首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 490 毫秒
1.
Background: Ziziphus lotus, wild jujube, is a xerophytic shrub of the Rhamnaceae family widely distributed in arid and semi-arid regions of Tunisia, where it occupies most soil types. Phenological patterns of desert plants are strongly affected by the seasonality of water availability and phreatophytes represent a particularly interesting case for studying such relationships.

Aim: This study aims to investigate the relationship between phenological traits and water potential patterns of the wild jujube as a tool for understanding how plants cope with extreme drought.

Methods: Phenophases and predawn (Ψpd) and midday (Ψmd) xylem water potentials of wild jujube were studied monthly (Nov 2007–Oct 2008) at Samaâliate and Oued El Hallouf in southern Tunisia. These sites receive164 mm and 191 mm of annual rainfall, respectively, and differ in slope and soil type.

Results: The Ψmd decreased progressively and concomitantly with increasing seasonal drought, reaching the lowest values in late summer (down to –3.9 MPa for both sites). Seasonality of Ψpd was less pronounced for plants established in Oued El Hallouf (–2.09 MPa) than in Samaâliate (–2.63 MPa) at the end of the dry season. Wild jujube is dormant from October through to March and mature plants flower in May and produce fruits in August.

Conclusions: Our results clearly demonstrate that wild jujube is a drought tolerant species reaching low water potentials during the driest months of summer.  相似文献   

2.
A. B. Wellington 《Oecologia》1984,64(3):360-362
Summary Comparisons of predawn leaf water potential were made between adults, seedlings and coppicing lignotubers of yellow mallee, Eucalyptus incrassata Labill., during a period of severe drought between December 1981 and March 1983. Measurements were made on plants from areas which were one year, four years, and more than twenty years unburnt.Seedlings and coppice regrowth from sites burnt one year previously had significantly higher leaf water potentials than plants from older sites. Little change in water status of long-established plants occurred, despite the drought. There was no difference in the water potentials of plants from sites which were more than four years unburnt. Seedlings of both the one year old and four year old cohorts suffered mortality rates of more than 50% during the summer season towards the end of the drought when leaf water potentials had decreased to -4 MPa.It is suggested that the difference in plant water status, observed between sites which were one year unburnt and older sites, was due to a temporary cessation of the depletion of soil moisture reserves by the vegetation. Fire results in complete defoliation of established vegetation and it is some years before community evapotranspiration returns to pre-fire levels.  相似文献   

3.
Turgor maintenance, solute content and recovery from water stress were examined in the drought-tolerant shrub Artemisia tridentata. Predawn water potentials of shrubs receiving supplemental water remained above ?2 MPa throughout summer, while predawn water potentials of untreated shrubs decreased to ?5 MPa. Osmotic potentials decreased in conjunction with water potentials maintaining turgor pressures above 0 MPa. The decreases in osmotic potentials were not the result of osmotic adjustment (i.e. solute accumulation). Leaf solute contents decreased during drought, but leaf water volumes decreased more than 75% from spring to summer, thereby passively concentrating solutes within the leaves. The maintenance of positive turgor pressures despite decreases in leaf water volumes is consistent with other studies of species with elastic cell walls. Inorganic ion, organic acid, and carbohydrate contents of leaves declined during drought. The only solutes accumulating in leaves of A. tridentata with water stress were proline and a cyclitol, both considered compatible solutes. Total and osmotic potentials recovered rapidly following rewatering of shrubs; solute contents did not change except for a decrease in proline. Maintaining turgor through the passive concentration of solutes may be advantageous compared to synthesis of new solutes for osmotic adjustment in arid environments.  相似文献   

