首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A research project to compare productive traits (growth and mortality), disease susceptibility and immune capability between Ostrea edulis stocks was performed. This article reports the results on the immune capability and its relation with infection by the intrahaemocytic protozoan Bonamia ostreae. Four to five oyster spat families were produced from each of four European flat oyster populations (one from Ireland, one from Greece and two from Galicia, Spain) in a hatchery. The spat were transferred to a raft in the Ría de Arousa (Galicia) for on growing for 2 years. Total haemocyte count (THC) and differential haemocyte count (DHC) were estimated monthly through the second year of growing-out. Three types of haemocytes were distinguished: granulocytes (GH), large hyalinocytes (LHH) and small hyalinocytes (SHH). Significant correlations between the mean relative abundance of GH and SHH of the families and the mean prevalence of B. ostreae, the overall incidence of pathological conditions and the cumulative mortality of the families were found; these correlations supported the hypothesis that high %GH and low %SHH would enhance oyster immune ability and, consequently, would contribute to lower susceptibility to disease and longer lifespan. Infection by B. ostreae involved a significant increase of circulating haemocytes, which affected more markedly the LHH type. The higher the infection intensity the higher the %LHH. This illustrates the ability of B. ostreae to modulate the immune responses of the O. edulis to favour its own multiplication. A significant reduction of the phenoloxidase activity in the haemolymph of oysters O. edulis infected by B. ostreae was observed. Nineteen enzymatic activities in the haemolymph of O. edulis and Crassostrea gigas (used as a B. ostreae resistant reference) were measured using the kit api ZYM®, Biomerieux. Qualitative and quantitative differences in enzyme activities in both haemocyte and plasma fractions between B. ostreae noninfected O. edulis from different origins were recorded. However, no clear positive association between enzyme activity and susceptibility to bonamiosis was found. The only enzyme detected in the resistant species C. gigas that was not found in the susceptible one O. edulis was β-glucosidase (in plasma). B. ostreae infected O. edulis showed significant increase of some enzyme activities and the occurrence of enzymes that were not detected in noninfected oysters. These changes could be due to infection-induced enzyme synthesis by the host or to enzyme synthesis by the parasite.  相似文献   

2.
Bonamia ostreae is a protozoan, affiliated to the order Haplosporidia and to the phylum Cercozoa. This parasite is intracellular and infects haemocytes, cells notably involved in oyster defence mechanisms. Bonamiosis due to the parasite B. ostreae is a disease affecting the flat oyster, Ostrea edulis. The strategies used by protozoan parasites to circumvent host defence mechanisms remain largely unknown in marine bivalve molluscs. In the present work, in vitro experiments were carried out in order to study the interactions between haemocytes from O. edulis and purified parasite, B. ostreae. We monitored cellular and molecular responses of oyster haemocytes by light microscopy, flow cytometry and real-time PCR 1, 2, 4 and 8 h p.i. Light microscopy was used to measure parasite phagocytosis by oyster haemocytes. Parasites were observed inside haemocytes 1 h p.i. and the parasite number increased during the time course of the experiment. Moreover, some bi-nucleated and tri-nucleated parasites were found within haemocytes 2 and 4 h p.i., respectively, suggesting that the parasite can divide inside haemocytes. Host responses to B. ostreae were investigated at the cellular and molecular levels using flow cytometry and real-time PCR. Phagocytosis capacity of haemocytes, esterase activity and production of radical oxygen species appeared modulated during the infection with B. ostreae. Expression levels of expressed sequence tags selected in this study showed variations during the experiment as soon as 1 h p.i. An up-regulation of galectin (OeGal), cytochrome p450 (CYP450), lysozyme, omega GST (OGST), super oxide dismutase Cu/Zn (Oe-SOD Cu/Zn) and a down-regulation of the extracellular super oxide dismutase SOD (Oe-EcSOD) were observed in the presence of the parasite. Finally, the open reading frames of both SODs (Oe-SOD Cu/Zn and Oe-EcSOD) were completely sequenced. These findings provide new insights into the cellular and molecular bases of the host-parasite interactions between the flat oyster, O. edulis, and the parasite, B. ostreae.  相似文献   

