number of melanin subunits that identify eye color. The genes involved in the pigmentation of single-nucleotide polymorphism (SNP) have a significant role; and even some genes are included only in the eye color through SNP. MicroRNAs also affect melanocyte synthesis, which is usually affected by the downregulation of essential genes involved in pigmentation. In this study, we assess the biochemical pathways of melanin synthesis, and the role of each gene in this pathway also has been examined in the signaling pathway that stimulates melanin synthesis.  相似文献   

17.
Several recent papers have tried to address the genetic determination of eye colour via microsatellite linkage, testing of pigmentation candidate gene polymorphisms and the genome wide analysis of SNP markers that are informative for ancestry. These studies show that the OCA2 gene on chromosome 15 is the major determinant of brown and/or blue eye colour but also indicate that other loci will be involved in the broad range of hues seen in this trait in Europeans.  相似文献   

18.
The medaka fish albino mutant, i1 is one of the Tomita collection of medaka pigmentation mutants which exhibits a complete albino phenotype, because of inactivation of the tyrosinase gene due to insertion of a transposable element, Tol‐1. Recently, mosaic black‐pigmented i1 medaka fish have arisen in one of our laboratory breeding populations. Their pigmented cells have been observed in all of the tissues, including the eye and skin, in which melanin is detectable in the wild type. In this study, we analyzed the tyrosinase gene of revertants and showed Tol‐1 to have been precisely excised from the gene, suggesting a causal relationship. Mosaic patterns of pigmentation indicate spontaneous somatic excision of the element from the tyrosinase gene. To our knowledge, this is the first transposable element with somatic excision activity demonstrated phenotypically in vertebrates. The pattern of pigmentation in mosaic revertants indicates frequencies of melanin pigments to be consistent with the numbers of melanophores per unit area of body sites, such as the eyes, head and dorsal trunk.  相似文献   

19.
The majority of specimens of the scallop Chlamys opercularis found in Strangford Lough, County Down, Ireland, are infected with a rare and exotic ciliate Licnophora auerbachii. The ciliate is found predominantly on the eyes of the scallop which (together with numerous tentacles) are borne by the middle marginal folds of the mantle. The ciliates are found attached to both the clear cornea covering the lens and also the surrounding pigmented iris, their large food vacuoles often containing black consistently sized granules, particles derived from the pigmented epithelial cells of the scallop eye. These cells are abraded from the surface of the iris and become detached due to the action of the basal disc of L. auerbachii during its clamping and locomotory activities on the eye surface. Scanning electron microscope observations show that the foot region of the ciliate exerts both a suction and abrasive action on the eye and leaves a distinct “footprint” on the eye surface in the form of a saucer-shaped depression. In many of the heavily infected scallops there was evidence of damage to the eyes with consequent loss of pigment and in some instances surface distortion of the eye itself.  相似文献   

20.
The iris of the eye shows striking color variation across vertebrate species, and may play important roles in crypsis and communication. The domestic pigeon (Columba livia) has three common iris colors, orange, pearl (white), and bull (dark brown), segregating in a single species, thereby providing a unique opportunity to identify the genetic basis of iris coloration. We used comparative genomics and genetic mapping in laboratory crosses to identify two candidate genes that control variation in iris color in domestic pigeons. We identified a nonsense mutation in the solute carrier SLC2A11B that is shared among all pigeons with pearl eye color, and a locus associated with bull eye color that includes EDNRB2, a gene involved in neural crest migration and pigment development. However, bull eye is likely controlled by a heterogeneous collection of alleles across pigeon breeds. We also found that the EDNRB2 region is associated with regionalized plumage depigmentation (piebalding). Our study identifies two candidate genes for eye colors variation, and establishes a genetic link between iris and plumage color, two traits that vary widely in the evolution of birds and other vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号