4.
Adaptations of species to capture limiting resources is central for understanding structure and function of ecosystems. We studied the water economy of nine woody species differing in rooting depth in a Patagonian shrub steppe from southern Argentina to understand how soil water availability and rooting depth determine their hydraulic architecture. Soil water content and potentials, leaf water potentials (ΨLeaf), hydraulic conductivity, wood density (ρw), rooting depth, and specific leaf area (SLA) were measured during two summers. Water potentials in the upper soil layers during a summer drought ranged from −2.3 to −3.6 MPa, increasing to −0.05 MPa below 150 cm. Predawn ΨLeaf was used as a surrogate of weighted mean soil water potential because no statistical differences in ΨLeaf were observed between exposed and covered leaves. Species-specific differences in predawn ΨLeaf were consistent with rooting depths. Predawn ΨLeaf ranged from −4.0 MPa for shallow rooted shrubs to −1.0 MPa for deep-rooted shrubs, suggesting that the roots of the latter have access to abundant moisture, whereas shallow-rooted shrubs are adapted to use water deposited mainly by small rainfall events. Wood density was a good predictor of hydraulic conductivity and SLA. Overall, we found that shallow rooted species had efficient water transport in terms of high specific and leaf specific hydraulic conductivity, low ρw, high SLA and a low minimum ΨLeaf that exhibited strong seasonal changes, whereas deeply rooted shrubs maintained similar minimum ΨLeaf throughout the year, had stems with high ρw and low hydraulic conductivity and leaves with low SLA. These two hydraulic syndromes were the extremes of a continuum with several species occupying different portions of a gradient in hydraulic characteristics. It appears that the marginal cost of having an extensive root system (e.g., high ρw and root hydraulic resistance) contributes to low growth rates of the deeply rooted species.  相似文献   

5.
The tepary bean ( Phaseolus acutifolius Gray var. latifolius ), a drought resistant species, was compared under water stress conditions with the more drought susceptible P. vulgaris L. cvs Pinto and White Half Runner (WHR). In order to better understand the basis for the superior drought resistance of tepary, this study was designed to determine the relationships among leaf water potential, osmotic potential, turgor potential, and relative water content (RWC).
Plants were prestressed by withholding irrigation water. These stress pretreatments changed the relation between leaf water potential and relative water content of both species so that prestressed plants had lower water potentials than controls at the same leaf RWC. Tepary had lower water potentials at given RWC levels than Pinto or WHR; this can account for part of the superior resistance of tepary. In all genotypes, prestressed plants maintained osmotic potentials approximately 0.2 MPa lower than controls. Tepary reached osmotic potentials that were significantly lower (0.15 to 0.25 MPa) than Pinto or WHR. Both control and prestressed tepary plants had 0.05 to 0.25 MPa more turgor than Pinto or WHR at RWC values between 65 and 80%. Both prestressed and control tepary plants had greater elasticity (a lower elastic modulus) than Pinto or WHR. This greater turgor of tepary at low RWC values could be caused by several factors including greater tissue elasticity, active accumulation of solutes, or greater solute concentration.
Tepary had significantly lower osmotic potentials than the P. vulgaris cultivars, but there was little difference in osmotic potential between Pinto and WHR. Knowledge of differences in osmotic and turgor potentials among and within species could be useful in breeding for drought resistance in Phaseolus.  相似文献   

6.
石斛属植物多附着在其他植物体或岩石上,水分获取困难,其特殊的水分利用策略是其生存和发展的重要保证.为弄清石斛属植物对干旱胁迫的适应能力和机制,该文选用3年生金钗石斛和铁皮石斛,通过盆栽控水进行干旱胁迫和复水处理,探讨在不同干旱历时和干旱后复水条件下两种石斛的叶水势变化情况.结果表明:随着干旱时间的延长,两种石斛叶水势均...  相似文献   

