共查询到20条相似文献,搜索用时 0 毫秒
1.
通过野外设置样方调查和室内萌发试验,研究小花山桃草种群各构件生物量的结构特征和它们之间的关系模型、繁殖分配以及种子萌发特点。结果表明:(1)小花山桃草根、茎、叶、花(果)序生物量与植株高度之间以及各构件生物量之间均呈正相关关系,可用幂函数模型或线性函数模型较好地表达;(2)各构件生物量在个体生物量中所占的比率表现为茎>花序>叶>根;(3)小花山桃草的繁殖投入和繁殖分配都随植株个体的增大而增加;(4)小花山桃草个体大小和繁殖投入之间为线性关系,而个体大小和繁殖分配之间为幂函数关系;(5)小花山桃草存在一个较小的繁殖阈值(0.6043g);(6)小花山桃草种子在有光照(12h)和黑暗条件下发芽率均可达到85%以上;未经贮藏的种子不萌发,低温沙藏(1~2℃)和室温干藏(14~32℃)一个半月种子萌发率分别可达92.5%和79%;低温沙藏时种子即可发芽,且发芽率可达61%。在研究地区,小花山桃草几乎整个生长季都可萌发,甚至初冬还有幼苗产生。小花山桃草构件生物量结构和繁殖分配特征、种子萌发特点等都有助于其入侵能力的提高,是其成功入侵我国的重要原因。 相似文献
2.
The role of seed germination in the invasion process of Honey locust (Gleditsia triacanthos L., Fabaceae): comparison with a native confamilial
下载免费PDF全文

Identifying plant traits that promote invasiveness has been a major goal in invasion ecology. Germination plays a central role in the life cycle of plants and therefore could be a key trait in determining species invasiveness. In this study, seed germination of two confamilial, co‐occurring species that share ecological characteristics, the exotic invasive Gleditsia triacanthos L and the native Acacia aroma Gillies ex. Hook. & Arn., was compared. Seeds were obtained from individuals of three localities in the Chaco Serrano region of Córdoba, Argentina. Percent of seed germination and mean germination time were recorded in chemically and mechanically scarified seeds, and the former variable was also recorded in seeds subjected to: passage through the digestive tract of dispersers, fire simulations, fire simulation plus mechanical scarification, seed longevity, and dormancy break over time. In general, both species showed similar germination percentage. However, non‐scarified seeds of the exotic species lost physical dormancy when subjected to experiments of dormancy break over time, whereas, the native species had shorter mean germination time. The greater percentage of seed germination over time of the exotic species than of the native one might be triggering the spread of the former, whereas the shorter mean germination time might be hindering its expansion to more arid regions. The study of different mechanisms for achieving seed germination, particularly in hard seed species, could provide important information on the expansion of invasive species as well as useful knowledge for their management. 相似文献
3.
4.
不受欢迎的生物多样性:香港的外来植物物种 总被引:44,自引:2,他引:44
香港早在19世纪中叶开始就有外来植物入侵的记录,迄今为止,已发现多达238种已归化的外来或怀疑为外来的植物,其中又以薇甘菊(Mikania micrantha)、五爪金龙(Ipomoea cairica)、假臭草(Eupatorium catarium)、大黍(Panicum maximum)等最常见,外来植物最常见于受人为干扰的生境,例如荒废农田及路旁等,而较少在天然林地生境及贫瘠的灌草丛中发现,外来植物的对本地生态系统的影响主要局限于低地生境,它们常形成单优种群,减少了生境及贫瘠的灌草丛中发现,外来植物对本地生态系统的影响主要局限于低地生境,它们常形成单优种群,减少少了生境及动植物的多样性,外来动物对香港原生植物影响最大的是于20世纪70年代入侵的松树线虫(Bur-saphelenchus xylophilus)。外来的脊椎动物也有可能对香港的植物被演替产生影响,目前香港的外来植物当中,有些在大陆较少分布或没有记录,作为华南最大的港口,香港对外来物种的引入扮演着重要的角色,因此制定控制外来种在香港及华南地区的引入及传播的政策及措施非常重要。 相似文献
5.
