首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rhizosphere microbiome and plant health   总被引:38,自引:0,他引:38  
The diversity of microbes associated with plant roots is enormous, in the order of tens of thousands of species. This complex plant-associated microbial community, also referred to as the second genome of the plant, is crucial for plant health. Recent advances in plant-microbe interactions research revealed that plants are able to shape their rhizosphere microbiome, as evidenced by the fact that different plant species host specific microbial communities when grown on the same soil. In this review, we discuss evidence that upon pathogen or insect attack, plants are able to recruit protective microorganisms, and enhance microbial activity to suppress pathogens in the rhizosphere. A comprehensive understanding of the mechanisms that govern selection and activity of microbial communities by plant roots will provide new opportunities to increase crop production.  相似文献   

2.
Priming of indirect defences   总被引:6,自引:0,他引:6  
Heil M  Kost C 《Ecology letters》2006,9(7):813-817
  相似文献   

3.
Indirect defence via tritrophic interactions   总被引:12,自引:0,他引:12  
Many plants interact with carnivores as an indirect defence against herbivores. The release of volatile organic compounds (VOCs) and the secretion of extrafloral nectar (EFN) are induced by insect feeding, a response that is mediated by the plant hormone, jasmonic acid. Although VOCs mainly attract predatory mites and parasitic wasps, while EFN mainly attracts ants, many more animal-plant interactions are influenced by these two traits. Other traits involved in defensive tritrophic interactions are cellular food bodies and domatia, which serve the nutrition and housing of predators. They are not known to respond to herbivory, while food body production can be induced by the presence of the mutualists. Interactions among the different defensive traits, and between them and other biotic and abiotic factors exist on the genetic, physiological, and ecological levels, but so far remain understudied. Indirect defences are increasingly being discussed as an environmentally-friendly crop protection strategy, but much more knowledge on their fitness effects under certain environmental conditions is required before we can understand their ecological and evolutionary relevance, and before tritrophic interactions can serve as a reliable tool in agronomy.  相似文献   

4.
Root Colonization by Inoculated Plant Growth-Promoting Rhizobacteria   总被引:12,自引:0,他引:12  
Certain rhizobacteria referred to as 'plant growth-promoting rhizobacteria' (PGPR) can contribute to the biological control of plant pathogens and improve plant growth. They enhance root development either directly by producing phytohormones, or indirectly by inhibiting pathogens through the synthesis of different compounds. PGPR are likely to be of great interest in sustainable crop protection and have drawn much attention in recent years. However, the use of these bacteria to protect crops sometimes fails because rhizobacteria are unable to recolonize the rhizosphere of inoculated plants. The colonization of roots by inoculated bacteria is an important step in the interaction between beneficial bacteria and the host plant. However, it is a complex phenomenon influenced by many biotic and abiotic parameters, some of which are now apparent. This paper summarises knowledge on rhizosphere colonization by PGPR.  相似文献   

5.
The phyllosphere is a rich and varied microbial community comprising organisms with diverse functional types. Its composition is strongly influenced by both genotypic and environmental factors, many of which can be manipulated by breeding, agronomy and crop protection strategies in an agricultural context. These factors also affect the complex interactions between the microbes, which in turn affect their interaction with their host plant. Whether or not an organism becomes pathogenic and the subsequent expression of disease are also influenced by all these factors. Understanding the population dynamic balance between the organisms of the phyllosphere as an ecological system should lead to new approaches in agronomy, crop protection and breeding that enhance sustainability, where the previously presumed requirement to eliminate putative pathogens is replaced by management that favours dominance of beneficial organisms and contains putative pathogens in asymptomatic or stable states.  相似文献   

6.
Abstract

Increased pressure for food production has, in recent years, led to the development of intensive agricultural systems that use significant quantities of inorganic fertilizers and pesticides. However, there is now substantial evidence for the environmental costs of this high-input strategy and this has led to demands for agricultural systems to be modified in order to make them more sustainable. Arbuscular mycorrhizal fungi (AMF) play a key role in natural and agricultural ecosystems through major functions in the enhancement of plant phosphorus and nitrogen nutrition, nutrient and soil conservation, and the biological control of plant pathogens. They are essential to the sustainability of systems and their importance in agricultural ecosystems is likely to increase as inputs are reduced and/or rationalized. In order to maximize their benefits it is essential to ensure that management practices include minimum tillage, reduced use of inappropriate fertilizer, appropriate crop rotations with minimal fallow, and rationalized pesticide use. Furthermore, crop breeders should take full account of the symbiosis in selection. Future research should be targeted to understanding the functional ecology of AMF in agroecosystems.  相似文献   