3.
Bonamia ostreae is an intracellular protozoan parasite, infecting haemocytes of the European flat oyster Ostrea edulis. Oyster defence mechanisms mainly rely on haemocytes. In the present study in vitro interactions between parasites and flat oyster haemocytes were investigated using flow cytometry and light microscopy.Haemocyte parameters including: non specific esterase activity, reactive oxygen species (ROS) production and phagocytosis were monitored using flow cytometry after 2 h cell incubation with live and dead B. ostreae. Two ratios of parasites per haemocyte were tested (5:1 and 10:1), haemocytes alone were used as controls and the experiment was carried out three times. Flow cytometry revealed a decrease of non specific esterase activities and ROS production by haemocytes after incubation with live parasites, while there was little difference in phagocytosis activity when compared with controls. Similarly, dead parasites induced a decrease in haemocyte activities but to a lesser extent compared to live parasites. These results suggest that B. ostreae actively contributes to the modification of haemocyte activities in order to ensure its own intracellular survival.  相似文献   

4.
5.
The small non-commercial oyster Ostrea stentina co-occurs with commercially important Ostrea edulis in the Mediterranean Sea, yet its disposition with respect to the destructive pathogens Bonamia ostreae and Marteilia refringens is unknown. We began an evaluation of the Bonamia spp. infection status of O. stentina from Hammamet, Tunisia, in June 2007 using polymerase chain reaction diagnostics followed by histology and in situ hybridization. Of 85 O. stentina sampled, nine were PCR-positive for a Bonamia sp. using a Bonamia genus-specific assay; of these nine, one displayed the uninucleate microcells associated with oyster hemocytes characteristic of Bonamia spp. There was no associated pathology. DNA sequencing of the parasite from this one infected individual revealed it to be of a member of the Bonamia exitiosa/Bonamia roughleyi clade, an identification supported by positive in situ hybridization results with probes specific for members of this clade, and by the morphology of the parasite cells: nuclei were central, as in B. exitiosa, not eccentric, as in B. ostreae. There is no basis for identifying the Tunisian parasite as either B. exitiosa or B. roughleyi, however, as these species are genetically indistinguishable. Likewise, there is no basis for identifying any of the other Bonamia spp. with affinities to the B. exitiosa/B. roughleyi clade, from Argentina, Australia, Spain, and the eastern USA, as one or the other of these named species. Though they are clearly distinct from Bonamia perspora and B. ostreae, justification for drawing species boundaries among the primarily austral microcells with affinities to B. exitiosa and B. roughleyi remains elusive.  相似文献   

6.
We have identified quantitative trait loci (QTL) in the flat oyster (Ostrea edulis) for resistance to Bonamia ostreae, a parasite responsible for the dramatic reduction in the aquaculture of this species. An F2 family from a cross between a wild oyster and an individual from a family selected for resistance to bonamiosis was cultured with wild oysters injected with the parasite, leading to 20% cumulative mortality. Selective genotyping of 92 out of a total of 550 F2 progeny (i.e., 46 heavily infected oysters that died and 46 parasite-free oysters that survived) was performed using 20 microsatellites and 34 amplification fragment length polymorphism primer pairs. Both a two-stage testing strategy and QTL interval mapping methods were used. The two-stage detection strategy had a high power with a low rate of false positives and identified nine and six probable markers linked to genes of resistance and susceptibility, respectively. Parent-specific genetic linkage maps were built for the family, spanning ten linkage groups (n = 10) with an observed genome coverage of 69–84%. Three QTL were identified by interval mapping in the first parental map and two in the second. Good concordance was observed between the results obtained after the two-stage testing strategy and QTL mapping.  相似文献   

