共查询到20条相似文献,搜索用时 0 毫秒
1.
Continuous solvent production by Clostridium beijerinckii BA101 immobilized by adsorption onto brick
Qureshi N. Schripsema J. Lienhardt J. Blaschek H.P. 《World journal of microbiology & biotechnology》2000,16(4):377-382
The performance of a continuous bioreactor containing Clostridium beijerinckii BA101 adsorbed onto clay brick was examined for the fermentation of acetone, butanol, and ethanol (ABE). Dilution rates from 0.3 to 2.5 h–1 were investigated with the highest solvent productivity of 15.8 g l–1 h–1 being obtained at 2.0 h–1. The solvent yield at this dilution rate was found to be 0.38 g g–1 and total solvent concentration was 7.9 g l–1. The solvent yield was maximum at 0.45 at a dilution rate of 0.3 h–1. The maximum solvent productivity obtained was found to be 2.5 times greater than most other immobilized continuous and cell recycle systems previously reported for ABE fermentation. A higher dilution rate (above 2.0 h–1) resulted in acid production rather than solvent production. This reactor was found to be stable for over 550 h. Scanning electron micrographs (SEM) demonstrated that a large amount of C. beijerinckii cells were adsorbed onto the brick support. 相似文献
2.
Addition of sodium acetate to chemically defined MP2 medium was found to increase and stabilize solvent production by Clostridium beijerinckii BA101, a solvent-hyperproducing mutant derived from C. beijerinckii NCIMB 8052. C. beijerinckii BA101 demonstrated a greater increase in solvent production than C. beijerinckii NCIMB 8052 when sodium acetate was added to MP2 medium. In 1-l batch fermentations, C. beijerinckii BA101 produced 32.6 g/l total solvents, with butanol at 20.9 g/l, when grown in MP2 medium containing 60 mM sodium acetate
and 8% glucose. To our knowledge, these values represent the highest solvent and butanol concentrations produced by a solventogenic
Clostridium strain when grown in batch culture.
Received: 29 September 1998 / Received revision: 13 February 1999 / Accepted: 26 February 1999 相似文献
3.
A fermentative hydrogen-producing strain, RZF-1108, was isolated from a biohydrogen reactor, and identified as Clostridium beijerinckii on the basis of the 16S rRNA gene analysis and physiobiochemical characteristics. The effects of culture conditions on hydrogen production by C. beijerinckii RZF-1108 were investigated in batch cultures. The hydrogen production and growth of strain RZF-1108 were highly dependent on temperature, initial pH and substrate concentration. Yeast extract was a favorable nitrogen source for hydrogen production and growth of RZF-1108. Hydrogen production corresponded to cell biomass yield in different culture conditions. The maximum hydrogen evolution, yield and production rate of 2209 ml H2/l medium, 1.97 mol H2/mol glucose and 104.20 ml H2/g CDW h−1 were obtained at 9 g/l of glucose, initial pH of 7.0, inoculum volume of 8% and temperature of 35 °C, respectively. These results demonstrate that C. beijerinckii can efficiently produce H2, and is another model microorganism for biohydrogen investigations. 相似文献
4.
5.
Clostridium beijerinckii is an attractive butanol-producing microbe for its advantage in co-fermenting hexose and pentose sugars. However, this Clostridium strain exhibits undesired efficiency in utilizing d-xylose, one of the major building blocks contained in lignocellulosic materials. Here, we reported a useful metabolic engineering strategy to improve d-xylose consumption by C. beijerinckii. Gene cbei2385, encoding a putative d-xylose repressor XylR, was first disrupted in the C. beijerinckii NCIMB 8052, resulting in a significant increase in d-xylose consumption. A d-xylose proton-symporter (encoded by gene cbei0109) was identified and then overexpressed to further optimize d-xylose utilization, yielding an engineered strain 8052xylR-xylT(ptb) (xylR inactivation plus xylT overexpression driven by ptb promoter). We investigated the strain 8052xylR-xylT(ptb) in fermenting xylose mother liquid, an abundant by-product from industrial-scale xylose preparation from corncob and rich in d-xylose, finally achieving a 35% higher Acetone, Butanol and Ethanol (ABE) solvent titer (16.91g/L) and a 38% higher yield (0.29g/g) over those of the wild-type strain. The strategy used in this study enables C. beijerinckii more suitable for butanol production from lignocellulosic materials. 相似文献
6.
