首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A birefringence technique is used to determine the average magnetic moments <μ> of magnetotactic bacteria in culture. Differences in <μ> are noted between live and dead bacteria, as well as between normal density and high density samples of live bacteria.  相似文献   

2.
3.
Magnetosomes are prokaryotic organelles produced by magnetotactic bacteria that consist of nanometer-sized magnetite (Fe3O4) or/and greigite (Fe3S4) magnetic crystals enveloped by a lipid bilayer membrane. In magnetite-producing magnetotactic bacteria, proteins present in the magnetosome membrane modulate biomineralization of the magnetite crystal. In these microorganisms, genes that encode for magnetosome membrane proteins as well as genes involved in the construction of the magnetite magnetosome chain, the mam and mms genes, are organized within a genomic island. However, partially because there are presently no greigite-producing magnetotactic bacteria in pure culture, little is known regarding the greigite biomineralization process in these organisms including whether similar genes are involved in the process. Here using culture-independent techniques, we now show that mam genes involved in the production of magnetite magnetosomes are also present in greigite-producing magnetotactic bacteria. This finding suggest that the biomineralization of magnetite and greigite did not have evolve independently (that is, magnetotaxis is polyphyletic) as once suggested. Instead, results presented here are consistent with a model in which the ability to biomineralize magnetosomes and the possession of the mam genes was acquired by bacteria from a common ancestor, that is, the magnetotactic trait is monophyletic.  相似文献   

4.
Bacterial precipitation of barite (BaSO(4)) under laboratory conditions is reported for the first time. The bacterium Myxococcus xanthus was cultivated in a solid medium with a diluted solution of barium chloride. Crystallization occurred as a result of the presence of live bacteria and the bacterial metabolic activity. A phosphorous-rich amorphous phase preceded the more crystalline barite formation. These experiments may indicate the involvement of bacteria in the barium biogeochemical cycle, which is closely related to the carbon cycle.  相似文献   

5.
Formation of magnetosomes in magnetotactic bacteria   总被引:1,自引:0,他引:1  
The ability of magnetotactic bacteria to orient and migrate along geomagnetic field lines is based on intracellular magnetic structures, the magnetosomes, which comprise nano-sized, membrane bound crystals of magnetic iron minerals. The formation of magnetosomes is achieved by a biological mechanism that controls the accumulation of iron and the biomineralization of magnetic crystals with a characteristic size and morphology within membrane vesicles. This paper focuses on the current knowledge about magnetotactic bacteria and will outline aspects of the physiology and molecular biology of magnetosome formation. The biotechnological potential of the biomineralization process is discussed.  相似文献   

6.
Although flavin-dependent ThyX proteins show thymidylate synthase activity in vitro and functionally complement thyA defects in heterologous systems, direct proof of their cellular functions is missing. Using insertional mutagenesis of Rhodobacter capsulatus thyX, we constructed the first defined thyX inactivation mutant. Phenotypic analyses of the obtained mutant strain confirmed that R. capsulatus ThyX is required for de novo thymidylate synthesis. Full complementation of the R. capsulatus thyX::spec strain to thymidine prototrophy required not only the canonical thymidylate synthase ThyA but also the dihydrofolate reductase FolA. Strikingly, we also found that addition of exogenous methylenetetrahydrofolate transiently inhibited the growth of the different Rhodobacter strains used in this work. To rationalize these experimental results, we used a mathematical model of bacterial folate metabolism. This model suggests that a very low dihydrofolate reductase activity is enough to rescue significant thymidylate synthesis in the presence of ThyX proteins and is in agreement with the notion that intracellular accumulation of folates results in growth inhibition. In addition, our observations suggest that the presence of flavin-dependent thymidylate synthase X provides growth benefits under conditions in which the level of reduced folate derivatives is compromised.  相似文献   

7.
陈雨霏  陈华慧  曾芝瑞 《微生物学报》2022,62(12):4700-4712
以甘油二烷基甘油四醚(glycerol dialkyl glycerol tetraethers,GDGTs)为主的跨膜醚脂化合物是古菌和部分细菌细胞膜的重要组成成分。作为分子化石,GDGTs化合物对环境变化响应敏感,以其为基础的有机地球化学指标在定量重建海洋与陆地的古环境研究中发挥出独特的优势。然而,GDGTs指标在广泛应用的同时也不断出现适用性和准确性问题。其关键原因在于GDGTs的生物合成和生理机制研究相对匮乏,难以为指标提供分子生物学与生理学基础。近年来,在多学科的交叉融合下,古菌类异戊二烯GDGTs的生物合成研究取得了令人瞩目的进展。这些成果为脂类生物标志物的地学应用及生物源的确定提供了可靠的生物学基础和新的研究思路。本文综述了古菌类异戊二烯GDGTs的生物合成过程,提出了细菌支链GDGTs生物合成途径的假说,讨论了GDGTs生理过程的生物地球化学意义,并初步展望了GDGTs研究领域未来重要的发展方向。  相似文献   

