首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Information on the guild structure of foliage‐associated tropical insects is scarce, especially as caterpillars are mostly considered only as herbivores feeding on living leaves. However, many caterpillar species display alternative trophic associations, feeding on dead or withered leaves or epiphylls (‘non‐herbivores’). 2. To determine the contribution of these non‐herbivores, caterpillar communities associated with Chusquea Kunth (Poaceae) in the Andes of southern Ecuador were investigated. Caterpillars were collected at two elevation levels (montane rainforest ~2000 m and elfin forest at ~3000 m a.s.l.) and assigned to three feeding guilds (strict herbivores, non‐herbivores, and switchers) based on feeding trials. Foliage quality and leaf area were recorded to test for their influence on guild composition and caterpillar density. 3. Three hundred and eighty‐nine individuals belonging to 175 Lepidoptera species associated with Chusquea bamboos were found. The species richness of caterpillars was similarly high at both elevation levels but varied between feeding guilds. Approximately half (46.5%) displayed an alternative feeding association, i.e. were non‐herbivores (31.1%) or switchers (15.4%). 4. Caterpillar density was nearly two‐fold higher in the elfin forest, but only strict herbivores and switchers increased significantly with elevation. Leaf area positively influenced the density of strict herbivores and switchers; foliage quality only affected strict herbivores. The density of non‐herbivores did not differ significantly between the forest types and was not related to leaf area or foliage quality. 5. The present study underpins that non‐herbivores make up a considerable fraction of caterpillar communities in tropical mountain ecosystems and demonstrates that elevation, foliage quality and available plant biomass further shape feeding guild composition.  相似文献   

2.
The physic nut (Jatropha curcas L.) is a multipurpose and oil‐producing shrub of Central and South American origin. Since the 15th century, this shrub has existed across tropical regions. Despite its presumed resistance to herbivores, reports show that arthropod herbivores infest it. However, no comprehensive account of arthropod herbivores, which consume the physic nut, exists. Here, we conducted a literature review that provides a comprehensive account of arthropod herbivores of the physic nut. Based on the co‐evolutionary hypothesis, we expected to find a higher herbivore of species richness and a larger proportion of native herbivores within the native range than elsewhere. As physic nut is a well‐defended plant chemically, we expected to find evidence for highest herbivory levels in plant parts that are the least defended. By the literatures review, we compiled 78 arthropod herbivores representing nine orders and from 31 families that feed on physic nut across the globe. As expected, the highest numbers of herbivores (34 species) were documented within the native range of the J. curcas and the lowest species number (21 species) in Africa. Of the 34 species in Central and South America, 94% were of native origin. Nine species were found feeding on J. curcas on more than one continent. Origins of 49% of species were from the native range of J. curcas. The highest percentage (54%) of species belonged to Hemiptera. With regard to feeding guilds, 59% of the herbivores belonged to sucking and 41% to chewing species. Forty‐one per cent of species were flower or fruit feeders, and 36% foliage feeders. We conclude that J. curcas is, despite its toxicity, vulnerable to herbivory, mainly to foliage, flower and fruit feeders.  相似文献   

3.
Adaptation to novel host plants is a much‐studied process in arthropod herbivores, but not in their predators. This is surprising, considering the attention that has been given to the role of predators in host range expansion in herbivores; the enemy‐free space hypothesis suggests that plants may be included in the host range of herbivores because of lower predation and parasitism rates on the novel host plants. This effect can only be important if natural enemies do not follow their prey to the novel host plant, at least not immediately, thus allowing the herbivores to adapt to the novel host plant. Hence, depending on the speed with which natural enemies follow their prey to a new host plant, enemy‐free space on novel host plants may only exist for a limited period. This situation may presently be occurring in a system consisting of the herbivorous moth Thyrinteina arnobia Stoll (Lepidoptera: Geometridae) that attacks various species of Myrtaceae, such as guava (Psidium guajava L.) and jaboticaba (Myrciaria spp.), in Brazil. Since the introduction of eucalyptus (Myrtaceae) species into this country some 100 years ago, the moth has included this plant species in its host range and frequently causes outbreaks, a phenomenon that does not occur on the native host plant species. This suggests that the natural enemies that attack the herbivore on native species are not very effective on the novel host. We tested this hypothesis by studying the searching behaviour of one of the natural enemies, the omnivorous predatory bug Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae). When offered a choice between plants of the two species, the predators (originally collected in eucalyptus plantations) preferred guava to eucalyptus when both plant species were clean, infested with herbivores, or damaged by herbivores but with herbivores removed prior to the experiments. The bugs preferred herbivore‐damaged to clean guava, and showed a slight preference for damaged to clean eucalyptus. These results may explain the lack of impact of predatory arthropods on herbivore populations on eucalyptus and suggests that eucalyptus may offer an enemy‐free space for herbivores.  相似文献   