6.
Solidago canadensis,a perennial Compositae plant originating from North America,was introduced into China as a horticultural plant in 1935.Under natural conditions,S.canadensis allocates large amounts of energy to sexual reproduction and produces many seeds,which reflects an r-strategy with high seed number and small seed size.In addition,naturalized populations have a great capacity to grow clonally with underground stems.S.canadensis has become an invasive weed in eastern China,and has caused serious damages to agricultural production and ecosystems in several provinces in China.In order to understand the reproductive characteristics of S.canadensis and effectively control its spread,we examined soil conditions,seed characteristics,seed germination and the capacity for asexual reproduction in different plant parts.We investigated the population dispersion of S.canadensis in fixed sites for three years,and analyzed the seasonal dynamics of the morphological parameters of the underground parts and the caloric values of different organs of S.canadensis.We also compared differences in the root systems of S.canadensis and composite exotic weeds.The following results were obtained:1)Under natural conditions,the germination season of S.canadensis lasts from March to October,with a peak from April to May.Vegetative growth and asexual reproduction are especially vigorous during summer due to high temperatures and soil drought stress.On the other hand,the rainy season proves suitable for seed germination.Most S.canadensis flower between September and January,and fruit in late October.A mature plant can produce about 20000 seeds.The mean weight of 1000 seeds ranges from 0.045 g to 0.050 g,and the mean seed moisture content ranges from 60% to 80%.The light-winged seeds disperse readily by air,water,vehicles,human activity or through livestock.2)S.canadensis seeds have a wide tolerance for different values of pH,salinity and soil moisture.The mean percent germination of seeds is 30% under suitable conditions.The results of seed germination under various environmental stresses and investigation of soil conditions indicate that well-aerated,slightly acidic soils with low salinity are suitable for the growth of S.canadensis.Additionally,S.canadensis has a high tolerance for contamination by heavy metal elements including Zn,Cu and Pb,but has low accumulation coefficients for these elements.3)S.canadensis reproduces asexually via underground rhizomes and nodes on the stem base to recruit new individuals,and in plants that experience mechanical damage,this reproductive strategy is used to produce clonal shoots.The capacity for asexual reproduction among different plant parts rank as follows:underground parts>stem-base (20 cm)>stem-base (30 cm)>stem-base (45 cm)>stem.Further,with increasing mechanical damage,the quantity of shoots produced by the plant decreases.4)The morphological parameters of the root system of S.canadensis including length,surface area,volume,and average diameter are greater than for composite exotic weeds.These parameters indicate that S.canadensis has the physiological potential to widely invade China.5)The aboveground growth rate and most of the underground morphological parameters vary remarkably among the seasons,with a peak normally occurring in September.In August,a fraction of the energy in leaves and stems is allocated underground to increase fine root growth and water uptake during hot weather.Additionally,the seasonal dynamics of the underground morphological parameters and the caloric values of different organs of S.canadensis enhance its reproductive ability.Based on the results above,we conclude that S.canadensis has great invasive potential in China.We suggest that urgent measures should be taken to control its further spread,and to minimize its impact on local plant diversity. 相似文献
7.
Solidago canadensis, a perennial Compositae plant originating from North America, was introduced into China as a horticultural plant in 1935.
