首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent research in humans, livestock, and wildlife using high-throughput next-generation sequencing (NGS) has identified that resident microbiota play an essential role in disease resistance, host health, and adaptation to biotic and abiotic stressors. Since amphibians are currently facing population declines and extinctions attributable to anthropogenic pressures and emerging diseases, an understanding of the effects of microbiome dysbiosis and mitigation is a prerequisite for amphibian conservation and disease management. Interest is now growing with regard to understanding the influence of unfavorable environmental conditions on the amphibian microbiome and the effects of dysbiosis on the susceptibility to pathogenic infections. Here, we summarize information on the amphibian microbiome, specifically concerning intrinsic and extrinsic factors that shape the skin and gut microbiome. We explore diverse types of unfavorable environmental perturbations and the ways in which they can impact the microbiota of an individual so that we can better comprehend the consequences of stressors and dysbiosis on pathogen emergence and health. We discuss the role of the microbiome in amphibian conservation and identify gaps of knowledge that need to be filled if we are to achieve a meta-organism conservation approach. NGS studies should be complemented with other high-throughput “-omic” approaches to target microbiome functionality. Understanding the microbiome might be the missing piece in the overall strategy that will help maintain the health of amphibians in a world with highly affected environments and that will prevent/mitigate emerging infectious diseases.  相似文献   

2.
3.
高通量测序技术的发展显著加快了对人类微生物组的理解。将人体微生物组与疾病关联,力求阐明疾病的发生进程,是推进个性化精准医疗的重要研究方向。近年来,栖居于女性阴道的微生物菌群日益受到关注,发现其生态失调与疾病发生、演变密不可分。文中综述了阴道微生物组与生殖道疾病发生、进展和治疗的最新进展,同时对阴道微生物组培养组、益生菌工程化改造以及合成菌群在阴道微生物组学研究以及疾病干预与治疗方面的前景进行了展望。  相似文献   

4.
The gut microbiome has emerged as a critical regulator of human physiology. Deleterious changes to the composition or number of gut bacteria, commonly referred to as gut dysbiosis, has been linked to the development and progression of numerous diet-related diseases, including cardiovascular disease (CVD). Most CVD risk factors, including aging, obesity, certain dietary patterns, and a sedentary lifestyle, have been shown to induce gut dysbiosis. Dysbiosis is associated with intestinal inflammation and reduced integrity of the gut barrier, which in turn increases circulating levels of bacterial structural components and microbial metabolites that may facilitate the development of CVD. The aim of the current review is to summarize the available data regarding the role of the gut microbiome in regulating CVD function and disease processes. Particular emphasis is placed on nutrition-related alterations in the microbiome, as well as the underlying cellular mechanisms by which the microbiome may alter CVD risk.  相似文献   

5.
The microbiome plays an important role in maintaining human health. Despite multiple factors being attributed to the shaping of the human microbiome, extrinsic factors such diet and use of medications including antibiotics appear to dominate. Mucosal surfaces, particularly in the gut, are highly adapted to be able to tolerate a large population of microorganisms whilst still being able to produce a rapid and effective immune response against infection. The intestinal microbiome is not functionally independent from the host mucosa and can, through presentation of microbe-associated molecular patterns (MAMPs) and generation of microbe-derived metabolites, fundamentally influence mucosal barrier integrity and modulate host immunity. In a healthy gut there is an abundance of beneficial bacteria that help to preserve intestinal homoeostasis, promote protective immune responses, and limit excessive inflammation. The importance of the microbiome is further highlighted during dysbiosis where a loss of this finely balanced microbial population can lead to mucosal barrier dysfunction, aberrant immune responses, and chronic inflammation that increases the risk of disease development. Improvements in our understanding of the microbiome are providing opportunities to harness members of a healthy microbiota to help reverse dysbiosis, reduce inflammation, and ultimately prevent disease progression.  相似文献   

6.
The gut microbiome has been shown to play a significant role in human healthy and diseased states. The dynamic signaling that occurs between the host and microbiome is critical for the maintenance of host homeostasis. Analyzing the human microbiome with metaproteomics, metabolomics, and integrative multi‐omics analyses can provide significant information on markers for healthy and diseased states, allowing for the eventual creation of microbiome‐targeted treatments for diseases associated with dysbiosis. Metaproteomics enables functional activity information to be gained from the microbiome samples, while metabolomics provides insight into the overall metabolic states affecting/representing the host–microbiome interactions. Combining these functional ‐omic platforms together with microbiome composition profiling allows for a holistic overview on the functional and metabolic state of the microbiome and its influence on human health. Here the benefits of metaproteomics, metabolomics, and the integrative multi‐omic approaches to investigating the gut microbiome in the context of human health and diseases are reviewed.  相似文献   