8.
Study of the motion of magnetotactic bacteria   总被引:1,自引:0,他引:1  
Motion of flagellate bacteria is considered from the point of view of rigid body mechanics. As a general case we consider a flagellate coccus magnetotactic bacterium swimming in a fluid in the presence of an external magnetic field. The proposed model generalizes previous approaches to the problem and allows one to access parameters of the motion that can be measured experimentally. The results suggest that the strong helical pattern observed in typical trajectories of magnetotactic bacteria can be a biological advantage complementary to magnetic orientation. In the particular case of zero magnetic interaction the model describes the motion of a non-magnetotactic coccus bacterium swimming in a fluid. Theoretical calculations based on experimental results are compared with the experimental track obtained by dark field optical microscopy. Correspondence to: H. G. P. Lins de Barros  相似文献   

9.
潘红苗  武洪庆  肖天 《生态学报》2009,29(4):2107-2114
趋磁细菌是一类革兰氏阴性的原核生物,广泛分布于淡水和海水环境中的有氧-无氧过渡区.趋磁细菌的分布与其环境中的氧、硫化物及铁等的浓度相关,不同种类分布在不同的物化梯度范围内.趋磁细菌的生长、磁小体的合成及磁小体的成分对环境有一定程度的指示作用.它们在生物地球化学循环中起着重要的作用.主要针对以上研究内容进行回顾,同时结合本实验室的一些研究结果做初步的分析,并对趋磁细菌生态学研究进行展望.  相似文献   

10.
Biology of lithotrophic neutrophilic iron-oxidizing prokaryotes and their role in the processes of the biogeochemical cycle of iron are discussed. This group of microorganisms is phylogenetically, taxonomically, and physiologically heterogeneous, comprising three metabolically different groups: aerobes, nitratedependent anaerobes, and phototrophs; the latter two groups have been revealed relatively recently. Their taxonomy and metabolism are described. Materials on the structure and functioning of the electron transport chain in the course of Fe(II) oxidation by members of various physiological groups are discussed. Occurrence of iron oxidizers in freshwater and marine ecosystems, thermal springs, areas of hydrothermal activity, and underwater volcanic areas are considered. Molecular genetic techniques were used to determine the structure of iron-oxidizing microbial communities in various natural ecosystems. Analysis of stable isotope fractionation of 56/54Fe in pure cultures and model experiments revealed a predominance of biological oxidation over abiotic ones in shallow aquatic habitats and mineral springs, which was especially pronounced under microaerobic conditions at the redox zone boundary. Discovery of anaerobic bacterial Fe(II) oxidation resulted in development of new hypotheses concerning the possible role of microorganisms and the mechanisms of formation of the major iron ore deposits during Precambrian era until the early Proterozoic epoch. Paleobiological data are presented on the microfossils and specific biomarkers retrieved from ancient ore samples and confirming involvement of anaerobic biogenic processes in their formation.  相似文献   

11.
Diversity of magnetotactic bacteria in the Moskva River at the Strogino area was studied using microscopy and phylogenetic analysis. Magnetotactic cocci were the predominant morphotype. Phylogenetic analysis of the 16S rRNA gene sequences revealed 13 OTUs of the orders Magnetococcales and Rhodospirillales, class Alphaproteobacteria. The shares of the relevant sequences were 90 and 10%, respectively. An axenic culture of magnetotactic spirilla was isolated from the studied community. According to the results of the 16S rRNA gene sequencing, the isolate was identified as a new Magnetospirillum species.  相似文献   

12.
13.
The number of iron atoms in the dimeric iron-containing superoxide dismutase from Pseudomonas ovalis and their atomic positions have been determined directly from anomalous scattering measurements on crystals of the native enzyme. To resolve the long-standing question of the total amount of iron per molecule for this class of dismutase, the occupancy of each site was refined against the measured Bijvoet differences. The enzyme is a symmetrical dimer with one iron site in each subunit. The iron position is 9 A from the intersubunit interface. The total iron content of the dimer is 1.2 +/- 0.2 moles per mole of protein. This is divided between the subunits in the ratio 0.65:0.55; the difference between them is probably not significant. Since each subunit contains, on average, slightly more than half an iron atom we conclude that the normal state of this enzyme is two iron atoms per dimer but that some of the metal is lost during purification of the protein. Although the crystals are obviously a mixture of holo- and apo-enzymes, the 2.9 A electron density map is uniformly clean, even at the iron site. We conclude that the three-dimensional structures of the iron-bound enzyme and the apo-enzyme are identical.  相似文献   