7.
The protistan parasite Perkinsus marinus is a severe pathogen of the oyster Crassostrea virginica along the east coast of the United States. Very few data have been collected, however, on the abundance of the parasite in environmental waters, limiting our understanding of P. marinus transmission dynamics. Real-time PCR assays with SybrGreen I as a label for detection were developed in this study for quantification of P. marinus in environmental waters with P. marinus species-specific primers and of Perkinsus spp. with Perkinsus genus-specific primers. Detection of DNA concentrations as low as the equivalent of 3.3 × 10−2 cell per 10-μl reaction mixture was obtained by targeting the multicopy internal transcribed spacer region of the genome. To obtain reliable target quantification from environmental water samples, removal of PCR inhibitors and efficient DNA recovery were two major concerns. A DNA extraction kit designed for tissues and another designed for stool samples were tested on environmental and artificial seawater (ASW) samples spiked with P. marinus cultured cells. The stool kit was significantly more efficient than the tissue kit at removing inhibitors from environmental water samples. With the stool kit, no significant difference in the quantified target concentrations was observed between the environmental and ASW samples. However, with the spiked ASW samples, the tissue kit demonstrated more efficient DNA recovery. Finally, by performing three elutions of DNA from the spin columns, which were combined prior to target quantification, variability of DNA recovery from different samples was minimized and more reliable real-time PCR quantification was accomplished.  相似文献   

8.
In this study, we described the cytosolic HSP90 of Bonamia ostreae, an intracellular parasite of Ostrea edulis hemocytes. The complete open reading frame was assembled by Rapid Amplification cDNA Ends reactions on cDNA of B. ostreae‐infected hemocytes. HSP90 amplification was corroborated in infected oysters and B. ostreae purified cells. The functionality of the HSP90, studied by inhibitory assays with radicicol, suggests that this protein may play a role in hemocyte invasion. Our results inform the molecular basis that governs B. ostreae–O. edulis interactions.  相似文献   

9.
European flat oyster (Ostrea edulis) production has suffered a severe decline due to bonamiosis. The responsible parasite enters in oyster haemocytes, causing an acute inflammatory response frequently leading to death. We used an immune-enriched oligo-microarray to understand the haemocyte response to Bonamia ostreae by comparing expression profiles between naïve (NS) and long-term affected (AS) populations along a time series (1 d, 30 d, 90 d). AS showed a much higher response just after challenge, which might be indicative of selection for resistance. No regulated genes were detected at 30?d in both populations while a notable reactivation was observed at 90 d, suggesting parasite latency during infection. Genes related to extracellular matrix and protease inhibitors, up-regulated in AS, and those related to histones, down-regulated in NS, might play an important role along the infection. Twenty-four candidate genes related to resistance should be further validated for selection programs aimed to control bonamiosis.  相似文献   

10.
Culture of the pleasure oyster Crassostrea corteziensis is emerging as an alternative to the Pacific oyster (Crassostrea gigas) for oyster producers, who face severe mortalities since 1997 in Northwest México. For determining the health status of this species, we conducted a histopathological analysis of cultured populations from two estuaries in the Pacific coast of México. Macroscopical analysis revealed animals with transparent and retracted mantle. Histopathological analysis of these specimens showed tissue alterations and parasitic forms consistent with Perkinsus sp. infection. Stages of the parasite identified included tomont and trophozoites with an eccentric vacuole characteristic of Perkinsus spp. Pieces of tissues of infected oysters were incubated in Fluid Thioglycollate Medium (FTM) resulting in blue–black hypnospores after incubation. The identity of the parasite was confirmed by species specific PCR-based assay in DNA samples from oysters, tissue fractions from FTM cultures, and deparaffined samples with Perkinsus-like parasite detected by histology. Sequencing of positive amplified fragments (307 bp) showed a sequence similar to Perkinsus marinus strain TXsc NTS ribosomal RNA gene (100% coverage and 98% identity, GenBank Accession No. AF497479.1) and to P. marinus, Genomic DNA, (100% coverage and 97% identity, GenBank Accession No. S78416.1). The prevalence of P. marinus varied from 1 to 5% in Boca del Camichín and from 1 to 6% in Pozo Chino. In general, the intensity of infection was moderate. The infection was observed in oysters from 31 to 110 mm of shell length. This is the first record of P. marinus in oysters from the North America Pacific coast and the first record in C. corteziensis. The origin of this parasite in the area is unknown, but it may be associated to introductions of Crassostrea virginica from the East coast of United States of America or Gulf of México.  相似文献   