A M López-Contreras H Smidt J van der Oost P A Claassen H Mooibroek W M de Vos 《Applied and environmental microbiology》2001,67(11):5127-5133
Growth and the production of acetone, butanol, and ethanol by Clostridium beijerinckii NCIMB 8052 on several polysaccharides and sugars were analyzed. On crystalline cellulose, growth and solvent production were observed only when a mixture of fungal cellulases was added to the medium. On lichenan growth and solvent production occurred, but this polymer was only partially utilized. To increase utilization of these polymers and subsequent solvent production, the genes for two new glycoside hydrolases, celA and celD from the fungus Neocallimastix patriciarum, were cloned separately into C. beijerinckii. To do this, a secretion vector based on the pMTL500E shuttle vector and containing the promoter and signal sequence coding region of the Clostridium saccharobutylicum NCP262 eglA gene was constructed and fused either to the celA gene or the celD gene. Stable C. beijerinckii transformants were obtained with the resulting plasmids, pWUR3 (celA) and pWUR4 (celD). The recombinant strains showed clear halos on agar plates containing carboxymethyl cellulose upon staining with Congo red. In addition, their culture supernatants had significant endoglucanase activities (123 U/mg of protein for transformants harboring celA and 78 U/mg of protein for transformants harboring celD). Although C. beijerinckii harboring either celA or celD was not able to grow, separately or in mixed culture, on carboxymethyl cellulose or microcrystalline cellulose, both transformants showed a significant increase in solvent production during growth on lichenan and more extensive degradation of this polymer than that exhibited by the wild-type strain. 相似文献
7.
Ziyong Liu Yu Ying Fuli Li Cuiqing Ma Ping Xu 《Journal of industrial microbiology & biotechnology》2010,37(5):495-501
Wheat bran, a by-product of the wheat milling industry, consists mainly of hemicellulose, starch and protein. In this study, the hydrolysate of wheat bran pretreated with dilute sulfuric acid was used as a substrate to produce ABE (acetone, butanol and ethanol) using Clostridium beijerinckii ATCC 55025. The wheat bran hydrolysate contained 53.1 g/l total reducing sugars, including 21.3 g/l of glucose, 17.4 g/l of xylose and 10.6 g/l of arabinose. C. beijerinckii ATCC 55025 can utilize hexose and pentose simultaneously in the hydrolysate to produce ABE. After 72 h of fermentation, the total ABE in the system was 11.8 g/l, of which acetone, butanol and ethanol were 2.2, 8.8 and 0.8 g/l, respectively. The fermentation resulted in an ABE yield of 0.32 and productivity of 0.16 g l−1 h−1. This study suggests that wheat bran can be a potential renewable resource for ABE fermentation. 相似文献
8.
9.
10.
Development of a cost-effective glucose-corn steep medium for production of butanol by Clostridium beijerinckii 总被引:1,自引:0,他引:1
M Parekh J Formanek H P Blaschek 《Journal of industrial microbiology & biotechnology》1998,21(4-5):187-191
Corn steep water (CSW) medium (1.6% solids plus 6% glucose) was evaluated for growth and butanol production by Clostridium beijerinckii NCIMB 8052 wild-type and hyper-amylolytic, hyper-butanol-producing mutant strain BA101. CSW alone was not a suitable substrate,
whereas addition of glucose supported growth and butanol production by both strains. In a batch-scale fermentation using an
optimized 6% glucose-1.6% solids CSW medium, C. beijerinckii NCIMB 8052 and strain BA101 produced 10.7 g L−1 and 14.5 g L−1 of butanol, respectively. The total solvents (acetone, butanol, and ethanol) produced by C. beijerinckii NCIMB 8052 and strain BA101 were 14 g L−1 and 20 g L−1, respectively. Initial fermentation in small-scale flasks containing 6% maltodextrin-1.6% solids concentration CSW medium
resulted in 6 g L−1 and 12.6 g L−1 of butanol production by C. beijerinckii NCIMB 8052 and strain BA101, respectively. CSW can serve as an economic source of nitrogen, vitamins, amino acids, minerals,
and other nutrients. Thus, it is feasible to use 6% glucose-1.6% solids CSW medium in place of semi-defined P2 medium.
Received 9 February 1998/ Accepted in revised form 1 September 1998 相似文献
11.
Very good solvent formation rates were observed when Clostridium beijerinckii NRRL B592 was cultivated on different whole potato media. The increase in whole potato concentration contributed to the increased
final solvent concentrations, while the addition of yeast extract or mineral salts gave negative effects. To obtain good solvent
productivities and high final solvent concentrations during batch fermentation, no enzymatic hydrolysis of the potato starch
was necessary, indicating high activity of the clostridial amylases produced by the strain applied.
Received: 17 April 1998 / Received revision: 22 June 1998 / Accepted: 27 June 1998 相似文献
12.