Under natural conditions, S. canadensis allocates large amounts of energy to sexual reproduction and produces many seeds, which reflects an r-strategy with high seed number and small seed size. In addition, naturalized populations have a great capacity to grow clonally
with underground stems. S. canadensis has become an invasive weed in eastern China, and has caused serious damages to agricultural production and ecosystems in
several provinces in China. In order to understand the reproductive characteristics of S. canadensis and effectively control its spread, we examined soil conditions, seed characteristics, seed germination and the capacity
for asexual reproduction in different plant parts. We investigated the population dispersion of S. canadensis in fixed sites for three years, and analyzed the seasonal dynamics of the morphological parameters of the underground parts
and the caloric values of different organs of S. canadensis. We also compared differences in the root systems of S. canadensis and composite exotic weeds. The following results were obtained:
__________
Translated from Acta Ecologica Sinica, 2005, 25(11): 1795–2803 [译自: 生态学报] 相似文献
1) | Under natural conditions, the germination season of S. canadensis lasts from March to October, with a peak from April to May. Vegetative growth and asexual reproduction are especially vigorous during summer due to high temperatures and soil drought stress. On the other hand, the rainy season proves suitable for seed germination. Most S. canadensis flower between September and January, and fruit in late October. A mature plant can produce about 20000 seeds. The mean weight of 1000 seeds ranges from 0.045 g to 0.050 g, and the mean seed moisture content ranges from 60% to 80%. The light-winged seeds disperse readily by air, water, vehicles, human activity or through livestock. |
2) | S. canadensis seeds have a wide tolerance for different values of pH, salinity and soil moisture. The mean percent germination of seeds is 30% under suitable conditions. The results of seed germination under various environmental stresses and investigation of soil conditions indicate that well-aerated, slightly acidic soils with low salinity are suitable for the growth of S. canadensis. Additionally, S. canadensis has a high tolerance for contamination by heavy metal elements including Zn, Cu and Pb, but has low accumulation coefficients for these elements. |
3) | S. canadensis reproduces asexually via underground rhizomes and nodes on the stem base to recruit new individuals, and in plants that experience mechanical damage, this reproductive strategy is used to produce clonal shoots. The capacity for asexual reproduction among different plant parts rank as follows: underground parts > stem-base (20 cm) > stem-base (30 cm) > stem-base (45 cm) > stem. Further, with increasing mechanical damage, the quantity of shoots produced by the plant decreases. |
4) | The morphological parameters of the root system of S. canadensis including length, surface area, volume, and average diameter are greater than for composite exotic weeds. These parameters indicate that S. canadensis has the physiological potential to widely invade China. |
5) | The aboveground growth rate and most of the underground morphological parameters vary remarkably among the seasons, with a peak normally occurring in September. In August, a fraction of the energy in leaves and stems is allocated underground to increase fine root growth and water uptake during hot weather. Additionally, the seasonal dynamics of the underground morphological parameters and the caloric values of different organs of S. canadensis enhance its reproductive ability. Based on the results above, we conclude that S. canadensis has great invasive potential in China. We suggest that urgent measures should be taken to control its further spread, and to minimize its impact on local plant diversity. |
8.
《Current biology : CB》2023,33(3):566-571.e3
- Download : Download high-res image (227KB)
- Download : Download full-size image
9.
江苏省外来种子植物的初步调查和分析 总被引:4,自引:2,他引:4
对江苏省外来种子植物的种类、来源地及分布状况进行了初步调查统计。调查结果显示,江苏省共有外来种子植物393种,大多数来源于欧洲和美洲,主要通过有意引种和无意引入2种方式引入。有意引种的栽培植物有276种,其中观赏植物132种、蔬菜46种、林木35种、工业原料植物17种、药用植物12种、牧草植物11种、粮食作物11种、果树7种以及油料作物5种。另外,外来种子植物中有逃逸种62种、归化种22种、入侵种33种;81.8%的入侵种在江苏全省均有分布;入侵种以菊科(Compositae)和禾本科(Poaceae)植物为主,分别有11种和7种。在此调查结果基础上,对江苏省外来种子植物的分类和危害进行了讨论,并对江苏省外来物种的利用和管理提出了一些建议。 相似文献
10.