7.
Plant pathogens are responsible for many crop plant diseases, resulting in economic losses. The use of bacterial agents is an excellent option to fight against plant pathogens and an excellent alternative to the use of chemicals, which are offensive to the environment and to human health. Two of the most common biocontrol agents are members of the Bacillus and Pseudomonas genera. Both bacterial genera have important traits such as plant growth-promoting (PGP) properties. This review analyzes pioneering and recent works and the mechanisms used by Bacillus and Pseudomonas in their behaviour as biocontrol and PGP agents, discussing their mode of action by comparing the two genera. Undoubtedly, future integrated research strategies for biocontrol and PGP will require the help of known and novel species of both genera.  相似文献   

8.
This review focuses on the first plant defense protein class described in literature, with growth inhibition activity toward pathogens. These peptides were named gamma-thionins or defensins, which are small proteins that can be classified into four main subtypes according to their specific functions. Gamma-thionins are small cationic peptides with different and special abilities. They are able to inhibit digestive enzymes or act against bacteria and/or fungi. Current research in this area focuses particularly these two last targets, being the natural crop plant defenses improved through the use of transgenic technology. Here, we will compare primary and tertiary structures of gamma-thionins and also will analyze their similarities to scorpion toxins and insect defensins. This last comparison offers some hypothesis for gamma-thionins mechanisms of action against certain pathogens. This specific area has benefited from the recent determination of many gamma-thionin structures. Furthermore, we also summarize molecular interactions between plant gamma-thionins and fungi receptors, which include membrane proteins and lipids, shedding some light over pathogen resistance. Researches on gamma-thionins targets could help on plant genetic improvement for production of increased resistance toward pathogens. Thus, positive results recently obtained for transgenic plants and future prospects in the area are also approached. Finally, gamma-thionins activity has also been studied for future drug development, capable of inhibit tumor cell growth in human beings.  相似文献   

9.
Plant diseases caused by bacterial pathogens place major constraints on crop production and cause significant annual losses on a global scale. The attainment of consistent effective management of these diseases can be extremely difficult, and management potential is often affected by grower reliance on highly disease‐susceptible cultivars because of consumer preferences, and by environmental conditions favouring pathogen development. New and emerging bacterial disease problems (e.g. zebra chip of potato) and established problems in new geographical regions (e.g. bacterial canker of kiwifruit in New Zealand) grab the headlines, but the list of bacterial disease problems with few effective management options is long. The ever‐increasing global human population requires the continued stable production of a safe food supply with greater yields because of the shrinking areas of arable land. One major facet in the maintenance of the sustainability of crop production systems with predictable yields involves the identification and deployment of sustainable disease management solutions for bacterial diseases. In addition, the identification of novel management tactics has also come to the fore because of the increasing evolution of resistance to existing bactericides. A number of central research foci, involving basic research to identify critical pathogen targets for control, novel methodologies and methods of delivery, are emerging that will provide a strong basis for bacterial disease management into the future.
  • Near‐term solutions are desperately needed. Are there replacement materials for existing bactericides that can provide effective disease management under field conditions?
  • Experience should inform the future. With prior knowledge of bactericide resistance issues evolving in pathogens, how will this affect the deployment of newer compounds and biological controls?
  • Knowledge is critical. A comprehensive understanding of bacterial pathosystems is required to not only identify optimal targets in the pathogens, but also optimal seasonal timings for deployment.
  • Host resistance to effectors must be exploited, carefully and correctly. Are there other candidate genes that could be targeted in transgenic approaches? How can new technologies (CRISPR, TALEN, etc.) be most effectively used to add sustainable disease resistance to existing commercially desirable plant cultivars?
  • We need an insider's perspective on the management of systemic pathogens. In addition to host resistance or reduced sensitivity, are there other methods that can be used to target these pathogen groups?
  • Biological systems are variable. Can biological control strategies be improved for bacterial disease management and be made more predictable in function?
The answers to the research foci outlined above are not all available, as will become apparent in this article, but we are heading in the right direction. In this article, we summarize the contributions from past experiences in bacterial disease management, and also describe how advances in bacterial genetics, genomics and host–pathogen interactions are informing novel strategies in virulence inhibition and in host resistance. We also outline potential innovations that could be exploited as the pressures to maximize a safe and productive food supply continue to become more numerous and more complex.  相似文献   