14.
High-resolution transmission electron microscopy and electron holography were used to study the habits of exceptionally large magnetite crystals in coccoid magnetotactic bacteria. In addition to the crystal habits, the crystallographic positioning of successive crystals in the magnetosome chain appears to be under strict biological control.  相似文献   

15.
Bacterially mediated iron redox cycling exerts a strong influence on groundwater geochemistry, but few studies have investigated iron biogeochemical processes in coastal alluvial aquifers from a microbiological viewpoint. The shallow alluvial aquifer located adjacent to Poona estuary on the subtropical Southeast Queensland coast represents a redox-stratified system where iron biogeochemical cycling potentially affects water quality. Using a 300 m transect of monitoring wells perpendicular to the estuary, we examined groundwater physico-chemical conditions and the occurrence of cultivable bacterial populations involved in iron (and manganese, sulfur) redox reactions in this aquifer. Results showed slightly acidic and near-neutral pH, suboxic conditions and an abundance of dissolved iron consisting primarily of iron(II) in the majority of wells. The highest level of dissolved iron(III) was found in a well proximal to the estuary most likely a result of iron curtain effects due to tidal intrusion. A number of cultivable, (an)aerobic bacterial populations capable of diverse carbon, iron, or sulfur metabolism coexisted in groundwater redox transition zones. Our findings indicated aerobic, heterotrophic respiration and bacterially mediated iron/sulfur redox reactions were integral to carbon cycling in the aquifer. High abundances of dissolved iron and cultivable iron and sulfur bacterial populations in estuary-adjacent aquifers have implications for iron transport to marine waters. This study demonstrated bacterially mediated iron redox cycling and associated biogeochemical processes in subtropical coastal groundwaters using culture-based methods.  相似文献   

16.
17.
Experimental results are presented for the verification of the first adsorption step of the ‘adsorbed template’ biogeochemical cycle, a simple model for a primitive prebiotic replication system. The adsorption of Poly-C, Poly-U, Poly-A, Poly-G, and 5′-AMP, 5′-GMP, 5′-CMP and 5′-UMP onto gypsum was studied. It was found that under the conditions of the experiment, the polymers have a very high affinity for the mineral surface, while the monomers adsorb much less efficiently.  相似文献   

18.
T. Rosswall 《Plant and Soil》1982,67(1-3):15-34
Most nitrogen transformations in soil are carried out by micro-organisms. An understanding of the microbiological processes is thus necessary in order for us to devise management practices in agricultural ecosystems, which will optimize plant root uptake of nitrogen and minimize nitrogen losses from the systems. Some aspects of the individual microbiological processes in the nitrogen cycle are discussed and their importance for an efficient management of agroecosystems. In soil various groups of organisms compete for available inorganic nitrogen and quantitative data are needed on the uptake kinetics for these various groups in order to be able to assess their competitive ability under different conditions. The influence of abiotic factors such as oxygen concentration, inorganic nitrogen concentration and pH is discussed in relation to the different processes. The importance of acetylene as a tool in nitrogen cycling studies is discussed briefly.  相似文献   

19.
Electron micrographs of magnetotactic bacteria reveal that chains of magnetosomes are often bent. This is surprising inasmuch as straight chains are actually the most favourable arrangement for magnetonavigation achieving the maximum value of the bacterial net magnetic moment. In order to answer the question of what causes the chains to bend, we calculated the stability limit of straight magnetosome chains by taking into account elastic and magnetic forces. For several scenarios, the threshold values of external forces leading to elastic instability were computed. From our calculations and observations on freeze-dried cells, we conclude that, under normal conditions, magnetosome chains are straight or only slightly bent, whereas shrinkage during preparation may cause severe artifacts such as kinks or zig-zag structures in the chains. Received: 10 February 1997 / Accepted: 9 April 1997  相似文献   

20.
Magnetotactic bacteria (MB) are remarkable organisms with the ability to exploit the earth's magnetic field for navigational purposes. To do this, they build specialized compartments called magnetosomes that consist of a lipid membrane and a crystalline magnetic mineral. These organisms have the potential to serve as models for the study of compartmentalization as well as biomineralization in bacteria. Additionally, they offer the opportunity to design applications that take advantage of the particular properties of magnetosomes. In recent years, a sustained effort to identify the molecular basis of this process has resulted in a clearer understanding of the magnetosome formation and biomineralization. Here, I present an overview of MB and explore the possible molecular mechanisms of membrane remodeling, protein sorting, cytoskeletal organization, iron transport, and biomineralization that lead to the formation of a functional magnetosome organelle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号