7.
Leaf water characteristics and drought acclimation in sunflower genotypes   总被引:1,自引:0,他引:1  
Maury  P.  Berger  M.  Mojayad  F.  Planchon  C. 《Plant and Soil》2000,223(1-2):155-162
The responses of leaf water parameters to drought were examined using three sunflower (Helianthus annuus L.) genotypes. Osmotic potential at full water saturation (π100), apoplastic water fraction (AWF) and bulk elastic modulus (BEM) were determined by pressure-volume curve analysis on well watered or on water-stressed plants (−1.0 MPa Ψ1 < −1.5 MPa) previously drought-pretreated or not. The drought-pretreated plants were subjected to a 7-day drought period (predawn leaf water potential reached −0.9 MPa) followed by 8 days of rewatering. In well watered plants, all genotypes in response to drought acclimation displayed a significantly decreased π100 associated with a decrease in the leaf water potential at the turgor-loss point (decrease in Ψtlp was between 0.15 and 0.21 MPa, depending on the genotype). In two genotypes, drought acclimation affected the partitioning of water between the apoplastic and symplastic fractions without any effect on the total amount of water in the leaves. As a third genotype displayed no modification of AWF and BEM after drought acclimation, the decreased π100 was only due to the net accumulation of solutes and was consistent with the adjustment of the photochemical efficiency observed previously in this genotype in response to drought acclimation. In water-stressed plants, the osmotic adjustment (OA) can increase further beyond that observed in response to the drought pretreatment. However, the maintenance of photosynthetic rate and stomatal conductance at low leaf water potentials not only depends on the extent of osmotic adjustment, but also on the interaction between OA and AWF or BEM. Adaptative responses of leaf water parameters to drought are thus quite contrasted in sunflower genotypes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
A pot experiment was conducted to study the effects of root pruning at the stem elongation stage on the growth and water use efficiency (WUE) of winter wheat (Triticum aestivum). The results showed that stomatal conductance (g) and transpiration (E) of wheat were very sensitive to root pruning. After root pruning, they declined rapidly and but returned to pre-pruning values 15 days after treatment. Under well-watered conditions, there was no significant difference in leaf water potential (ψleaf) between root pruned and control plants after root pruning. Under moderate drought stress, ψleaf of root pruned plants declined significantly compared to the control 3 days after root pruning. After 15 days, ψleaf of root pruned plants was similar to the controls. Under different soil moisture levels, net assimilation rate (A) of root pruned plants was lower than controls 3–7 days after root pruning, but was similar to the controls 15 days after pruning. At anthesis (50 days after root pruning), root pruned plants showed significantly higher A compared with the control. Leaf area per tiller and tiller number of root pruning plants was significant lower than the control at booting stage, which showed that root pruning restrained the growth of plants in the early growing stage, but leaf area per stem, of root pruned plants, was similar to the control at anthesis. Under both soil moisture levels, there was no significant difference in grain yield between root pruned and the control plants in the monoculture. In mixture with the control plants, the root pruned plants was less productive and had a lower relative yield (0.92 and 0.78, respectively) compared with the control (1.13 and 1.19, respectively), which suggested that the pruned plants lost some of its competing ability and showed a lower ability to acquire and use the same resources in the mixture compared with the control plant. Over the whole growing cycle, root pruning reduced water consumption (by 10% under well-watered conditions and 16% under moderate drought stress) of wheat significantly compared to the control (< 0.05), and but there was no significant difference in grain yield between root pruned and control plants. Therefore root pruned wheat had a higher WUE with respect to grain yield compared with the controls. In conclusion, lowering water consumption by root pruning in the early growing stage is an effective way to improve water use efficiency in arid and semi arid areas.  相似文献   