4.
Bischoff A  Trémulot S 《Oecologia》2011,165(4):971-981
Local adaptation and population differentiation of plants are well documented, but studies on interactions with natural enemies are rare. In particular, evidence for plant adaptation to the local biotic environment, such as herbivores remains poor. We used the black mustard Brassica nigra, an annual species of river valley and coastal habitats to (1) analyse population differentiation in plant traits and herbivory in a common garden experiment, (2) examine home versus away differences in a reciprocal transplant experiment and (3) test whether plants are adapted to local herbivores or vice versa under standard greenhouse conditions. In the common garden experiment, we found significant differentiation in plant traits, leaf damage and herbivore number among seven populations of B. nigra from France and Germany (distance 15–1,000 km). Differences were particularly strong among coastal and river valley populations and did not necessarily increase with geographical distance. A herbivore removal treatment did not change population differentiation when compared with the control allowing natural colonisation. The reciprocal transplant experiment at a scale of 15–30 km did not reveal local plant adaptation, whilst one dominant herbivore species (Meligethes aeneus) occurred in significantly higher numbers on local plants. A greenhouse experiment combining three aphid (Brevicoryne brassicae) and plant populations of the same provenance indicated herbivore adaptation to their local plants rather than plant adaptation, but overall contrasts between local and non-local combinations were not significant. The results suggest that herbivores may counteract local plant adaptation to other environmental factors. Our study has important implications for plant translocations in ecological restoration projects.  相似文献   

5.
The present-day Sable Island horse population, inhabiting an island off the eastern coast of Canada, is believed to have originated mainly from horses confiscated from the early French settlers in Nova Scotia in the latter half of the 18th century. In 1960, the Sable Island horses were given legal protected status and no human interference has since been allowed. The objective of this study was to characterize the current genetic diversity in Sable Island horses in comparison to 15 other horse breeds commonly found in Canada and 5 Spanish breeds. A total of 145 alleles from 12 microsatellite loci were detected in 1093 horses and 40 donkeys. The average number of alleles per locus ranged from 4.67 in the Sable Island horse population to 8.25 in Appaloosas, whereas the mean observed heterozygosity ranged from 0.626 in the Sable Island population to 0.787 in Asturcons. Various genetic distance estimates and clustering methods did not permit to support that the Sable Island horses originated from shipwrecked Spanish horses, according to a popular anecdote, but closely resemble light draft and multipurpose breeds commonly found in eastern Canada. Based on the Weitzman approach, the loss of the Sable Island horse population to the overall diversity in Canada is comparable or higher than any other horse breed. The Sable Island horse population has diverged enough from other breeds to deserve special attention by conservation interest groups.  相似文献   

6.
While population foraging behaviour of herbivores has been extensively studied, individual choice is still poorly understood. Very few studies have focused on the individual consistency of foraging behaviour in marine herbivores. Because marine ectotherms are strongly influenced by their environment and because a mixed diet is appropriate for herbivores, we hypothesized that Haliotis tuberculata, a large marine gastropod, would not exhibit significant individual consistency in foraging activity and would display generalist food choices. To test these hypotheses, the behaviour of 120 abalone was studied using a choice test of eight macroalgal species over 3 weeks, with video recording 24 hr a day. In addition, primary components, secondary metabolites and toughness of the eight algae were measured. At the population level, food choice was mainly related to the protein composition and the toughness of the macroalgae. We found that H. tuberculata is a generalist species feeding on a variety of algae (IS = 0.64), even if 21% of the individuals can be considered to be specialists. However, in contrast to our hypothesis, highly consistent between-individual variation was observed in foraging activity (ICC = 0.81 for time spent feeding and ICC = 0.74 for number of feeding visits per day). The high individual consistency of foraging activity has some ecological and evolutionary implications currently not understood for this marine herbivore.  相似文献   