10.
Harnessing endophytes for industrial microbiology   总被引:10,自引:0,他引:10  
Endophytic microorganisms exist within the living tissues of most plant species. They are most abundant in rainforest plants. Novel endophytes usually have associated with them novel secondary natural products and/or processes. Muscodor is a novel endophytic fungal genus that produces bioactive volatile organic compounds (VOCs). This fungus, as well as its VOCs, has enormous potential for uses in agriculture, industry and medicine. Muscodor albus produces a mixture of VOCs that act synergistically to kill a wide variety of plant and human pathogenic fungi and bacteria. This mixture of gases consists primarily of various alcohols, acids, esters, ketones and lipids. Artificial mixtures of the VOCs mimic the biological effects of the fungal VOCs when tested against a wide range of fungal and bacterial pathogens. Many practical applications for 'mycofumigation' by M. albus have been investigated and the fungus is now in the market place.  相似文献   

11.
Plants are under continuous threat of infection by pathogens endowed with diverse strategies to colonize their host. Comprehensive biochemical and genetic approaches are now starting to reveal the complex signaling pathways that mediate plant disease resistance. Initiation of defense signaling often involves specific recognition of invading pathogens by the products of specialized host resistance (R) genes. Potential resistance signaling components have been identified by mutational analyses to be required for specific resistance in the model Arabidopsis and some crop species. Strikingly, many of the components share similarity to that of innate immune systems in animals. Evidence is also accumulating that plant pathogens have a number of ways to evade host defenses during the early stages of infection, similar to animal pathogens. These strategies are becoming much better understood in a number of plant–pathogen interactions. In this review, we focus on the current knowledge of host factors that control plant resistance and susceptibility to fungal pathogens. The knowledge accumulated in these studies will serve a fundamental basis for combating diseases in strategic molecular agriculture.  相似文献   

12.
13.
闫凤鸣 《昆虫学报》2020,(2):123-130
大多数植物病毒及一些植物病原细菌由介体昆虫传播。植物病原与介体昆虫关系的研究有助于找到防控介体传播病原的关键环节,因此植物病原与介体昆虫的互作关系是植物病原传播机理研究中的核心问题。本文概述了国内外在植物病原与介体昆虫互作研究的最新进展,推介了本专辑论文的主要内容,并在此基础上,从生态和进化的角度提出了在植物病原-媒介昆虫互作研究中以下3个值得关注的研究方向:(1)植物病原与介体昆虫互作对生态系统的影响;(2)昆虫介体传播植物病毒的不同方式之间的关联性以及病毒、介体和植物之间的协同进化关系;(3)自然条件下植物病原-媒介昆虫互作的机理。植物病原与媒介昆虫互作的研究,既是生态和进化的理论问题,也和植物病原及其介体昆虫的绿色防控密切相关。  相似文献   

14.
<正>Plants are constantly under attack by pathogens,pests,and parasites,resulting in severe consequences on global food production and human health.While pathogens and pests find their ways to invade and communicate with their hosts,plants have evolved sophisticated immune systems to fight infections.In the field of plant-microbial interactions,most of the studies have focused on the function and signaling rial  相似文献   

15.
Plant nutriomics in China: an overview   总被引:14,自引:0,他引:14  
Yan X  Wu P  Ling H  Xu G  Xu F  Zhang Q 《Annals of botany》2006,98(3):473-482
BACKGROUND: Population and environmental pressure have imposed a great challenge on agriculture in China to explore innovative and effective solutions to its pressing plant nutritional problems. Plant nutriomics is a new frontier in plant biology that can provide innovative solutions for improving plant nutrient efficiency, thus increasing crop productivity through genetic and molecular approaches. SCOPE: This review summarizes current efforts and progress in plant nutriomic research in China with examples from several case studies. It also points out potential obstacles and depicts future perspectives in this emerging frontier of plant nutrition. CONCLUSIONS: Although plant nutriomics is still at a conceptual stage, substantial efforts are being made in China aimed at increasing plant nutrient efficiency through a nationwide, co-ordinated project on plant nutriomics. Future studies involving both national and international collaborations are needed to develop nutrient-efficient, stress-tolerant and high-quality crop varieties for both China and elsewhere.  相似文献   