The aim of this study was to determine if decanter cake waste from a palm oil mill could be used as a renewable substrate for biobutanol production. Decanter cake waste was first hydrolyzed to fermentable sugars by nitric acid and detoxified by activated-charcoal. The detoxified hydrolysate supplemented with whey protein and ammonium sulfate as cheap nitrogen sources, was used for butanol production by growing cells of Clostridium beijerinckii. The detoxified hydrolysate was also used as a co-substrate for direct conversion of butyric acid to butanol in a nitrogen-free medium. By these two steps, C. beijerinckii produced 3.42 g/L of butanol with a yield of 0.28 C-mol butanol/C-mol carbon in the first step and produced 6.94 g/L of butanol with a yield of 0.47 C-mol butanol/C-mol carbon in the second step. This study has showed that decanter cake waste could serve as a low-cost substrate for biobutanol production. 相似文献
13.
Several solvent-producing clostridia, including Clostridium acetobutylicum and C. beijerinckii, were previously shown to be nitrogen-fixing organisms based on the incorporation of 15N2 into cellular material. The key nitrogen-fixation (nif) genes, including nifH, nifD, and nifK for nitrogenase component proteins as well as nifE, nifN, nifB and nifV for synthesis of the iron–molybdenum cofactor (FeMoco) of nitrogenase, have now been identified in C. acetobutylicum or C. beijerinckii or both. The organization of these genes is similar to the distinctive pattern that was first observed in Clostridium pasteurianum, with the nifN and nifB genes fused into the nifN-B gene and with the nifV gene split into the nifVω and nifVα genes. The corresponding nif genes of these three clostridial species are highly related to each other. However, in the two solvent-producing clostridia,
the nifH and nifD genes are interspersed by two glnB-like genes, which are absent in the corresponding region in C. pasteurianum. However, the nifN-B and nifVω genes of C. pasteurianum are interspersed by the putative modA and modB genes (for molybdate transport), which are absent in the corresponding region in C. acetobutylicum. C. acetobutylicum and C. beijerinckii grew well under nitrogen-fixing conditions, and the acetylene-reducing activity of nitrogenase was measured in the two species.
Acetone, butanol, and isopropanol production occurred in nitrogen-fixing cultures, but the peak of nitrogen-fixing activity
preceded the active solventogenic phase.
Journal of Industrial Microbiology & Biotechnology (2001) 27, 281–286.
Received 02 September 2000/ Accepted in revised form 22 November 2000 相似文献
14.
15.
Jung Kon Kim Le Nhat Young Nam Chun Si Wouk Kim 《Biotechnology and Bioprocess Engineering》2008,13(4):499-504
The optimum conditions for biological hydrogen production from food waste by Clostridium beijerinckii KCTC 1875 were investigated. The optimum initial pH and fermentation temperature were 7.0 and 40°C, respectively. When the
pH of fermentation was controlled to 5.5, a maximum amount of hydrogen could be obtained. Under these conditions, about 2,737
mL of hydrogen was produced from 50 g COD/L of food waste for 24 h, and the hydrogen content in the biogas was 38%. Hydrogen
production rate and yield were about 108 mL/L·h and 128 mL/g CODdegraded, respectively. High concentrations of acetic (< 5,000 mg/L) or butyric acid (< 3,000 mg/L) significantly inhibited hydrogen
production. 相似文献
16.
17.
Solvent-producing cultures of Clostridium beijerinckii NCIMB 8052 can reduce a variety of aldehydes and ketones to the corresponding alcohols, but the enzymes that catalyse these biotransformations have not been identified. The possibility that butanol dehydrogenases were involved was tested by comparing the ability of solvent- and acid-producing pH-auxostat cultures to reduce representative biotransformation substrates. The ability of the cultures to produce solvents was manipulated by controlling the biomass concentration, and this was achieved by varying the glucose concentration in the inflowing medium. The solvent-producing culture could reduce cyclohexanone and benzaldehyde. In contrast, very little reduction of these substrates occured in the acid-producing culture. This suggested that one or more butanol dehydrogenases did indeed catalyse these biotransformations. 相似文献
18.
19.
20.
《Journal of Fermentation and Bioengineering》1994,77(5):565-567
The maximal enzymatic activity of crude amylase produced in the batch culture of Clostridium beijerinckii strain AM21B grown in PY medium with starch was obtained at 55°C and in an acidic pH range of 4.6 to 5.4. Amylase was produced in the culture medium after 4 h (46.6 units) and reached a peak (405.5 units) after 12 h cultivation at 36°C, pH 6.0. Although the most efficient production of amylase, hydrogen and cells was achieved at 36°C and pH 6.0, the maximal hydrogen evolution rate was found at 41°C and pH 7.0. 相似文献