首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mycobacterial membrane protein large 3 (MmpL3) transporter is essential and required for shuttling the lipid trehalose monomycolate (TMM), a precursor of mycolic acid (MA)-containing trehalose dimycolate (TDM) and mycolyl arabinogalactan peptidoglycan (mAGP), in Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium smegmatis. However, the mechanism that MmpL3 uses to facilitate the transport of fatty acids and lipidic elements to the mycobacterial cell wall remains elusive. Here, we report 7 structures of the M. smegmatis MmpL3 transporter in its unbound state and in complex with trehalose 6-decanoate (T6D) or TMM using single-particle cryo-electron microscopy (cryo-EM) and X-ray crystallography. Combined with calculated results from molecular dynamics (MD) and target MD simulations, we reveal a lipid transport mechanism that involves a coupled movement of the periplasmic domain and transmembrane helices of the MmpL3 transporter that facilitates the shuttling of lipids to the mycobacterial cell wall.

Mycobacterial membrane protein Large 3 (MmpL3) is a transporter required for shuttling trehalose monomycolate. Structures of M. smegmatis MmpL3 with and without substrate reveal the mechanism by which MmpL3 transports this essential precursor of lipids for the mycobacterial cell wall.  相似文献   

2.
In mycobacteria, MmpL proteins represent key components that participate in the biosynthesis of the complex cell envelope. Whole genome analysis of a spontaneous rough morphotype variant of Mycobacterium abscessus subsp. bolletii identified a conserved tyrosine that is crucial for the function of MmpL family proteins. Isogenic smooth (S) and rough (R) variants differed by a single mutation linked to a Y842H substitution in MmpL4a. This mutation caused a deficiency in glycopeptidolipid production/transport in the R variant and a gain in the capacity to produce cords in vitro. In zebrafish, increased virulence of the M. bolletii R variant over the parental S strain was found, involving massive production of serpentine cords, abscess formation and rapid larval death. Importantly, this finding allowed us to demonstrate an essential role of Tyr842 in several different MmpL proteins, including Mycobacterium tuberculosis MmpL3. Structural homology models of MmpL4a and MmpL3 identified two additional critical residues located in the transmembrane regions TM10 and TM4 that are facing each other. We propose that these central residues are part of the proton‐motive force that supplies the energy for substrate transport. Hence, we provide important insights into mechanistic/structural aspects of MmpL proteins as lipid transporters and virulence determinants in mycobacteria.  相似文献   

3.
Mycobacterium tuberculosis is the causative agent of tuberculosis, which is becoming an increasingly global public health problem due to the rise of drug-resistant strains. While residing in the human host, M. tuberculosis needs to acquire iron for its survival. M. tuberculosis has two iron uptake mechanisms, one that utilizes non-heme iron and another that taps into the vast host heme-iron pool. To date, proteins known to be involved in mycobacterial heme uptake are Rv0203, MmpL3, and MmpL11. Whereas Rv0203 transports heme across the bacterial periplasm or scavenges heme from host heme proteins, MmpL3 and MmpL11 are thought to transport heme across the membrane. In this work, we characterize the heme-binding properties of the predicted extracellular soluble E1 domains of both MmpL3 and MmpL11 utilizing absorption, electron paramagnetic resonance, and magnetic circular dichroism spectroscopic methods. Furthermore, we demonstrate that Rv0203 transfers heme to both MmpL3-E1 and MmpL11-E1 domains at a rate faster than passive heme dissociation from Rv0203. This work elucidates a key step in the mycobacterial uptake of heme, and it may be useful in the development of anti-tuberculosis drugs targeting this pathway.  相似文献   

4.
Virulent mycobacteria utilize surface-exposed polyketides to interact with host cells, but the mechanism by which these hydrophobic molecules are transported across the cell envelope to the surface of the bacteria is poorly understood. Phthiocerol dimycocerosate (PDIM), a surface-exposed polyketide lipid necessary for Mycobacterium tuberculosis virulence, is the product of several polyketide synthases including PpsE. Transport of PDIM requires MmpL7, a member of the MmpL family of RND permeases. Here we show that a domain of MmpL7 biochemically interacts with PpsE, the first report of an interaction between a biosynthetic enzyme and its cognate transporter. Overexpression of the interaction domain of MmpL7 acts as a dominant negative to PDIM synthesis by poisoning the interaction between synthase and transporter. This suggests that MmpL7 acts in complex with the synthesis machinery to efficiently transport PDIM across the cell membrane. Coordination of synthesis and transport may not only be a feature of MmpL-mediated transport in M. tuberculosis, but may also represent a general mechanism of polyketide export in many different microorganisms.  相似文献   