11.
In situ detection of microorganisms by fluorescence in situ hybridization (FISH) is a powerful tool for environmental microbiology, but analyses can be hampered by low rRNA content in target organisms, especially in oligotrophic environments. Here, we present a non‐enzymatic, hybridization chain reaction (HCR)‐based signal amplified in situ whole‐cell detection technique (in situ DNA‐HCR). The components of the amplification buffer were optimized to polymerize DNA amplifier probes for in situ DNA‐HCR. In situ hybridization of initiator probes followed by signal amplification via HCR produced bright signals with high specificity and probe permeation into cells. The detection rates for Bacteria in a seawater sample and Archaea in anaerobic sludge samples were comparable with or greater than those obtained by catalyzed reporter deposition (CARD)‐FISH or standard FISH. Detection of multiple organisms (Bacteria, Archaea and Methanosaetaceae) in an anaerobic sludge sample was achieved by simultaneous in situ DNA‐HCR. In summary, in situ DNA‐HCR is a simple and easy technique for detecting single microbial cells and enhancing understanding of the ecology and behaviour of environmental microorganisms in situ.  相似文献   

12.
Targeted species‐specific and community‐wide molecular diagnostics tools are being used with increasing frequency to detect invasive or rare species. Few studies have compared the sensitivity and specificity of these approaches. In the present study environmental DNA from 90 filtered seawater and 120 biofouling samples was analyzed with quantitative PCR (qPCR), droplet digital PCR (ddPCR) and metabarcoding targeting the cytochrome c oxidase I (COI) and 18S rRNA genes for the Mediterranean fanworm Sabella spallanzanii. The qPCR analyses detected S. spallanzanii in 53% of water and 85% of biofouling samples. Using ddPCR S. spallanzanii was detected in 61% of water of water and 95% of biofouling samples. There were strong relationships between COI copy numbers determined via qPCR and ddPCR (water R2 = 0.81, p < .001, biofouling R2 = 0.68, p < .001); however, qPCR copy numbers were on average 125‐fold lower than those measured using ddPCR. Using metabarcoding there was higher detection in water samples when targeting the COI (40%) compared to 18S rRNA (5.4%). The difference was less pronounced in biofouling samples (25% COI, 29% 18S rRNA). Occupancy modelling showed that although the occupancy estimate was higher for biofouling samples (ψ = 1.0), higher probabilities of detection were derived for water samples. Detection probabilities of ddPCR (1.0) and qPCR (0.93) were nearly double metabarcoding (0.57 to 0.27 marker dependent). Studies that aim to detect specific invasive or rare species in environmental samples should consider using targeted approaches until a detailed understanding of how community and matrix complexity, and primer biases affect metabarcoding data.  相似文献   

13.
Fifteen-day-old variety NA 56-79 sugar cane seedlings were inoculated with Azospirillum brasilense and Glomus intrarradix. This article aims at examining changes in sugar cane root seedlings inoculated with Glomus intrarradix and Azospirillum brasilense, the increase in microbial biomass and the acetylene reduction process as well. The internal root colonization was studied 20 days after inoculation using scanning and a transmission electron microscope. Both microorganisms entered the sugar cane root through the emergent lateral roots. The microorganisms were capable of coexisting both intra and intercellularly, producing changes in the cell wall, thus allowing colonization and interaction between the organisms. These changes increased the number of microorganisms inside the root as well as acetylene nitrogen reduction. Sugar cane plant biomass increased with joint-inoculation. The number of endophytic microorganisms and nitrogen fixing activity increased when they were colonized by Azospirillum and Glomus together.  相似文献   