David L. Strayer Colleen Lutz Heather M. Malcom Krista Munger William H. Shaw 《Freshwater Biology》2003,48(11):1938-1949
1. We used a corer and a Downing box sampler to sample macroinvertebrates living on and beneath the introduced Trapa natans and the native Vallisneria americana in the freshwater tidal Hudson River, New York. 2. Densities of macroinvertebrates were higher in Trapa than in Vallisneria, and higher in the interior of plant beds than at their edges. These effects were largely a result of high plant biomass in Trapa beds and in bed interiors (the plants have similar surface area per unit mass). 3. The composition of both epiphytic and benthic macroinvertebrates differed distinctly between Trapa and Vallisneria, and also seasonally. 4. These compositional differences were not easily interpretable as rising from possible differences in oxygen concentrations, fish predation, or water circulation in the two macrophytes. 5. Sida crystallina (Cladocera) collected from Trapa contained more haemoglobin than those collected from Vallisneria. 6. The replacement of Vallisneria by Trapa in the Hudson probably increased system‐wide biodiversity and food for fish, although macroinvertebrates in Trapa beds may not be readily available to fish because of low oxygen concentration there. 相似文献
11.
随着国际贸易的日益频繁,外来有害植物入侵,严重威胁我国的自然环境和生物多样性。利用从原产地引入食性较专一的天敌来控制外来杂草是杂草生物防治的主要方式之一,有保护环境一劳永逸的效果。简要介绍了国际生物防治概况,统计表明全世界至少有133种目标杂草进行生物防治,主要分布在菊科、仙人掌科和含羞草科,63科369种无脊椎动物和真菌作为杂草生物防治的天敌,利用最多的天敌是鞘翅目象甲科和叶甲科昆虫,其中大多数项目是治理外来杂草的。杂草生物防治最活跃的国家依次为美国、澳大利亚、南非、加拿大和新西兰。重点论述了利用传统生物防治方法防治外来杂草的经典项目、国内外研究概况,以及目前面临的问题和应用前景。我国杂草生物防治起步晚,传统杂草生防的目标杂草有4种,紫茎泽兰、空心莲子草、豚草和水葫芦,其中,空心莲子草的生物防治获得成功。共引进天敌14种,输出天敌23种,与世界上生物防治先进的国家比尚有距离。中国应充分借鉴国际成功经验,对外来杂草开展生物防治。中国的生物多样性在世界上占有十分独特的地位,将在生物多样性保护中发挥重要作用。 相似文献
12.
Elise Buisson Swanni T. Alvarado Soizig Le Stradic Leonor Patricia C. Morellato 《Restoration Ecology》2017,25(2):164-171
While phenology data (the timing of recurring biological events) has been used to explain and predict patterns related to global change, and to address applied environmental issues, it has not been clearly identified as pertinent for restoration. This opinion article thus aims to raise awareness of the potential of phenology to enhance the quality of restoration projects and ecological restoration theory. We based our analysis on a systematic literature survey carried out in February 2014, searching the words “phenology” or “phenological” in books dealing with restoration, the term “phenolog*” in the journal Restoration Ecology, and the terms “restoration” and “phenolog*” in the database Web of Science until February 2014. We finally selected 149 studies relevant to our goals, and first classified them according to the context in which phenology was addressed. We then analyzed them within the framework of the five key steps of restoration projects: (1) the reference ecosystem; (2) biotic resources; (3) restoration methods; (4) monitoring; and (5) adaptive management. The literature survey showed that phenological information improved decision‐making in the few restoration projects in which it was incorporated. We thus advocate taking phenological data into account at all stages of restoration when appropriate: from the acquisition of baseline data on the reference ecosystem to treatment design, and from restoration action planning and timing to monitoring. Phenological data should at minimum be collected for sown, keystone, dominant, and/or rare species to improve restoration quality. Phenology studies and monitoring should be promoted in future restoration guidelines. 相似文献
13.