5.
Mycobacterial cell walls are complex structures containing a broad range of unusual lipids, glycolipids and other polymers, some of which act as immunomodulators or virulence determinants. Better understanding of the enzymes involved in export processes would enlighten cell wall biogenesis. Bernut et al. ( 2015 ) present the findings of a structural and functional investigation of one of the most important transporter families, the MmpL proteins, members of the resistance‐nodulation‐cell division (RND) superfamily. A Tyr842His missense mutation in the mmpL4a gene was shown to be responsible for the smooth‐to‐rough morphotype change of the near untreatable opportunistic pathogen Mycobacterium bolletii due to its failure to export a glycopeptidolipid (GPL). This mutation was pleiotropic and markedly increased virulence in infection models. Tyr842 is well conserved in all actinobacterial MmpL proteins suggesting that it is functionally important and this was confirmed by several approaches including replacing the corresponding residue in MmpL3 of Mycobacterium tuberculosis. Structural modelling combined with experimental results showed Tyr842 to be a critical residue for mediating the proton motive force required for GPL export. This mechanistic insight applies to all MmpL proteins and probably to all RND transporters.  相似文献   

6.
A growing body of evidence indicates that MmpL (mycobacterial membrane protein large) transporters are dedicated to cell wall biosynthesis and transport mycobacterial lipids. How MmpL transporters function and the identities of their substrates have not been fully elucidated. We report the characterization of Mycobacterium smegmatis MmpL11. We showed previously that M. smegmatis lacking MmpL11 has reduced membrane permeability that results in resistance to host antimicrobial peptides. We report herein the further characterization of the M. smegmatis mmpL11 mutant and identification of the MmpL11 substrates. We found that biofilm formation by the M. smegmatis mmpL11 mutant was distinct from that by wild-type M. smegmatis. Analysis of cell wall lipids revealed that the mmpL11 mutant failed to export the mycolic acid-containing lipids monomeromycolyl diacylglycerol and mycolate ester wax to the bacterial surface. In addition, analysis of total lipids indicated that the mycolic acid-containing precursor molecule mycolyl phospholipid accumulated in the mmpL11 mutant compared with wild-type mycobacteria. MmpL11 is encoded at a chromosomal locus that is conserved across pathogenic and nonpathogenic mycobacteria. Phenotypes of the M. smegmatis mmpL11 mutant are complemented by the expression of M. smegmatis or M. tuberculosis MmpL11, suggesting that MmpL11 plays a conserved role in mycobacterial cell wall biogenesis.  相似文献   

7.
8.
Trehalose glycolipids are found in many bacteria in the suborder Corynebacterineae, but methyl-branched acyltrehaloses are exclusive to virulent species such as the human pathogen Mycobacterium tuberculosis. In M. tuberculosis, the acyltransferase PapA3 catalyzes the formation of diacyltrehalose (DAT), but the enzymes responsible for downstream reactions leading to the final product, polyacyltrehalose (PAT), have not been identified. The PAT biosynthetic gene locus is similar to that of another trehalose glycolipid, sulfolipid 1. Recently, Chp1 was characterized as the terminal acyltransferase in sulfolipid 1 biosynthesis. Here we provide evidence that the homologue Chp2 (Rv1184c) is essential for the final steps of PAT biosynthesis. Disruption of chp2 led to the loss of PAT and a novel tetraacyltrehalose species, TetraAT, as well as the accumulation of DAT, implicating Chp2 as an acyltransferase downstream of PapA3. Disruption of the putative lipid transporter MmpL10 resulted in a similar phenotype. Chp2 activity thus appears to be regulated by MmpL10 in a relationship similar to that between Chp1 and MmpL8 in sulfolipid 1 biosynthesis. Chp2 is localized to the cell envelope fraction, consistent with its role in DAT modification and possible regulatory interactions with MmpL10. Labeling of purified Chp2 by an activity-based probe was dependent on the presence of the predicted catalytic residue Ser141 and was inhibited by the lipase inhibitor tetrahydrolipstatin (THL). THL treatment of M. tuberculosis resulted in selective inhibition of Chp2 over PapA3, confirming Chp2 as a member of the serine hydrolase superfamily. Efforts to produce in vitro reconstitution of acyltransferase activity using straight-chain analogues were unsuccessful, suggesting that Chp2 has specificity for native methyl-branched substrates.  相似文献   