7.
Colorectal cancer (CRC) is the malignant tumor with the highest incidence in the digestive system, and the gut microbiome plays a crucial role in CRC tumorigenesis and therapy. The gastrointestinal tract is the organ harboring most of the microbiota in humans. Changes in the gut microbiome in CRC patients suggest possible host–microbe interactions, thereby hinting the potential tumorigenesis, which provides new perspective for preventing, diagnosing, or treating CRC. In this review, we discuss the effects of gut microbiome dysbiosis on CRC, and reveal the mechanisms by which gut microbiome dysbiosis leads to CRC. Gut microbiome modulation with the aim to reverse the established gut microbial dysbiosis is a novel strategy for the prevention and treatment of CRC. In addition, this review summarizes that probiotic antagonize CRC tumorigenesis by protecting intestinal barrier function, inhibiting cancer cell proliferation, resisting oxidative stress, and enhancing host immunity. Finally, we highlight clinical applications of the gut microbiome, such as gut microbiome analysis-based biomarker screening and prediction, and microbe modulation-based CRC prevention, treatment enhancement, and treatment side effect reduction. This review provides the reference for the clinical application of gut microbiome in the prevention and treatment of CRC.  相似文献   

8.
Studies of the microbiome have become increasingly sophisticated, and multiple sequence-based, molecular methods as well as culture-based methods exist for population-scale microbiome profiles. To link the resulting host and microbial data types to human health, several experimental design considerations, data analysis challenges, and statistical epidemiological approaches must be addressed. Here, we survey current best practices for experimental design in microbiome molecular epidemiology, including technologies for generating, analyzing, and integrating microbiome multiomics data. We highlight studies that have identified molecular bioactives that influence human health, and we suggest steps for scaling translational microbiome research to high-throughput target discovery across large populations.  相似文献   

9.
Mucosal surfaces that line our gastrointestinal tract are continuously exposed to trillions of bacteria that form a symbiotic relationship and impact host health and disease. It is only beginning to be understood that the cross-talk between the host and microbiome involve dynamic changes in commensal bacterial population, secretion, and absorption of metabolites between the host and microbiome. As emerging evidence implicates dysbiosis of gut microbiota in the pathology and progression of various diseases such as inflammatory bowel disease, obesity, and allergy, conventional treatments that either overlook the microbiome in the mechanism of action, or eliminate vast populations of microbes via wide-spectrum antibiotics need to be reconsidered. It is also becoming clear the microbiome can influence the body’s response to therapeutic treatments for cancers. As such, targeting the microbiome as treatment has garnered much recent attention and excitement from numerous research labs and biotechnology companies. Treatments range from fecal microbial transplantation to precision-guided molecular approaches. Here, we survey recent progress in the development of innovative therapeutics that target the microbiome to treat disease, and highlight key findings in the interplay between host microbes and therapy.  相似文献   

10.
Most discussions of human microbiome research have focused on bacterial investigations and findings. Our target is to understand how human eukaryotic microbiome research is developing, its potential distinctiveness, and how problems can be addressed. We start with an overview of the entire eukaryotic microbiome literature (578 papers), show tendencies in the human‐based microbiome literature, and then compare the eukaryotic field to more developed human bacterial microbiome research. We are particularly concerned with problems of interpretation that are already apparent in human bacterial microbiome research (e.g. disease causality, probiotic interventions, evolutionary claims). We show where each field converges and diverges, and what this might mean for progress in human eukaryotic microbiome research. Our analysis then makes constructive suggestions for the future of the field.  相似文献   

11.
There is growing awareness of the importance of the gut microbiome in health and disease, and recognition that the microbe to host metabolic signalling is crucial to understanding the mechanistic basis of their interaction. This opens new avenues of research for advancing knowledge on the aetiopathologic consequences of dysbiosis with potential for identifying novel microbially-related drug targets. Advances in both sequencing technologies and metabolic profiling platforms, coupled with mathematical integration approaches, herald a new era in characterizing the role of the microbiome in metabolic signalling within the host and have far reaching implications in promoting health in both the developed and developing world.  相似文献   

12.
The emerging concept of planetary health emphasizes that the health of human civilization is intricately connected to the health of natural systems within the Earth’s biosphere; here, we focus on the rapidly progressing microbiome science - the microbiota-mental health research in particular - as a way to illustrate the pathways by which exposure to biodiversity supports health. Microbiome science is illuminating the ways in which stress, socioeconomic disadvantage and social polices interact with lifestyle and behaviour to influence the micro and macro-level biodiversity that otherwise mediates health. Although the unfolding microbiome and mental health research is dominated by optimism in biomedical solutions (e.g. probiotics, prebiotics), we focus on the upstream psychosocial and ecological factors implicated in dysbiosis; we connect grand scale biodiversity in the external environment with differences in human-associated microbiota, and, by extension, differences in immune function and mental outlook. We argue that the success of planetary health as a new concept will be strengthened by a more sophisticated understanding of the ways in which individuals develop emotional connections to nature (nature relatedness) and the social policies and practices which facilitate or inhibit the pro-environmental values that otherwise support personal, public and planetary health.  相似文献   