Abstract Exotic grasses are becoming increasingly abundant in Neotropical savannas, with Melinis minutiflora Beauv. being particularly invasive. To better understand the consequences for the native flora, we performed a field study to test the effect of this species on the establishment, survival and growth of seedlings of seven tree species native to the savannas and forests of the Cerrado region of Brazil. Seeds of the tree species were sown in 40 study plots, of which 20 were sites dominated by M. minutiflora, and 20 were dominated by native grasses. The exotic grass had no discernable effect on initial seedling emergence, as defined by the number of seedlings present at the end of the first growing season. Subsequent seedling survival in plots dominated by M. minutiflora was less than half that of plots dominated by native species. Consequently, at the end of the third growing season, invaded plots had only 44% as many seedlings as plots with native grasses. Above‐ground grass biomass of invaded plots was more than twice that of uninvaded plots, while seedling survival was negatively correlated with grass biomass, suggesting that competition for light may explain the low seedling survival where M. minutiflora is dominant. Soils of invaded plots had higher mean Ca, Mg and Zn, but these variables did not account for the higher grass biomass or the lower seedling survival in invaded plots. The results indicate that this exotic grass is having substantial effects on the dynamics of the tree community, with likely consequences for ecosystem structure and function. 相似文献
14.
- 1 We provide an updated distribution and dispersal rate of the introduced European rabbit Oryctolagus cuniculus in Argentina.
- 2 According to our results this invasive species is currently colonizing parts of Mendoza and Neuquén Provinces, where rivers are very important in the spread of the rabbits, especially in unfavourable areas. The maximun rate of dispersal registered in this study was 9 km/year.
- 3 Some information was obtained to indicate that the presence of this exotic species threatens agriculture, livestock, forestry, and natural ecosystems of the Patagonia region.
15.
Abstract There is a tendency for both scientists and lay people to regard invading alien species as inherently ‘bad’ and native species as inherently ‘good.’ Past invasions occurred commonly without human assistance. They rarely caused large, lasting decreases in species richness or ecological damage. Current invasions provide opportunities for scientific study. They are unintentional, uncontrolled experiments, which can provide insights into attributes of successful colonists, relationships with native species, and impacts on the structure and function of ecological systems. 相似文献
16.
Global Documentation of Fish Introductions: the Growing Crisis and Recommendations for Action 总被引:1,自引:0,他引:1
Christine Marie V. Casal 《Biological invasions》2006,8(1):3-11
Fish provides 15% of the total animal protein in human diets. It is also the primary source of livelihood for 35 million people
(30 M in Asia and 2.6 M in Africa). The increase in global population and demand for fish protein cannot be met by capture
fisheries alone. Governments are turning towards aquaculture as the source of fish protein. However, it has also led to the
introduction and establishment of non-native species in local ecosystems through their escapement from aquaculture facilities
to the wild. In freshwater ecosystems with relatively high endemism, this has become a significant problem. Documenting the
international movement of fish is one way of providing a general view of the magnitude of these movements and the existing
and potential threat faced by ecosystems due to species invasiveness. Information, however, is limited and scattered in different
journals and agency/project reports. Several agencies, both local and international, have databases that provide information
on invasive species (terrestrial and aquatic, local, regional or international in scope). The critical challenge is for consolidation,
common access through data sharing and development of risk assessment and management tools. This is proposed through the use
of Internet technology, sharing of databases or having a gateway or portal to which all introduced and invasive fish species
related databases link. The fusion of these information sources will allow access to updated and reliable information. The
experience of the WorldFish Center in documenting these phenomena through developing the FishBase information system and global
partnerships is presented with recommendations for harmonizing approaches.
An erratum to this article is available at . 相似文献
17.