9.
Mycobacterial genomes contain large sets of loci encoding membrane proteins that belong to a family of multidrug resistance pumps designated Resistance‐Nodulation‐Cell Division (RND) permeases. Mycobacterial membrane protein Large (MmpL) transporters represent a subclass of RND transporters known to participate in the export of lipid components across the cell envelope. These surface‐exposed lipids with unusual structures play key roles in the physiology of mycobacteria and/or can act as virulence factors and immunomodulators. Defining the substrate specificity of MmpLs and their mechanisms of regulation helps understanding how mycobacteria elaborate their complex cell wall. This review describes the diversity of MmpL proteins in mycobacteria, emphasising their high abundance in a few opportunistic rapid‐growing mycobacteria. It reports the conservation of mmpL loci between Mycobacterium tuberculosis and non‐tuberculous mycobacteria, useful in predicting the role of MmpLs with unknown functions. Paradoxically, whereas MmpLs participate in drug resistance mechanisms, they represent also attractive pharmacological targets, opening the way for exciting translational applications. The most recent advances regarding structural/functional information are also provided to explain the molecular basis underlying the proton‐motive force driven lipid transport. Overall, this review emphasises the Janus‐face nature of MmpLs at the crossroads between antibiotic resistance mechanisms and exquisite vulnerability to drugs.  相似文献   

10.
Bhave NS  Veley KM  Nadeau JA  Lucas JR  Bhave SL  Sack FD 《Planta》2009,229(2):357-367
Mutations in TOO MANY MOUTHS (TMM), which encodes a receptor-like protein, cause stomatal patterning defects in Arabidopsis leaves but eliminate stomatal formation in stems. Stomatal development in wild-type and tmm stems was analyzed to define TMM function. Epidermal cells in young tmm stems underwent many asymmetric divisions characteristic of entry into the stomatal pathway. The resulting precursor cells, meristemoids, appropriately expressed cell fate markers such as pTMM:GFP. However, instead of progressing developmentally by forming a guard mother cell, the meristemoids arrested, dedifferentiated, and enlarged. Thus asymmetric divisions are necessary but not sufficient for stomatal formation in stems, and TMM promotes the fate and developmental progression of early precursor cells. Comparable developmental and mature stomatal phenotypes were also found in tmm hypocotyls and in the proximal flower stalk. TMM is also a positive regulator of meristemoid division in leaves suggesting that TMM generally promotes meristemoid activity. Our results are consistent with a model in which TMM interacts with other proteins to modulate precursor cell fate and progression in an organ and domain-specific manner. Finally, the consistent presence of a small number of dedifferentiated meristemoids in mature wild-type stems suggests that precursor cell arrest is a normal feature of Arabidopsis stem development.  相似文献   

11.
To study the role of MmpL8-mediated lipid transport in sulfatide biogenesis, we insertionally inactivated the mmpL8 gene in Mycobacterium tuberculosis. Characterization of this strain showed that the synthesis of mature sulfolipid SL-1 was interrupted and that a more polar sulfated molecule, termed SL-N, accumulated within the cell. Purification of SL-N and structural analysis identified this molecule as a family of 2,3-diacyl-alpha,alpha'-D-trehalose-2'-sulfates. This structure suggests that transport and biogenesis of SL-1 are coupled and that the final step in sulfatide biosynthesis may be the extra-cellular esterification of two trehalose 6-positions with hydroxyphthioceranic acids. To assess the effect of the loss of this anionic surface lipid on virulence, we infected mice via aerosol with the MmpL8 mutant and found that, although initial replication rates and containment levels were identical, compared with the wild type, a significant attenuation of the MmpL8 mutant strain in time-to-death was observed. Early in infection, differential expression of cytokines and cytokine receptors revealed that the mutant strain less efficiently suppresses key indicators of a Th1-type immune response, suggesting an immunomodulatory role for sulfatides in the pathogenesis of tuberculosis.  相似文献   

12.

Background and aims

This is an in natura study aimed to determine the potential of Rosmarinus officinalis for phytostabilization of trace metal and metalloid (TMM)-contaminated soils in the Calanques National Park (Marseille, southeast of France). The link between rosemary tolerance/accumulation of As, Pb, Sb, and Zn and root symbioses with arbuscular mycorrhizal (AM) fungi and/or dark septate endophytes (DSE) was examined.