7.
The Seedling Ratio Method was devised to assess the impacts of introduced ungulates on plant species richness in forest understoreys. The method has successfully assessed ungulate impacts on species richness in forests in New Zealand and Hawaii, which do not have native herbivores. We tested the three critical assumptions that underlie this method to investigate its potential for use in an Australian ecosystem. This study was conducted in the Yarra Ranges National Park (YRNP), Victoria, which had a high‐density population of an introduced deer species, Sambar (Cervus unicolor), in addition to several native herbivore species. One of the three key assumptions of the Seedling Ratio Method was not supported, whereas conventional differential exclosures showed clear and separate impacts by Sambar and native herbivores. We conclude that the Seedling Ratio Method could not provide a clear indication of browsing impact on forest understoreys in YRNP.  相似文献   

8.
Summary To test the prediction that digestive responses digestibility, intake and passage time-of generalist herbivores vary with different diets, feeding trials were conducted in Venezuela with two sympatric tortoise species, Geochelone carbonaria and G. denticulata. Three single-species diets (two fruit, one foliage) were fed to both species. For a given diet, digestibility, mass-specific intake and passage time did not differ between the two tortoise species, nor did they vary by sex or body mass within each species. However, the digestive parameters varied for tortoises feeding on the different diets. The responses ranged from nearly abandoning cell wall fermentation and depending entirely on extraction of cell contents to relying heavily on cell wall fermentation. Therefore, these generalist herbivores have flexible digestive responses that are influenced by diet, not fixed digestive responses that limit the diet, as previously observed in other generalist herbivores. A three-part classification of herbivores (specialist, specialized mixed feeder and opportunistic mixed feeder) is suggested as an approach to understanding flexible and inflexible digestive strategies in herbivores.  相似文献   

9.
Following its introduction into Europe (EU), the common milkweed (Asclepias syriaca) has been free of most specialist herbivores that are present in its native North American (NA) range, except for the oleander aphid Aphis nerii. We compared EU and NA populations of A. nerii on EU and NA milkweed populations to test the hypothesis that plant–insect interactions differ on the two continents. First, we tested if herbivore performance is higher on EU plants than on NA plants, because the former have escaped most of their herbivores and have perhaps been selected for lower defence levels following introduction. Second, we compared two A. nerii lines (one from each continent) to test whether genotypic differences in the herbivore may influence species interactions in plant–herbivore communities in the context of species introductions. The NA population of A. nerii developed faster, had higher fecundity and attained higher population growth rates than the EU population. There was no overall significant continental difference in aphid resistance between the plants. However, milkweed plants from EU supported higher population growth rates and faster development of the NA line of A. nerii than plants from NA. In contrast, EU aphids showed similar (low) performance across plant populations from both continents. In a second experiment, we examined how chewing herbivores indirectly mediate interactions between milkweeds and aphids, and induced A. syriaca plants from each continent by monarch caterpillars (Danaus plexippus) to compare the resulting changes in plant quality on EU aphid performance. As specialist chewing herbivores of A. syriaca are only present in NA, we expected that plants from the two continents may affect aphid growth in different ways when they are challenged by a specialist chewing herbivore. Caterpillar induction decreased aphid developmental times on NA plants, but not on EU plants, whereas fecundity and population growth rates were unaffected by induction on both plant populations. The results show that genetic variation in the plants as well as in the herbivores can determine the outcome of plant–herbivore interactions.  相似文献   

10.
Abstract

The deceptive breeding system in the Orchidaceae family has been studied for decades to disentangle how pollination service can occur. Moreover, the interference of introduced herbivores on population development has been reported to affect the reproductive output in different plant species, including orchids. In this study, the breeding system of the food-deceptive species Anacamptis longicornu has been assessed. The spatio-temporal variation in both male and female reproductive fitness and its relationship with plant features were also analyzed. The possible herbivory effects were investigated by an exclusion experiment using two types of cages. The results confirm that this species is pollinator dependent and mostly allogamous but is also self-compatible. This species showed high values of cumulative inbreeding depression index for fruit set and seed viability parameters and was highly pollen-limited. Male fitness was always higher than female fitness between years and locations, and both parameters showed spatio-temporal variation. The use of cages excluded herbivores but, eventually, also excluded pollinators, so that both male and female reproductive success parameters decreased significantly in the complete exclusion treatment. The strong dependence of the species’ fitness on pollinator-mediated pollen transfer must be considered for the long-term conservation of A. longicornu.  相似文献   