Aim To determine whether invasive and locally abundant non‐native species have a more homogenizing effect on plant communities than non‐invasive and less abundant non‐native species. Location California and Florida counties, conservation areas in the USA, and eight US cities. Methods Species lists among counties, conservation areas and cities were compared to see whether invasive and abundant non‐native species increased the Jaccard index of similarity between localities beyond any increases caused by non‐invasive and less abundant non‐native species. Results For all comparisons, we found that invasive non‐native species have a significantly greater homogenizing effect than non‐invasive non‐native species. For the US conservation areas, we found that locally abundant invasive species tend to be more widespread and more widely shared than less abundant invasive species. There is also a positive relationship between homogenization by invasive species and the magnitude of human disturbance. Main conclusions Invasive non‐native species tend to be disproportionately shared among communities relative to non‐invasive non‐native species. This effect is enhanced by human disturbance, as measured by the ratio of non‐native to native species. There is a synergism between abundance and geographical range which enhances the homogenizing effects of abundant species. Invasive species, with wide ecological niches, are more widely shared among communities and more locally abundant. Abundant invasive species are thus more spatially homogenizing, and more ecologically dominant (functionally homogenizing). Also, ‘perceived homogenization’ is probably greater than homogenization measured by the increase in shared species. The abundant species typically seen by the casual observer in a biological community are probably more commonly shared between communities than less common species. Studies that lack abundance data and measure homogenization only on the basis of shared species, which includes most homogenization studies to date, probably underestimate the homogenizing impacts of non‐native species as perceived by people. 相似文献
18.
We record here the introduction of the African catfish Clarias gariepinus into the Guaraguaçu River basin in Paraná State, Brazil, an area with an extremely rich endemic fish fauna, including many catfishes. C. gariepinus was introduced as escapees from ponds built for recreational angling. These catfishes are very large and hard predators, thus posing serious potential for impact on the native fish fauna. The impact of C. gariepinus needs study with emphasis on finding means for controlling its spread. 相似文献
19.
Mariano A. Rodriguez-Cabal Katharine L. Stuble Martin A. Nu?ez Nathan J. Sanders 《Biology letters》2009,5(4):499-502
Although it is increasingly clear that exotic invasive species affect seed-dispersal mutualisms, a synthetic examination of the effect of exotic invasive species on seed-dispersal mutualisms is lacking. Here, we review the impacts of the invasive Argentine ant (Linepithema humile) on seed dispersal. We found that sites with L. humile had 92 per cent fewer native ant seed dispersers than did sites where L. humile was absent. In addition, L. humile did not replace native seed dispersers, as rates of seed removal and seedling establishment were all lower in the presence of L. humile than in its absence. We conclude that potential shifts in plant diversity and concomitant changes in ecosystem function may be a consequence of Argentine ant invasions, as well as invasions by other ant species. Because very few studies have examined the effects of non-ant invasive species on seed-dispersal mutualisms, the prevalence of disruption of seed-dispersal mutualisms by invasive species is unclear. 相似文献
20.
Aims Plant invasions represent a unique opportunity to study the mechanisms underlying community assembly rules and species distribution patterns. While a superior competitive ability has often been proposed as a major driver of successful plant invasions, its significance depends crucially on the timing of any competitive interaction. We assess whether a mismatch in germination phenology can favor the establishment of alien species, allowing them to exploit vacant niches where competition is low. As well as having important effects on the survival, growth and fitness of a species, asymmetric competition and potential soil legacies resulting from early or late germination can also impact on species recruitment. However, early or late germination comes at a cost, increases the risks of exposure to unfavorable conditions and requires an enhanced abiotic resistance if it is to lead to successful establishment.Important findings While there are several anecdotal accounts of early and late germination for invasive species, there are limited comparative data with resident species growing under natural conditions. Available evidence from grassland communities indicates that a short-term germination advantage or priority (few days/weeks) provides invasive species with a strong competitive advantage over native species and is a critical factor in many invasions. While the exploitation of periods of low competition is a plausible mechanism for the successful establishment of many invasive plants, direct evidence for this strategy is still scarce. This is particularly true with regard to the exploitation of late germination niches. Consequently, long-term comparative monitoring of the germination phenology of invasive and native plants in situ is needed to assess its significance in a range of ecosystems and its impact on community dynamics. 相似文献