13.
The oral microbiome plays a relevant role in the health status of the host and is a key element in a variety of oral and non-oral diseases. Despite advances in our knowledge of changes in microbial composition associated with different health conditions the functional aspects of the oral microbiome that lead to dysbiosis remain for the most part unknown. In this review, we discuss the progress made towards understanding the functional role of the oral microbiome in health and disease and how novel technologies are expanding our knowledge on this subject.  相似文献   

14.
Advances in research concerning the mental health implications of dietary patterns and select nutrients have been remarkable. At the same time, there have been rapid increases in the understanding of the ways in which non-pathogenic microbes can potentially influence many aspects of human health, including those in the mental realm. Discussions of nutrition and microbiota are often overlapping. A separate, yet equally connected, avenue of research is that related to natural (for example, green space) and built environments, and in particular, how they are connected to human cognition and behaviors. It is argued here that in Western industrial nations a ‘disparity of microbiota’ might be expected among the socioeconomically disadvantaged, those whom face more profound environmental forces. Many of the environmental forces pushing against the vulnerable are at the neighborhood level. Matching the developing microbiome research with existing environmental justice research suggests that grey space may promote dysbiosis by default. In addition, the influence of Westernized lifestyle patterns, and the marketing forces that drive unhealthy behaviors in deprived communities, might allow dysbiosis to be the norm rather than the exception in those already at high risk of depression, subthreshold (subsyndromal) conditions, and subpar mental health. If microbiota are indeed at the intersection of nutrition, environmental health, and lifestyle medicine (as these avenues pertain to mental health), then perhaps the rapidly evolving gut-brain-microbiota conversation needs to operate through a wider lens. In contrast to the more narrowly defined psychobiotic, the term eco-psychotropic is introduced.  相似文献   

15.
The development of the neonatal gut microbiome is influenced by multiple factors, such as delivery mode, feeding, medication use, hospital environment, early life stress, and genetics. The dysbiosis of gut microbiota persists during infancy, especially in high-risk preterm infants who experience lengthy stays in the Neonatal intensive care unit (NICU). Infant microbiome evolutionary trajectory is essentially parallel with the host (infant) neurodevelopmental process and growth. The role of the gut microbiome, the brain-gut signaling system, and its interaction with the host genetics have been shown to be related to both short and long term infant health and bio-behavioral development. The investigation of potential dysbiosis patterns in early childhood is still lacking and few studies have addressed this host-microbiome co-developmental process. Further research spanning a variety of fields of study is needed to focus on the mechanisms of brain-gut-microbiota signaling system and the dynamic host-microbial interaction in the regulation of health, stress and development in human newborns.  相似文献   

16.
Inflammatory bowel disease(IBD)has become a global disease with accelerating incidence worldwide in the 21st century while its accurate etiology remains unclear.In the past decade,gut microbiota dysbiosis has con-sistently been associated with IBD.Although many IBD-associated dysbiosis have not been proven to be a cause or an effect of IBD,it is often hypothesized that at least some of alteration in microbiome is protective or causative.In this article,we selectively reviewed the hypothesis supported by both association studies in human and pathogenesis studies in biological models.Specifically,we reviewed the potential protective bac-terial pathways and species against IBD,as well as the potential causative bacterial pathways and species of IBD.We also reviewed the potential roles of some members of mycobiome and virome in IBD.Lastly,we covered the current status of therapeutic approaches targeting microbiome,which is a promising strategy to alleviate and cure this inflammatory disease.  相似文献   