Methods

Eight sites along a gradient of contamination were selected for soil and root collections. TMM concentrations were analyzed in all the samples and root symbioses were observed. Moreover, in the roots of various diameters collected in the most contaminated site, X-ray microfluorescence methods were used to determine TMM localization in tissues.

Results

Rosemary accumulated, in its roots, the most labile TMM fraction in the soil. The positive linear correlation between TMM concentrations in soil and endophyte root colonization rates suggests the involvement of AM fungi and DSE in rosemary tolerance to TMM. Moreover, a typical TMM localization in root peripheral tissues of thin roots containing endophytes forming AM and DSE development was observed using X-ray microfluorescence.

Conclusions

Rosemary and its root symbioses appeared as a potential candidate for a phytostabilization process of metal-contaminated soils in Mediterranean area.  相似文献   

13.
Mycobacterium tuberculosis possesses unique cell-surface lipids that have been implicated in virulence. One of the most abundant is sulfolipid-1 (SL-1), a tetraacyl-sulfotrehalose glycolipid. Although the early steps in SL-1 biosynthesis are known, the machinery underlying the final acylation reactions is not understood. We provide genetic and biochemical evidence for the activities of two proteins, Chp1 and Sap (corresponding to gene loci rv3822 and rv3821), that complete this pathway. The membrane-associated acyltransferase Chp1 accepts a synthetic diacyl sulfolipid and transfers an acyl group regioselectively from one donor substrate molecule to a second acceptor molecule in two successive reactions to yield a tetraacylated product. Chp1 is fully active in vitro, but in M. tuberculosis, its function is potentiated by the previously identified sulfolipid transporter MmpL8. We also show that the integral membrane protein Sap and MmpL8 are both essential for sulfolipid transport. Finally, the lipase inhibitor tetrahydrolipstatin disrupts Chp1 activity in M. tuberculosis, suggesting an avenue for perturbing SL-1 biosynthesis in vivo. These data complete the SL-1 biosynthetic pathway and corroborate a model in which lipid biosynthesis and transmembrane transport are coupled at the membrane-cytosol interface through the activity of multiple proteins, possibly as a macromolecular complex.  相似文献   

14.
Out of the prominent global ailments, tuberculosis (TB) is still one of the leading causes of death worldwide due to infectious disease. Development of new drugs that shorten the current tuberculosis treatment time and have activity against drug resistant strains is of utmost importance. Towards these goals we have focused our efforts on developing novel anti-TB compounds with the general structure of 1-adamantyl-3-phenyl urea. This series is active against Mycobacteria and previous lead compounds were found to inhibit the membrane transporter MmpL3, the protein responsible for mycolic acid transport across the plasma membrane. However, these compounds suffered from poor in vitro pharmacokinetic (PK) profiles and they have a similar structure/SAR to inhibitors of human soluble epoxide hydrolase (sEH) enzymes. Therefore, in this study the further optimization of this compound class was driven by three factors: (1) to increase selectivity for anti-TB activity over human sEH activity, (2) to optimize PK profiles including solubility and (3) to maintain target inhibition. A new series of 1-adamantyl-3-heteroaryl ureas was designed and synthesized replacing the phenyl substituent of the original series with pyridines, pyrimidines, triazines, oxazoles, isoxazoles, oxadiazoles and pyrazoles. This study produced lead isoxazole, oxadiazole and pyrazole substituted adamantyl ureas with improved in vitro PK profiles, increased selectivity and good anti-TB potencies with sub μg/mL minimum inhibitory concentrations.  相似文献   

15.
The natural resistance of Mycobacterium abscessus to most commonly available antibiotics seriously limits chemotherapeutic treatment options, which is particularly challenging for cystic fibrosis patients infected with this rapid‐growing mycobacterium. New drugs with novel molecular targets are urgently needed against this emerging pathogen. However, the discovery of such new chemotypes has not been appropriately performed. Here, we demonstrate the utility of a phenotypic screen for bactericidal compounds against M. abscessus using a library of compounds previously validated for activity against M. tuberculosis. We identified a new piperidinol‐based molecule, PIPD1, exhibiting potent activity against clinical M. abscessus strains in vitro and in infected macrophages. Treatment of infected zebrafish with PIPD1 correlated with increased embryo survival and decreased bacterial burden. Whole genome analysis of M. abscessus strains resistant to PIPD1 identified several mutations in MAB_4508, encoding a protein homologous to MmpL3. Biochemical analyses demonstrated that while de novo mycolic acid synthesis was unaffected, PIPD1 strongly inhibited the transport of trehalose monomycolate, thereby abrogating mycolylation of arabinogalactan. Mapping the mutations conferring resistance to PIPD1 on a MAB_4508 tridimensional homology model defined a potential PIPD1‐binding pocket. Our data emphasize a yet unexploited chemical structure class against M. abscessus infections with promising translational development possibilities.  相似文献   