9.
Background and AimsGypsum drylands are widespread worldwide. In these arid ecosystems, the ability of different species to access different water sources during drought is a key determining factor of the composition of plant communities. Gypsum crystallization water could be a relevant source of water for shallow-rooted plants, but the segregation in the use of this source of water among plants remains unexplored. We analysed the principal water sources used by 20 species living in a gypsum hilltop, the effect of rooting depth and gypsum affinity, and the interaction of the plants with the soil beneath them.MethodsWe characterized the water stable isotope composition, δ 2H and δ 18O, of plant xylem water and related it to the free and gypsum crystallization water extracted from different depths throughout the soil profile and the groundwater, in both spring and summer. Bayesian isotope mixing models were used to estimate the contribution of water sources to plant xylem sap.Key ResultsIn spring, all species used free water from the top soil as the main source. In summer, there was segregation in water sources used by different species depending on their rooting depth, but not on their gypsum affinity. Gypsum crystallization water was the main source for most shallow-rooted species, whereas free water from 50 to 100 cm depth was the main source for deep-rooted species. We detected plant–soil interactions in spring, and indirect evidence of possible hydraulic lift by deep-rooted species in summer.ConclusionsPlants coexisting in gypsum communities segregate their hydrological niches according to their rooting depth. Crystallization water of gypsum represents an unaccounted for, vital source for most of the shallow-rooted species growing on gypsum drylands. Thus, crystallization water helps shallow-rooted species to endure arid conditions, which eventually accounts for the maintenance of high biodiversity in these specialized ecosystems.  相似文献   

10.
北京山区干旱胁迫下侧柏叶片水分吸收策略   总被引:1,自引:1,他引:0  
干旱与半干旱地区,水分是限制树木生长的重要影响因子。由于降水稀缺且分配不均,叶片吸收水分是此地区树木吸收和利用小量级降水和凝结水的主要方式。北京山区处于易旱少雨的生态脆弱地带,森林植被经常遭受干旱胁迫,所以对该地区的森林系统而言,叶片直接吸收利用截留的降雨是干旱时期树木获得水分的重要途径。基于野外对比控制试验和室内盆栽模拟试验,选取北京山区的主要造林树种侧柏为研究对象,进行利用天然降雨与模拟降雨试验,研究降雨前后侧柏叶片吸水特征,探究侧柏在干旱环境下如何通过叶片吸水缓解干旱胁迫。结果表明:当侧柏长期处于干旱胁迫状态时,叶片可以利用降雨,从中获益用来缓解树木的干旱胁迫状态;叶片的吸水能力与降雨强度呈正相关关系,与土壤含水率呈负相关关系;重度干旱下侧柏植株在降雨强度为15 mm/h时叶片吸水现象最明显,叶水势变化最大为(1.18±0.17) MPa,叶片含水率变化最大为(8.47±1.00)mg/cm~2;当土壤水率高于20.8%时,基本不发生叶片吸水现象。试验结果说明在干旱地区叶片吸水是树木除根系吸水外的重要水分来源方式,并且对干旱地区有效利用短缺水资源,减轻植物水分亏缺具有重要意义。  相似文献   

11.
Summary We compared the tissue water relations among resprouts and seedlings of three chaparral species during the first summer drought after wildfire. Two of the species, Rhus laurina and Ceanothus spinosus recover after fire by a combination of resprouting and seedling establishment (facultative resprouters), whereas a third species, Ceanothus megacarpus recovers by seedling establishment alone (obligate seeder). Our objectives were to document any differences in tissue water characteristics that might arise between resprouts and seedlings and to test the hypothesis that seedlings of obligate seeders develop more drought tolerant characteristics of their tissues than seedlings of facultative resprouters. We found that resprouts had much higher predawn values of water potential, osmotic potential, and turgor potentials than seedlings. Predawn turgor potentials of resprouts were 1.5 MPa through July and August when turgor potentials for seedlings remained near 0 MPa. During summer months, midday water potentials were 2 to 3 MPa higher for resprouts than seedlings and midday conductances of resprouts were two to five fold greater than those of seedlings. Even though resprouts did not experience severe water stress like seedlings, their tissue water characteristics, as determined by pressure-volume curve analyses, were similar by the peak of the drought in August. Further-more, the tissue water characteristics of seedlings from the obligate seeder, C. megacarpus, were similar to those of facultative resprouters — R. laurina, and C. spinosus. We attribute the observed differences in plant water status between resprouts and seedlings to differences in rooting depths and access to soil moisture reserves during summer drought. We conclude that the higher growth rates, photosynthetic performance, and survivorship of postfire resprouts are primarily a result of higher water availability to resprouting tissues during summer months. It appears that the greater seedling survivorship during summer drought observed for the obligate seeder, C. megacarpus, is not associated with more favorable tissue water characteristics.  相似文献   