16.
Muscodor albus and its biological promise   总被引:1,自引:0,他引:1  
We have found a novel fungal genus that produces extremely bioactive volatile organic compounds (VOCs). This fungal isolate was initially discovered as an endophyte in Cinnamomum zeylanicum in a botanical garden in Honduras. This endophytic fungus, Muscodor albus, produces a mixture of VOCs that are lethal to a wide variety of plant and human pathogenic fungi and bacteria. It is also effective against nematodes and certain insects. The mixture of VOCs has been analyzed using GC/MS and consists primarily of various alcohols, acids, esters, ketones, and lipids. Final verification of the identity of the VOCs was carried out by using artificial mixtures of the putatively identified compounds and showing that the artificial mixture possessed the identical retention times and mass spectral qualities as those of the fungal derived substances. Artificial mixtures of the VOCs nicely mimicked the biological effects of the fungal VOCs when tested against a wide range of fungal and bacterial pathogens. Potential applications for “mycofumigation” by M. albus are currently being investigated and include uses for treating various plant parts, and human wastes. Another promising option includes its use to replace methyl bromide fumigation as a means to control soil-borne plant diseases.  相似文献   

17.
Today farmers have several constraints to take into account in managing their crops: (i) competitiveness: productivity must be maintained or increased whereas inputs must be decreased, (ii) the environmental consequences of cultural practices: pesticide and fertilizer use must be decreased, and (iii) product quality must be improved and nitrogen nutrition is an important factor in harvest quality. These new constraints sometimes conflict: maximum yield is often obtained with large amounts of N, increasing the risks of N leaching. The determination of rates and dates for nitrogen application must become more precise in this context. Tools are required for the forecasting of crop requirements, the diagnosis of N deficiencies during the crop cycle and breeding of new adapted varieties. Models and diagnosis indicators have been developed to meet these needs, but those relating to nitrogen are often based on empirical relationships. Moreover, the available models and indicators often fail to account for cultivar-specific responses. The improvement of agronomic tools and the breeding of new varieties adapted to new cropping systems should be based on a thorough understanding of the key metabolic processes involved, and the relative contributions of these processes to yield determination in conditions of fluctuating N supply. For both purposes, more information is required about plant and crop N economy. In this paper, the way in which N absorption and use within the plant and crop, plant responses to deficiencies and excesses of nitrogen are taken into account in major agronomic models is described first. The level of sophistication of the modules comprising these models depends on operational objectives. Secondly, the ways in which the most recent molecular plant physiology findings can, and indeed should, be integrated into models at the crop and crop cycle levels are described. The potential value of this approach for improving current agronomic models and diagnostic tools, and for breeding more efficient varieties is also discussed.  相似文献   

18.
Urbanization and agricultural intensification of landscapes are important drivers of global change, which in turn have direct impacts on local ecological communities leading to shifts in species distributions and interactions. Here, we illustrate how human‐altered landscapes, with novel ornamental and crop plant communities, result not only in changes to local community diversity of floral‐dependent species, but also in shifts in seasonal abundance of bee pollinators. Three years of data on the spatio‐temporal distributions of 91 bee species show that seasonal patterns of abundance and species richness in human‐altered landscapes varied significantly less compared to natural habitats in which floral resources are relatively scarce in the dry summer months. These findings demonstrate that anthropogenic environmental changes in urban and agricultural systems, here mediated through changes in plant resources and water inputs, can alter the temporal dynamics of pollinators that depend on them. Changes in phenology of interactions can be an important, though frequently overlooked, mechanism of global change.  相似文献   

19.
The continual need to increase food production necessitates the development and application of novel biotechnologies to enable the provision of improved crop varieties in a timely and cost-effective way. A milestone in this field was the introduction of Bacillus thuringiensis (Bt) entomotoxic proteins into plants. Despite the success of this technology, there is need for development of alternative strategies of phytoprotection. Biotechnology offers sustainable solutions to the problem of pests, pathogens, and plant parasitic nematodes in the form of other insecticidal protein genes. A variety of genes, besides (Bt) toxins that are now available for genetic engineering for pest resistance are genes for vegetative insecticidal proteins, proteinase inhibitors, alpha-amylase inhibitors, and plant lectins. This review presents a comprehensive summary of research efforts that focus on the potential use and advantages of using proteinase inhibitor genes to engineer insect- and pest-resistance. Crop protection by means of PI genes is an important component of Integrated Pest Management programmes.  相似文献   

20.
Xanthomonas phaseoli pv. manihotis (Xpm) and X. cassavae (Xc) are two bacterial pathogens attacking cassava. Cassava bacterial blight (CBB) is a systemic disease caused by Xpm, which might have dramatic effects on plant growth and crop production. Cassava bacterial necrosis is a nonvascular disease caused by Xc with foliar symptoms similar to CBB, but its impacts on the plant vigour and the crop are limited. In this review, we describe the epidemiology and ecology of the two pathogens, the impacts and management of the diseases, and the main research achievements for each pathosystem. Because Xc data are sparse, our main focus is on Xpm and CBB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号