11.
Escape from enemies in the native range is often assumed to contribute to the successful invasion of exotic species. Following optimal defence theory, which assumes a trade‐off between herbivore resistance and plant growth, some have predicted that the success of invasive species could be the result of the evolution of lower resistance to herbivores and increased allocation of resources to growth and reproduction. Lack of evidence for ubiquitous costs of producing plant toxins, and the recognition that invasive species may escape specialist, but not generalist enemies, has led to a new prediction: invasive species may escape ecological trade‐offs associated with specialist herbivores, and evolve increased, rather than decreased, production of defensive compounds that are effective at deterring generalist herbivores in the introduced range. We tested the performance of two generalist lepidopteran herbivores, Trichoplusia ni and Orgyia vetusta, when raised on diets of native and invasive populations of the California poppy, Eschscholzia californica. Pupae of T. ni were significantly larger when reared on native populations. Similarly, caterpillars of O. vetusta performed significantly better when raised on native populations, indicating that invasive populations of the California poppy are more resistant to herbivores than native populations. The chance of successful establishment of some non‐indigenous plant species may be increased by retaining resistance to generalist herbivores, and in some cases, invasive species may be able to escape ecological trade‐offs in their new range and evolve, as we observed, even greater resistance to generalist herbivores than native plants.  相似文献   

12.
Vegetational diversity within agricultural fields is often suggested as a means to reduce insect herbivore populations and to increase their natural enemies. In this paper we compare population densities of herbivores, predators, and parasitoids on collards in monocultures and on collards interplanted with two different groups of weeds, one with weed species from the same plant family as the collards (Brassicaceae) and one with weed species from unrelated plant families (non-Brassicaceae). The collards in the Brassicaceae weed polyculture had higher densities (number of herbivores/mean leaf area (cm2) per plant) of specialist herbivores than collards in the non-Brassicaceae weed polyculture and in collard monoculture. The “resource concentration” hypothesis is supported by the observation of higher populations of Phyllotreta spp., acting as facultative polyphages, in the Brassicaceae weed polyculture than in the non-Brassicaceae weed polyculture where Phyllotreta spp. are facultative monophages. Population densities of natural enemies (mostly coccinellids, carabids, and staphylinids) were higher in the polycultures than in the monoculture: carabid and staphylinid predators may be responsible for larval mortality in the imported cabbage worm, Pieris␣rapae, and in the diamondback larvae, Plutella xylostella. In spite of differences in densities of specialist herbivores across treatments, crop yield, leaf area (cm2), the proportion of leaf area damaged, and the number of leaves undamaged did not differ. These findings suggest that plant competition may interfere with attempts to reduce herbivore damage. We conclude that the use of weedy cultures can provide effective means of reducing herbivores if the crop and weed species are not related and plant competition is prevented. Received: 25 December 1995 / Accepted: 24 February 1997  相似文献   

13.
Plant chemistry can strongly influence interactions between herbivores and their natural enemies, either by providing volatile compounds that serve as foraging cues for parasitoids or predators, or by affecting the quality of herbivores as hosts or prey. Through these effects plants may influence parasitoid population genetic structure. We tested for a possible specialization on specific crop plants in Chelonus insularis and Campoletis sonorensis, two primary parasitoids of the fall armyworm, Spodoptera frugiperda. Throughout Mexico, S. frugiperda larvae were collected from their main host plants, maize and sorghum and parasitoids that emerged from the larvae were used for subsequent comparison by molecular analysis. Genetic variation at eight and 11 microsatellites were respectively assayed for C. insularis and C. sonorensis to examine isolation by distance, host plant and regional effects. Kinship analyses were also performed to assess female migration among host‐plants. The analyses showed considerable within population variation and revealed a significant regional effect. No effect of host plant on population structure of either of the two parasitoid species was found. Isolation by distance was observed at the individual level, but not at the population level. Kinship analyses revealed significantly more genetically related—or kin—individuals on the same plant species than on different plant species, suggesting that locally, mothers preferentially stay on the same plant species. Although the standard population genetics parameters showed no effect of plant species on population structure, the kinship analyses revealed that mothers exhibit plant species fidelity, which may speed up divergence if adaptation were to occur.  相似文献   

