共查询到20条相似文献,搜索用时 8 毫秒
1.
干旱与复水对小麦光合和产量的影响 总被引:6,自引:2,他引:6
通过不同生育期变水处理,研究干旱胁迫和复水处理分别对不同基因型小麦光合和产量影响。结果表明:拔节期为亏缺敏感期,该期胁迫引起产量显著降低,相比充分供水处理普通小麦减产25.93%,同时光合速率、水分利用效率、收获指数均下降,蒸腾增强;灌浆期为复水高效期,对比胁迫处理普通小麦增产38.78%,光合增强,水分利用效率和收获指数增加,蒸腾减弱。 相似文献
2.
Water deficit, leaf rolling and susceptibility to photoinhibition in field grown sorghum 总被引:2,自引:0,他引:2
Chlorophyll fluorescence and gas-exchange techniques were used to investigate changes in photosynthelic performance in response to high light and mild water deficit, in two cultivars of the C., plant sorghum ( Sorghurn bicofor [L.] Moench). grown under field conditions. For all leaves fully exposed to the sun, the efficiency of phcttosystem 11 (PSII) showed a mid-day decline, hut with substantial over-night recovery: the magnitude of the mid-day decline was enhanced by water deficit. There was no corresponding decline in leaves not exposed to full sunlight, either because they were shaded by other leaves or else because of leaf-roiling. Net assimilation rates appeared more sensitive to water-deficit than was PSI1 efficiency. Shade-adapted leaves had lower rates of photosynthesis in full sun (and lower stomatal conductances) than well-exposed leaves. When these shade-adapted leaves were suddenly exposed to full sunlight, fluorescence quenching was slow. especially when plants were well-watered. For the latter, photochemical quenching (qp )was small even after several minutes. indicating a continuing imbalance between energy funnelled to PSI1 and subsequent electron transport. Shade-adapted leaves that were water stressed were better able to withstand a sudden increase in irradiance than those that were well watered. It is suggested that the shade-adapted eaves from unirrigated plants. having a lower s'tomatal conductance than the irrigated leaves, had been acclimated by receiving energy in excess of that required to fix CO2 , thus leading to the operation of dissipative mechanisms. A shortened protocol for quenching analysis is proposed that enables non-photochemical quenching to be partitioned into rapidly and slowly relaxing components (the latter including photoinhibition) by relating results to a theoretical maximum yield of variable fluorescence. This is particularly suitable for screening field material. 相似文献
3.
Patterns of pinitol accumulation in soybean plants and relationships to drought tolerance 总被引:5,自引:1,他引:5
Previous studies indicate that methylated cyclitols are potentially important osmolytes in plants. In a search for genetic diversity for pinitol (D -3-O-methyl-chiro-inositol) accumulation in soybean (Glycine max (L.) Merr.), two- to three-fold differences in pinitol accumulation in leaf blades were found among Chinese plant introductions. Furthermore, it was found that genotypes that accumulated high concentrations of pinitol, when grown under well-watered conditions, had been selected for performance in regions of China having low rainfall. Among the carbohydrates analysed, pinitol accumulation was uniquely associated with adaptation to dry areas of China. A detailed study of pinitol accumulation in the soybean plant showed two- to three-fold gradients in pinitol concentration from the bottom to the top of the plant. The gradient shifted during plant development, with consistently higher concentrations of pinitol in the uppermost leaves. Pinitol accumulation was not correlated with activity of the key biosynthetic enzyme, inositol methyl transferase. This result and other lines of evidence indicated that shifting patterns of pinitol accumulation were due to translocation of the cyclitol from lower to upper nodes. Pinitol, proline, and sugars accumulated in leaf blades on soybean plants subjected to drought, but the molar concentration of pinitol in stressed plants was greater than the concentrations of proline or sugars. Although the mechanism by which pinitol participates in drought tolerance is not fully known, our results provide additional correlative evidence linking pinitol and drought tolerance in soybean. 相似文献
4.