17.
Microbes colonise all multicellular life, and the gut microbiome has been shown to influence a range of host physiological and behavioural phenotypes. One of the most intriguing and least understood of these influences lies in the domain of the microbiome's interactions with host social behaviour, with new evidence revealing that the gut microbiome makes important contributions to animal sociality. However, little is known about the biological processes through which the microbiome might influence host social behaviour. Here, we synthesise evidence of the gut microbiome's interactions with various aspects of host sociality, including sociability, social cognition, social stress, and autism. We discuss evidence of microbial associations with the most likely physiological mediators of animal social interaction. These include the structure and function of regions of the ‘social' brain (the amygdala, the prefrontal cortex, and the hippocampus) and the regulation of ‘social’ signalling molecules (glucocorticoids including corticosterone and cortisol, sex hormones including testosterone, oestrogens, and progestogens, neuropeptide hormones such as oxytocin and arginine vasopressin, and monoamine neurotransmitters such as serotonin and dopamine). We also discuss microbiome‐associated host genetic and epigenetic processes relevant to social behaviour. We then review research on microbial interactions with olfaction in insects and mammals, which contribute to social signalling and communication. Following these discussions, we examine evidence of microbial associations with emotion and social behaviour in humans, focussing on psychobiotic studies, microbe–depression correlations, early human development, autism, and issues of statistical power, replication, and causality. We analyse how the putative physiological mediators of the microbiome–sociality connection may be investigated, and discuss issues relating to the interpretation of results. We also suggest that other candidate molecules should be studied, insofar as they exert effects on social behaviour and are known to interact with the microbiome. Finally, we consider different models of the sequence of microbial effects on host physiological development, and how these may contribute to host social behaviour.  相似文献   

18.
The assembly of bacterial communities in the rhizosphere is well-documented and plays a crucial role in supporting plant performance. However, we have limited knowledge of how plant rhizosphere determines the assembly of protistan predators and whether the potential associations between protistan predators and bacterial communities shift due to rhizosphere selection. To address this, we examined bacterial and protistan taxa from 443 agricultural soil samples including bulk and rhizosphere soils. Our results presented distinct patterns of bacteria and protistan predators in rhizosphere microbiome assembly. Community assembly of protistan predators was determined by a stochastic process in the rhizosphere and the diversity of protistan predators was reduced in the rhizosphere compared to bulk soils, these may be attributed to the indirect impacts from the altered bacterial communities that showed deterministic process assembly in the rhizosphere. Interestingly, we observed that the plant rhizosphere facilitates more close interrelationships between protistan predators and bacterial communities, which might promote a healthy rhizosphere microbial community for plant growth. Overall, our findings indicate that the potential predator–prey relationships within the microbiome, mediated by plant rhizosphere, might contribute to plant performance in agricultural ecosystems.  相似文献   

19.
In this review, we discuss the connections between mitochondria and the gut microbiome provided by reactive oxygen species (ROS). We examine the mitochondrion as an endosymbiotic organelle that is a hub for energy production, signaling, and cell homeostasis. Maintaining a diverse gut microbiome is generally associated with organismal fitness, intestinal health and resistance to environmental stress. In contrast, gut microbiome imbalance, termed dysbiosis, is linked to a reduction in organismal well-being. ROS are essential signaling molecules but can be damaging when present in excess. Increasing ROS levels have been shown to influence human health, homeostasis of gut cells, and the gastrointestinal microbial community's biodiversity. Reciprocally, gut microbes can affect ROS levels, mitochondrial homeostasis, and host health. We propose that mechanistic understanding of the suite of bi-directional interactions between mitochondria and the gut microbiome will facilitate innovative interdisciplinary studies examining evolutionary divergence and provide novel treatments and therapeutics for disease.GlossIn this review, we focus on the nexus between mitochondria and the gut microbiome provided by reactive oxygen species (ROS). Mitochondria are a cell organelle that is derived from an ancestral alpha-proteobacteria. They generate around 80% of the adenosine triphosphate that an organism needs to function and release a range of signaling molecules essential for cellular homeostasis. The gut microbiome is a suite of microorganisms that are commensal, symbiotic and pathogenic to their host. ROS are one predominant group of essential signaling molecules that can be harmful in excess. We suggest that the mitochondria- microbiome nexus is a frontier of research that has cross-disciplinary benefits in understanding genetic divergence and human well-being.  相似文献   

20.
《遗传学报》2021,48(8):716-726
The vaginal microbiota is less complex than the gut microbiota, and the colonization of Lactobacillus in the female vagina is considered to be critical for reproductive health. Oral probiotics have been suggested as promising means to modulate vaginal homeostasis in the general population. In this study, 60 Chinese women were followed for over a year before, during, and after treatment with the probiotics Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14. Shotgun metagenomic data of 1334 samples from multiple body sites did not support a colonization route of the probiotics from the oral cavity to the intestinal tract and then to the vagina. Our analyses enable the classification of the cervicovaginal microbiome into a stable state and a state of dysbiosis. The microbiome in the stable group steadily maintained a relatively high abundance of Lactobacilli over one year, which was not affected by probiotic intake, whereas in the dysbiosis group, the microbiota was more diverse and changed markedly over time. Data from a subset of the dysbiosis group suggests this subgroup possibly benefited from supplementation with the probiotics,indicating that probiotics supplementation can be prescribed for women in a subclinical microbiome setting of dysbiosis, providing opportunities for targeted and personalized microbiome reconstitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号