14.
Beach surveys for harp (Phoca groenlandica) and hooded (Cystophora cristata) seals documented a dramatic increase in their numbers on Sable Island in the mid-1990s. From late 1994 to 1998, 1,191 harp and 870 hooded seals, mostly young animals, were recorded on the island whereas, in the 1980s, no more than 5 animals of both species were observed each year. Of the 2,061 harp and hooded seals examined, 41.7% were found alive, 26.7% were killed by sharks, and 31.6% were found dead but intact. This increase in numbers of harp and hooded seals on Sable Island, which is south of their historic northern range, is consistent with the recent increase of extralimital occurrences of these species along the east coast of North America. However, the large number of seals recorded in this study provides more information on their demography than has previously been possible.  相似文献   

15.
转基因作物可能带来的风险之一是对非靶标生物尤其是非靶标植食者产生潜在的影响。本研究采用吸虫器取样法, 通过在浙江长兴2地点3年的试验评价了新型抗虫/耐除草剂转cry1Ab/vip3H+epsps基因粳稻(G6H1)及其亲本对照(秀水110, XS110)对稻叶蝉田间种群动态的影响。结果表明: 叶蝉类主要有黑尾叶蝉Nephotettix cincticeps (Uhler)、 二点叶蝉Cicadula fascifrons (Stål)和电光叶蝉Deltocephalus dorsalis Motschulsky组成, 其中黑尾叶蝉是优势种。虽然3种叶蝉的种群密度随着地点和年份的不同有所不同, 但是转基因水稻对3种叶蝉种群密度的年度变化均没有显著性影响。少数年份, 黑尾叶蝉成虫、 若虫及其两者总密度的时间动态在转基因水稻和对照田之间存在差异, 大多数年份, 趋势一致且无显著差异 (P>0.05)。另外, 二点叶蝉和电光叶蝉种群的时间动态在转基因水稻和对照田之间也相似。综合评价认为, 本供试转基因水稻品系G6H1对稻田稻叶蝉种群无明显的负面影响。  相似文献   

16.
The frequency of coevolution as a process of strong mutual interaction between a single plant and herbivore species has been questioned in light of more commonly observed, complex relationships between a plant and a suite of herbivore species. Despite recognition of the possibility of diffuse coevolution, relatively few studies have examined ecological responses of plants to herbivores in complex associations. We studied the impact of two specialist herbivores, the horse nettle beetle, Leptinotarsa juncta, and the eggplant flea beetle, Epitrix fuscula, on reproduction of their host, Solanum carolinense. Our study involved field and controlled-environment experimental tests of the impact on sexual and potential asexual reproduction of attack by individuals of the two herbivore species, individually and in combination. Field tests demonstrated that under normal levels of phytophagous insect attack, horse nettle plants experienced a reduction in fruit production of more than 75% compared with plants from which insects were excluded. In controlled-environment experiments using enclosure-exclosure cages, the horse nettle's two principal herbivores, the flea beetle and the horse nettle beetle, caused decreases in sexual reproduction similar to those observed in the field, and a reduction in potential asexual reproduction, represented by root biomass. Attack by each herbivore reduced the numbers of fruits produced, and root growth, when feeding in isolation. When both species were feeding together, fruit production, but not root growth, was lower than when either beetle species fed alone. Ecological interactions between horse nettle and its two primary herbivores necessary for diffuse coevolution to occur were evident from an overall analysis of the statistical interactions between the two herbivores for combined assessment of fruit and vegetative traits. For either of these traits alone, the interactions necessary to promote diffuse coevolution apparently were lacking.  相似文献   

17.
Allcock KG  Hik DS 《Oecologia》2004,138(2):231-241
To understand how plant communities are structured by herbivory it is essential to investigate the roles of different herbivores and the responses of a variety of plant species in different habitats. We examined the effects of mammalian herbivores on survival and growth of transplanted seedlings of two native trees (Eucalyptus albens and Callitris glaucophylla), and one native grass (Themeda australis) in white box (E. albens) woodlands in eastern Australia over 3 years. Herbivores were manipulated using four fencing treatments that successively excluded livestock, macropods, and rabbits from woodland and grassland (cleared pasture). Survival was highest in the absence of mammalian herbivores and in woodlands, and patterns differed among plant species. Survival of T. australis was low, especially in grasslands, and mortality by overgrowth was common in ungrazed treatments. All plant species were taller in fenced plots, and differences between treatments were greater in grassland. Rabbits and livestock had the greatest influence on C. glaucophylla, while T. australis and E. albens were most affected by livestock and macropods. We used field data to parameterize stage-classified matrix models to predict escape from herbivory (escape height >100 cm) for tree species. Reduced herbivory increased the proportion of individuals reaching escape height after 15 years. Rate of escape was greater in grassland, and this faster growth appeared to counteract much of the negative impact of herbivores. While T. australis was unable to escape herbivory, larger, ungrazed individuals were more likely to flower and therefore contribute to the maintenance of the population. Our results show that habitat and herbivore species strongly influence the effect of herbivory on vegetation.  相似文献   