16.
In an effort to explain the different platelet production capabilities of both normal and hypoxic male and female C3H and BALB/c mice, megakaryocyte size and number were determined utilizing bone marrow from both normal and hypoxic mice. The results indicate that normal BALB/c female mice have increased numbers of megakaryocytes, but of smaller size compared with either BALB/c male mice or to both sexes of C3H mice. An inverse relationship between the size and number of megakaryocytes was found in both normal and hypoxic mice; therefore, to evaluate total megakaryocyte characteristics, we calculated total megakaryocyte masses (TMM). With hypoxia, megakaryocyte number decreased, whereas megakaryocyte size increased. Despite the increase in megakaryocyte size, hypoxia caused a significant decrease in TMM (P less than 0.005) in all mice, but female C3H mice had higher TMM (P less than 0.05) than did female BALB/c mice. These data show that hypoxia decreases TMM in mice, and that the effect is greater in C3H mice than in BALB/c mice.  相似文献   

17.
This investigation assessed the effects of termite mound material (TMM) on the physical properties of sandy soil and on tomato (Solanum lycopersicum L.) growth characteristics and water use efficiency. TMM combined with organic manure, TMM combined with rice straw mulching and organic manure, organic manure alone (OM) and unamended (T0) were the treatments used. Results showed that soil treated with TMM had more clay sized particles and organic carbon content than T0 and OM. In TMM-treated soil, more water was being retained at both field capacity and permanent wilting point. The application of TMM did not affect the amount of plant available water. Saturated hydraulic conductivity also remained unaffected by the TMM application, but increased with the organic matter treatment. Tomatoes grown in TMM amended soils had greater plant height and more leaves, fruit and biomass. No specific rate of TMM application was better for all parameters being assessed. The amount of water used by the tomatoes was significantly correlated (P?<?0.01) with fresh fruit yield (r?=?0.82), leaf area index (r?=?0.82) and total dry matter production (r?=?0.68). While TMM did not specifically affect plant water-use efficiency, this parameter was generally improved in amended soils.  相似文献   

18.

Background

Body mass index (BMI), expressed as the ratio of body mass to height squared (kg/m2), involves not only fat but also lean mass. The present study aimed to clarify how BMI is associated with total muscle mass (TMM) in older Japanese women and men.

Findings

Using a B-mode ultrasound apparatus, muscle thickness was measured at nine sites (forearm, upper arm anterior and posterior, thigh anterior and posterior, lower leg anterior and posterior, abdomen, and subscapular) for 346 women (BMI 16.40 to 33.11 kg/m2) and 286 men (BMI 16.86 to 31.18 kg/m2) aged 60.0 to 79.5 yrs. TMM was estimated using the product of the sum of the muscle thicknesses at the nine sites with height as an independent variable. For both sexes, the estimated TMM relative to height squared was significantly correlated with BMI (r = 0.688, P<0.0001 for women; r = 0.696, P<0.0001 for men), but the percentage of the estimated TMM in body mass was not.

Conclusion

These results indicate that, for older Japanese women and men, BMI is a simple and convenient index for assessing total muscularity.  相似文献   

19.
The Mycobacterium tuberculosis serine/threonine protein kinases are attractive potential drug targets, and protein kinase D (PknD) is particularly interesting, as it is autophosphorylated on 11 residues, binds proteins containing forkhead associated domains, and contains a beta-propeller motif that likely functions as an anchoring sensor domain. We created a pknD knockout of a clinical M. tuberculosis isolate, and found that on in vitro phosphorylation of cell wall fractions it lacked a family of phosphorylated polypeptides seen in the WT. Mass spectrometry identified the phosphorylated polypeptides as MmpL7, a transporter of the RND family. MmpL7 is essential for virulence, presumably because it transports polyketide virulence factors such as phthiocerol dimycocerosate (PDIM) to the cell wall. Phosphorylation of the MmpL family of transporters has not been previously described, but these results suggest that PknD, and perhaps other serine/threonine kinases, could regulate their critical role in the formation of the M. tuberculosis envelope.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号