12.
基于叶片水势的内蒙古典型草原植物水分适应特征研究   总被引:1,自引:0,他引:1  
水分是限制草原生态系统植物生存、繁殖和扩散最重要的生态因子,植物通过多样的水分适应策略适应干旱环境。为了解典型草原植物水势特征及其影响因素,在2017年和2018年的生长季对内蒙古典型草原71种植物的叶片黎明水势、午后水势、叶片和根系功能性状进行了测定与分析。结果表明:测定的71种植物叶片的黎明水势分布于-2.67—-0.63 MPa,午后水势分布于-4.67—-1.01 MPa;一年生植物的叶片具有最高的黎明水势、午后水势和最小的水势日差值(叶片的黎明水势与午后水势的差值),多年生禾草的叶片具有最低的黎明水势、午后水势和最大的水势日差值;71种植物对水分的适应策略可分为高水势保持型、低水势忍耐型和变水势波动型;叶片午后水势与叶片干物质含量和根系深度呈极显著的负相关关系(P0.01),但与比叶面积呈极显著的正相关关系(P0.01)。本研究有助于从植物生理学的角度上准确认识典型草原植物的水分适应性及水分生态特征。  相似文献   

13.
Figueiredo  M.V.B.  Vilar  J.J.  Burity  H.A.  de frança  F.P. 《Plant and Soil》1999,207(1):67-75
Experiments were carried out to investigate the effects of different degrees of water stress on cowpea in the presence and absence of Bradyrhizobium spp. inoculation and to evaluate physiological responses to stress. The soil used was Yellow Latosol, pH 6.3 and the crop used was cowpea (Vigna unguiculata (L.) Walp.) cv. ‘IPA 204’. Stress was applied continuously by the control of matric potential (ψ m ) through a porous cup. The lowered soil ψ m had a direct effect on the N2 fixation, but the strains Bradyrhizobium introduced by inoculation in the cowpea plants were superior to the indigenous strain demonstrating the importance of inoculation in the stressed plants. At the more negative ψ m plants inoculated with the strains EI 6 formed associations of greater symbiotic efficiency which helped the cowpea plants to withstand drought stress better than the strain BR 2001 and the uninoculated control. The leghaemoglobin concentration was not inhibited in the drought-stressed plants at ψ m -70 kPa when inoculated with the strain EI 6, which confered a differential degree of drought resistance in plants. The ψ w declined in the stressed plants reaching values of -1.0 MPa which was sufficient to cause disturbance in nodulation and biomass production. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
 Plants of Helianthemum almeriense were micropropagated on MS medium and inoculated in vitro with Terfezia claveryi mycelium on MH medium and vermiculite. Mycorrhizal (M) and non-mycorrhizal (NM) plants were subjected to a drought stress period of 3 weeks in greenhouse conditions with the soil matric potential maintained at –0.5 MPa. Drought stress did not affect the amount of mycorrhizal colonization. The survival rate of M plants at the end of the drought stress period was higher than that of NM plants. The water potential was higher in M plants than in NM plants by 14% in well-watered and 26% in drought-stressed plants. Transpiration, stomatal conductance and net photosynthesis were higher in M plants than in NM plants. Transpiration was 92% higher in M plants than in NM plants under drought-stress conditions and 40% when irrigated. Stomatal conductance was 45% and 14% higher and net photosynthesis 88% and 54% higher, respectively, in M than in NM plants. Drought-stressed M plants accumulated more N, P and K than drought-stressed NM plants. Reduced negative effects of drought stress on H. almeriense by the desert truffle T. claveryi could be ascribed to specific physiological and nutritional mechanisms, suggesting that this mycorrhizal symbiosis aids adaptation to arid climates. Accepted: 7 July 2000  相似文献   