14.
Some organisms have retained plastids even after they have lost the ability to photosynthesize. Several studies of nonphotosynthetic plastids in apicomplexan parasites have shown that the isopentenyl pyrophosphate biosynthesis pathway in the organelle is essential for their survival. A phytohormone, abscisic acid, one of several compounds biosynthesized from isopentenyl pyrophosphate, regulates the parasite cell cycle. Thus, it is possible that the phytohormone is universally crucial, even in nonphotosynthetic plastids. Here, we examined this possibility using the oyster parasite Perkinsus marinus, which is a plastid‐harboring cousin of apicomplexan parasites and has independently lost photosynthetic ability. Fluridone, an inhibitor of abscisic acid biosynthesis, blocked parasite growth and induced cell clustering. Nevertheless, abscisic acid and its intermediate carotenoids did not affect parasite growth or rescue the parasite from inhibition. Moreover, abscisic acid was not detected from the parasite using liquid chromatography mass spectrometry. Our findings show that abscisic acid does not play any significant roles in P. marinus.  相似文献   

15.
This study was undertaken to develop a quantitative polymerase chain reaction assay that would improve the utility of PCR for detecting Haplosporidium nelsoni (MSX), a serious parasite of the eastern oyster Crassostrea virginica. A competitive PCR sequence was generated from the H. nelsoni small subunit ribosomal DNA fragment, originally described by Stokes and colleagues, that was amplified by the same PCR primers and had similar amplification performance. Assays performed using competitor dilutions ranging from 0.05 to 500 pg/μl DNA were used to test oyster samples designated using histological techniques as having ``light' or ``heavy' MSX infections. Visual diagnoses were confirmed equally well with three methods: densitometry of ethidium-bromide-stained agarose, densitometry of SYBRGreen-stained polyacrylamide gels, and analysis by GeneScan 3.0 of fluorescent products detected in ultrathin gels. Oysters diagnosed as negative for MSX tested as negative or light by PCR. Oysters with light MSX infections generally had less than 5 pg/μl infectious DNA. Oysters with heavy infections generally corresponded to 5 pg/μl or greater competitor dilutions. Received September 3, 1999; accepted March 3, 2000.  相似文献   

16.

Background  

Ecological factors play an important role in the evolution of parasite exploitation strategies. A common prediction is that, as shorter host life span reduces future opportunities of transmission, parasites compensate with an evolutionary shift towards earlier transmission. They may grow more rapidly within the host, have a shorter latency time and, consequently, be more virulent. Thus, increased extrinsic (i.e., not caused by the parasite) host mortality leads to the evolution of more virulent parasites. To test these predictions, we performed a serial transfer experiment, using the protozoan Paramecium caudatum and its bacterial parasite Holospora undulata. We simulated variation in host life span by killing hosts after 11 (early killing) or 14 (late killing) days post inoculation; after killing, parasite transmission stages were collected and used for a new infection cycle.  相似文献   

17.
The protistan parasite Perkinsus marinus is a severe pathogen of the oyster Crassostrea virginica along the east coast of the United States. Very few data have been collected, however, on the abundance of the parasite in environmental waters, limiting our understanding of P. marinus transmission dynamics. Real-time PCR assays with SybrGreen I as a label for detection were developed in this study for quantification of P. marinus in environmental waters with P. marinus species-specific primers and of Perkinsus spp. with Perkinsus genus-specific primers. Detection of DNA concentrations as low as the equivalent of 3.3 x 10(-2) cell per 10-microl reaction mixture was obtained by targeting the multicopy internal transcribed spacer region of the genome. To obtain reliable target quantification from environmental water samples, removal of PCR inhibitors and efficient DNA recovery were two major concerns. A DNA extraction kit designed for tissues and another designed for stool samples were tested on environmental and artificial seawater (ASW) samples spiked with P. marinus cultured cells. The stool kit was significantly more efficient than the tissue kit at removing inhibitors from environmental water samples. With the stool kit, no significant difference in the quantified target concentrations was observed between the environmental and ASW samples. However, with the spiked ASW samples, the tissue kit demonstrated more efficient DNA recovery. Finally, by performing three elutions of DNA from the spin columns, which were combined prior to target quantification, variability of DNA recovery from different samples was minimized and more reliable real-time PCR quantification was accomplished.  相似文献   