N. A. Shugaeva E. I. Vyskrebentseva S. O. Orekhova A. G. Shugaev 《Russian Journal of Plant Physiology》2007,54(3):329-335
Isolated fibrovascular bundles from source leaf petioles of sugar beet (Beta vulgaris L.) and hog-weed (Heracleum sosnovskyi L.) were used to study the influence of long-term drought on the oxygen uptake rate and activities of mitochondrial oxidases, i.e., cytochrome oxidase and salicylhydroxamic acid-sensitive alternative oxidase (AO). Under normal soil moisture content (70% of full water-retaining capacity, WRC), the oxygen uptake by sugar beet conducting bundles was characterized by a high rate (> 700 μl O2/(g fr wt h)) and by distinct cytochrome oxidase-dependent manner of terminal oxidation (up to 80% inhibition of respiration in the presence of 0.5 mM KCN). After long-term water deficit (40% of WRC), the bundle respiration proceeded at nearly the same rate but featured an elevated resistance to cyanide. At early drought stage (10 days), a decrease in the activity of cytochrome-mediated oxidation pathway was largely counterbalanced by activation of mitochondrial AO, whereas long-term dehydration of plants was accompanied by activation of additional oxidative systems insensitive to both KCN and SHAM. Similar but even more pronounced changes in activities of terminal oxidases were discovered in conducting bundles of wild-grown hogweed plants exposed to long-term natural drought. It is supposed that the suppression of cytochrome-mediated oxidation coupled with ATP synthesis in the cells of sugar beet source leaves impedes the translocation of assimilates and their accumulation in the taproot, which represents an important factor of drastic decrease in the yield of this agricultural crop under conditions of water deficit. 相似文献
5.
Sustainable sugarcane production in areas prone to frequent and severe drought can be achieved by creating resilient sugarcane varieties. In this study, a unique mutant line, M9.2, was generated from a drought susceptible commercial sugarcane cultivar, N19, through the exposure of callus cells to the ethyl methanesulfonate mutagen and subsequent in vitro osmotic selection on polyethylene glycol. The study aimed to characterise the M9.2 mutant, in comparison with the parental genotype, in terms of its physiological and biochemical performance and proteome profile when exposed to moderate (14 days without water) and severe (21 days without water) water deficit stress in glasshouse pot trials. In comparison to the parental counterparts, the mutant plants were able to sustain the quantum efficiency of photosystem II (Fv/Fm) throughout the stress. Under mild stress, the mutant plants displayed elevated stomatal conductance, high concentrations of proline, accumulated less H2O2 and phenotypically displayed limited wilting and no visible signs of leaf senescence. Under severe stress, the mutant plants accumulated less malondialdehyde and more antioxidant enzymes (superoxide dismutase and catalase) than the parental line. Differential protein expression was also observed according to two-dimensional difference gel electrophoresis patterns of proteins expressed in the M9.2 mutant versus the parental plants during moderate stress. Analysis revealed proteins related to photosynthesis (pyruvate orthophosphate dikinase, un-fragmented ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit and chlorophyll a/b-binding protein 3) and carbohydrate metabolism (sucrose synthase) were up-regulated in the mutant. Differentially expressed proteins were further linked to energy metabolism, methylation homeostasis and DNA repair. This study characterises the new M9.2 mutant with beneficial drought-tolerant traits which have the potential to be exploited in future sugarcane breeding programmes. 相似文献
6.
冬小麦不同生育时期水分亏缺胁迫对叶片保护酶系统的影响 总被引:12,自引:1,他引:12
利用盆栽试验研究了施N(底肥)与不施N条件下冬小麦不同生育时期水分有限亏缺对叶片保护酶系统的影响,结果表明,在无底肥条件下,3个生育时期水分亏缺均使保护酶系统活性有所降低,而在有底肥时酶活性多数则升高,各保护酶活性与MDA相关分析表明,苗期SOD活性与MDA呈极显著负相关;拔节却是POD活性与MDA呈极显著负相关;在灌浆期SOD、POD、CAT与MDA含量均无显著相关性,但MDA在叶片中累积至较高水平。各生育期水分处理叶片绿素含量与MDA含量达极显著负相关。这些说明在不同生育时期,受水分亏缺和供的,保护酶系统各酶的变化有明显差异。其生理作用也有差异。 相似文献
7.