15.
Seasonal changes in water relations, production and mineral composition were studied in a sward ofCynodon dactylon (L). Pers. subjected to water deficits during a dry summer, and at recovery in autumn. The experiment was carried out under Mediterranean field conditions. Water deficits during summer reduced total dry matter production by 60%, but in autumn there were no differences between treatments. Compared to well-watered sward, the sward grown under drought showed an increase in potassium, calcium and nitrogen of 55, 10 and 10% respectively. These differences decreased with the arrival of autumn rains. Leaf osmotic potential (ΨΠ) fell during the dry summer to −2.8 MPa in well-watered plants and to −4.2 MPa in stressed plants. In autumn there were no differences between treatments. Nevertheless, relative water content (RWC) only decreased to 0.86 in droughted plants. In summer potassium contributed to the osmotic adjustment. In contrast, under water deficits a decrease of 71% in sodium and, to a lesser but significant extent decreases in phosphorus, magnesium and chlorine was observed. Nitrogen, phosphorus and sulphur showed low concentrations during summer and increased in autumn.  相似文献   

16.
Potted two-year-old lemon plants (Citrus limon (L.) Burm. fil.) cv. Fino, growing under field conditions were subjected to drought by withholding irrigation for 13 d. After that, plants were re-irrigated and the recovery was studied for 5 d. Control plants were daily irrigated maintaining the soil matric potential at about -30 kPa. Young leaves of control plants presented higher leaf conductance (g1) and lower midday leaf water potential (Ψmd) than mature ones. Young leaves also showed higher leaf water potential at the turgor loss point (Ψtlp) than mature leaves. In both leaf types g1 decreased with increased vapour pressure deficit of the atmosphere. From day 1 of the withholding water, predawn and midday leaf water potentials (Ψpd and Ψmd) decreased, reaching in both cases minimum values of -5.5 MPa, with no significant differences between mature and young leaves. Water stress induced stomatal closure, leaf rolling and partial defoliation. No osmotic adjustment was found in response to water stress in either leaf type, but both were able to enhance the cell wall elasticity (elastic adjustment). After rewatering, leaf water potential recovered quickly (within 2 d) but g1 did not. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Larrea tridentata is a xerophytic evergreen shrub, dominant in the arid regions of the southwestern United States. We examined relationships between gasexchange characteristics, plant and soil water relations, and growth responses of large versus small shrubs of L. tridentata over the course of a summer growing season in the Chihuahuan Desert of southern New Mexico, USA. The soil wetting front did not reach 0.6 m, and soils at depths of 0.6 and 0.9 m remained dry throughout the summer, suggesting that L. tridentata extracts water largely from soil near the surface. Surface soil layers (<0.3 m) were drier under large plants, but predawn xylem water potentials were similar for both plant sizes suggesting some access to deeper soil moisture reserves by large plants. Stem elongation rates were about 40% less in large, reproductively active shrubs than in small, reproductively inactive shrubs. Maximal net photosynthetic rates (Pmax) occurred in early summer (21.3 mol m-2 s-1), when pre-dawn xylem water potential (XWP) reached ca. -1 MPa. Although both shrub sizes exhibited similar responses to environmental factors, small shrubs recovered faster from short-term drought, when pre-dawn XWP reached about -4.5 MPa and Pmax decreased to only ca. 20% of unstressed levels. Gas exchange measurements yielded a strong relationship between stomatal conductance and photosynthesis, and the relationship between leaf-to-air vapor pressure deficit and stomatal conductance was found to be influenced by pre-dawn XWP. Our results indicate that stomatal responses to water stress and vapor pressure deficit are important in determining rates of carbon gain and water loss in L. tridentata.  相似文献   