18.
To improve labeling-intensity of whole-cell fluorescence in situ hybridization (FISH) in the molecular identification of toxic Alexandrium tamiyavanichii, two DNA probes (TAMID2 plus TAMIS1 designed from the LSU and SSU rDNA regions, respectively) were used to test the labeling intensity of targeted cultured A. tamiyavanichii cells. The cross-reactivity of the DNA probe to natural seawater samples and six Alexandrium species: A. affine, A. catenella, A. fraterculus, A. insuetum, A. pseudogonyaulax and A. tamarense, was also tested. The labeling intensity of the DNA probe TAMID2S1, a combination of two separate probes that target different regions of the rRNA, was 1.7–2.7 times higher than that of the single DNA probe TAMID2. With cultured A. tamiyavanichii cells in the dead growth phase at 30 days, the TAMID2S1 intensity was 1.9 times higher than that of TAMID2. During a 30-day culture, the labeling intensity of A. tamiyavanichii cells hybridized with TAMID2S1 decreased to 49.4% of the original intensity. No cross-reactivity to various microorganisms in natural seawater samples was found. The two DNA probes together, designated as TAMID2S1, readily detected A. tamiyavanichii added to natural seawater samples, even aged cultured cells.  相似文献   

19.
Characterizing ecological relationships between viruses, bacteria and phytoplankton in the ocean is critical to understanding the ecosystem; however, these relationships are infrequently investigated together. To understand the dynamics of microbial communities and environmental factors in harmful algal blooms (HABs), we examined the environmental factors and microbial communities during Akashiwo sanguinea HABs in the Jangmok coastal waters of South Korea by metagenomics. Specific bacterial species showed complex synergistic and antagonistic relationships with the A. sanguinea bloom. The endoparasitic dinoflagellate Amoebophrya sp. 1 controlled the bloom dynamics and correlated with HAB decline. Among nucleocytoplasmic large DNA viruses (NCLDVs), two Pandoraviruses and six Phycodnaviruses were strongly and positively correlated with the HABs. Operational taxonomic units of microbial communities and environmental factors associated with A. sanguinea were visualized by network analysis: A. sanguineaAmoebophrya sp. 1 (r = .59, time lag: 2 days) and A. sanguineaEctocarpus siliculosus virus 1 in Phycodnaviridae (0.50, 4 days) relationships showed close associations. The relationship between A. sanguinea and dissolved inorganic phosphorus relationship also showed a very close correlation (0.74, 0 day). Microbial communities and the environment changed dynamically during the A. sanguinea bloom, and the rapid turnover of microorganisms responded to ecological interactions. A. sanguinea bloom dramatically changes the environments by exuding dissolved carbohydrates via autotrophic processes, followed by changes in microbial communities involving host‐specific viruses, bacteria and parasitoids. Thus, the microbial communities in HAB are composed of various organisms that interact in a complex manner.  相似文献   

20.
We report on the invasion of Brazil by the Pacific oyster Crassostrea gigas, and discuss the likely routes of invasion. Because this phenotypically diverse oyster sometimes resembles the native species C. brasiliana and C. rhizophorae, its invasion went unnoticed until it was detected through the analysis of DNA sequences for ribosomal 16S and the ribosomal second internal transcribed spacer. C. gigas was found amongst the native species in oyster banks up to 100 km south of oyster farms in South Brazil. Under most circumstances, water temperatures in the coastal southerly Brazil current would be too high to allow for the establishment of stable populations of C. gigas, but the production of spat in oyster farm laboratories has probably selected for resistance to warmer temperatures, which would promote invasion by C. gigas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号