18.
Because inbreeding is common in natural populations of plants and their herbivores, herbivore‐induced selection on plants, and vice versa, may be significantly modified by inbreeding and inbreeding depression. In a feeding assay with inbred and outbred lines of both the perennial herb, Vincetoxicum hirundinaria, and its specialist herbivore, Abrostola asclepiadis, we discovered that plant inbreeding increased inbreeding depression in herbivore performance in some populations. The effect of inbreeding on plant resistance varied among plant and herbivore populations. The among‐population variation is likely to be driven by variation in plant secondary compounds across populations. In addition, inbreeding depression in plant resistance was substantial when herbivores were outbred, but diminished when herbivores were inbred. These findings demonstrate that in plant–herbivore interactions expression of inbreeding depression can depend on the level of inbreeding of the interacting species. Furthermore, our results suggest that when herbivores are inbred, herbivore‐induced selection against self‐fertilisation in plants may diminish.  相似文献   

19.
  1. The role of herbivores in driving the structure of freshwater macrophyte communities remains poorly understood in comparison with terrestrial ecosystems. For instance, although duckweed (subfamily Lemnoideae) are globally distributed, can be locally highly abundant and ecologically dominant, and are of growing economic importance, their interactions with herbivores remain understudied.
  2. To address how herbivores may impact duckweed species composition, we here experimentally quantify the preference and performance of a common duckweed herbivore, the water-lily aphid (Rhopalosiphum nymphaeae) on four widespread duckweed species.
  3. Our two-way choice experiments reveal that aphids display a preference for Spirodela polyrhiza > Landoltia punctata = Lemna minor > > Wolffia brasiliensis. These results are rarely influenced by natal host species.
  4. By evaluating the growth of aphid populations on each duckweed species, we find that preference may be adaptive in certain ecological conditions.
  5. Quantifying the population growth rate of duckweed growing in the presence and absence of aphids revealed differential tolerance of herbivory across duckweed species.
  6. This study shows that aphids, through preferential feeding and significant differential effects on duckweed growth, can have a significant impact on duckweed population dynamics and potentially community composition.
  相似文献   

20.
ABSTRACT

Wild mammalian herbivores can compete with domestic livestock and damage other types of production systems. We reviewed damage by wild mammalian herbivores, excluding rodents, to primary production in New Zealand and assessed whether primary producers alter stocking rates in response to changes in forage availability following pest control. Given the dearth of information on the damage caused by wild mammalian herbivores to many production systems, we primarily focused on their damage to agriculture. With the exception of the substantial damage that brushtail possums (Trichosurus vulpecula) and European rabbits (Oryctolagus cuniculus) cause, there are no quantitative estimates of pasture depletion by other wild mammalian herbivores on New Zealand farmland. Estimates of dry matter consumption by wild mammalian herbivores, converted to stock unit equivalents, suggest that several species can substantially reduce stocking rates when they occur on farmland. Quantitative data on the damage they cause to horticulture and silviculture are lacking, but damage to coniferous seedlings has been recorded for possums, wallabies (Notamacropus spp.), and some species of deer (Cervus spp., Rusa spp., and Dama dama). The process that primary producers use to decide whether to control wild mammalian herbivores includes complex social and economic factors, but quantitative information is important for weighing up the expected costs and benefits of pest control. However, it is unclear how primary producers manage livestock in response to increases in forage availability following pest control. The paucity of quantitative data on wild mammalian herbivore damage to production assets is a substantial knowledge gap. Key research priorities are (i) understanding how damage varies with pest density (critical information for effective pest management) and (ii) and how primary producers alter stocking rates following reductions in pest density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号