18.
Stable oxygen isotope ratios of plant water (sap water) were observed at Spasskaya Pad experimental forest near Yakutsk, Russia in 1997–1999. The 18O of sap water in larch trees (Larix gmelinii) decreased soon after leaf unfolding every year, indicating that snowmelt water was used in the beginning of summer. During mid to late summer, a clear difference in the water source used by plants was observed between wet summers and severe drought summers. The 18O values of water in larch trees were high (–17.8 to –16.1) in August 1999 (wet summer), but low (–20.4 to –19.7) in August 1998 (drought summer). These results indicated that plants used rainwater during a wet summer, but meltwater from permafrost was used by plants during a drought summer. One important role of permafrost is to provide a direct source of water for plants in a severe drought summer; another role is to keep surplus water in the soil until the next summer. If this permafrost system is disturbed by future global warming, unique monotypic stands of deciduous larch trees in east Siberia might be seriously damaged in a severe drought summer.  相似文献   

19.
In the Sanjiang Plain (North East China), narrowleaf small reed (Deyeuxia angustifolia) usually distributes widely in typical meadow or marsh, while reed (Phragmites australis), the concomitant species, is distributed sparsely in the D. angustifolia communities or relative open sites. To date, the mechanisms responsible for their different distribution patterns are far from clear. Both water level and light are important factors determining plant distribution in wetland ecosystems and therefore, the aim of this paper was to identify the role of these two factors and their potential interaction on plant distribution in this plain. Growth responses and biomass allocation of the two macrophytes were investigated by growing them in three irradiances (300, 100, 20 μmol m−2 s−1) and two water levels (0 and 5 cm) under greenhouse conditions. Biomass accumulation, mean relative growth rate (RGR), height and mean relative elongation rate (RER) of both species significantly decreased with the reduction of light availability. Biomass accumulation, RGR, height and RER of P. australis were significantly inhibited by higher water level. However, water level had no effect on the growth of D. angustifolia. Stem mass fraction was higher at 0-cm water level in D. angustifolia, and was not affected by water level in P. australis. These data suggest that D. angustifolia has a higher adaptive ability to acclimate to flooding and shade stresses than does P. australis, which might be an important reason for their different distribution patterns.  相似文献   

20.
Studies were conducted to examine changes in soil (Ψs) and plant water status during summer in a 16-year old Quercus suber plantation in southern Portugal. Continuous measurements were conducted between May 2003 and August 2004, while discontinuous measurements were conducted on a monthly basis between May and September 2003 and repeated between March and September 2004. Intensive measurements were conducted on five trees with mean height and DBH of 5.3 m and 11.6 cm, respectively, growing at close proximity to each other. Weather conditions and soil water potential (Ψs) at the rhizosphere of each of the trees measured at 0.3 and 1 m soil depth were continuously monitored. Predawn (Ψpd) and midday (Ψmd) leaf water potentials were determined every month. Soil and plant samples were also collected in June and September from different locations within the study site for δ18O isotope composition analysis. Pressure–volume (pv) curves were constructed from plant shoots at different times during the vegetative period to determine osmotic potential at full saturation (Π100), water potential at turgor loss point (Ψtlp), relative water content at turgor loss point (R*tlp) and bulk modulus of elasticity (ε). Significant P < 0.05 decline in Ψs occurred between May and September, the lowest value recorded being –2.0 MPa. Decline in soil moisture affected tree water status, but decline in leaf water potential varied significantly (P < 0.05) among the trees. At the end of summer drought, lowest Ψpd measured was –1.7 MPa while the highest measured during this time was –0.8 MPa. Differences among trees were attributed to differences in rooting depth, as shown by regression analysis of 18O isotopes. Radial stem growth ceased when Ψs within the upper 0.3 m depth approached –1.5 MPa. The upper soil layers contributed approximately 33% of the total tree water requirement, between spring and mid summer when drought was experienced by trees. Deep soil layers however, supplied most of the water required during drought and no growth was recorded during this time. Stressed trees increased solute concentration of their tissues by a Magnitude of 0.7 MPa while bulk tissue elastic modulus increased by about 17 MPa. The study emphasizes the significance of roots as determinants of tree productivity and survival in the Mediterranean ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号