水分胁迫及复水过程中小麦抗氧化酶的变化 总被引:9,自引:0,他引:9
对两个抗旱性不同的小麦品种进行水分胁迫和复水处理,研究其抗氧化酶活性的响应。在水分胁迫下,陇春-20的相对含水量高于优鉴-24,复水24h后,优鉴-24的相对含水量恢复较快且高于陇春-20。水分胁迫下,优鉴-24中H2O2含量增加迅速,而且各阶段含量均高于陇春-20,复水后两个品种的H2O2含量都下降,这表明优鉴-24在水分胁迫时受到更严重的氧化胁迫。采用温和胶电泳结合抑制剂实验发现小麦有3条Mn—SOD,一条Fe—SOD和Cu/Zn-SOD同工酶带,CAT同工酶有3条谱带。在水分胁迫和复水期间,优鉴-24的SOD和CAT活性高于陇春-20,随着水分胁迫程度的增加,两个品种的SOD和CAT活性都增强,复水后,优鉴-24的SOD活性继续增强,而陇春-20的Mn—SOD—3活性略微降低,Fe—SOD和Cu/Zn—SOD活性略微升高,陇春-20的CAT活性降低。水分胁迫诱导了Mn—SOD—1在优鉴-24及Mn—SOD-2和Fe—SOD在陇春-20中的表达。 相似文献
8.
干旱和复水对大豆(Glycine max)叶片光合及叶绿素荧光的影响 总被引:1,自引:0,他引:1
选用河南省大面积种植的大豆品种豫豆29作为实验材料,通过研究逐步干旱和旱后复水条件下大豆叶片光合、叶绿素荧光等指标随土壤水分的动态变化规律,以期为大豆的水分高效利用提供理论依据。研究发现,在土壤相对含水量高于46.5%时,虽然随着土壤相对含水量的下降,豫豆29仍可以保持它的叶片水分状态;豫豆29的叶片净光合速率在土壤水分中等条件下最大,在土壤相对含水量为64.3%时,它比对照组高出11.2%(P<0.01);在实验的第3d,处理组的土壤相对含水量降为46.5%,叶片水势与对照组相比降低了7.2%(P>0.05),净光合速率为对照组的89.6%(P<0.05),但气孔导度却迅速下降为对照组的44.7%(P<0.01),这说明与叶片的光合和水分状况相比,豫豆29的气孔对土壤水分的匮缺更加敏感。复水后,豫豆29叶片的水势、净光合速率、气孔导度和叶绿素荧光等值都可以得到迅速的恢复,并在实验的最后接近对照组的水平,这表明豫豆29的叶片光合在水分胁迫解除后有迅速恢复的能力。 相似文献
9.
R.D. Vilela B.K.L. Bezerra A. Froehlich L. Endres 《The Annals of applied biology》2017,171(3):451-463
Drought is one of the main factors affecting the productivity of agricultural crops, and plants respond to such stress by activating various physiological and biochemical mechanisms against dehydration. The present study investigated two varieties of sugarcane (Saccharum spp.) with contrasting responses to drought (RB867515, more tolerant; and RB855536, less tolerant) and subjected them to progressive drought conditions (2, 4, 6 and 8 days) followed by rehydration. Drought caused a decrease in water potential (ψw) and osmotic potential (ψos) in the leaves, which recovered to normal levels after rehydration only up to the fourth day of drought. Water stress changed the carbon metabolism of leaves by reducing starch and sucrose contents and increasing glucose and fructose contents in both varieties. Water deficit caused a significant reduction in the maximum quantum efficiency of photosystem II (Fv/Fm) and effective quantum yield (ΦPSII) in both varieties; however, RB867515 recovered faster after rehydration. Under water stress, the more tolerant variety RB867515 exhibited increased activity of the antioxidant enzymes catalase, ascorbate peroxidase and superoxide dismutase compared with the RB855536 variety. The results suggest that RB867515 is more tolerant to drought conditions because of a more efficient antioxidant system, which results in reduced photosynthesis photoinhibition during water stress, thus revealing itself as a potential physiological marker for drought tolerance studies. 相似文献
10.
Effects of nitrogen deficiency on leaf photosynthetic response of tall fescue to water deficit 总被引:2,自引:2,他引:2
Abstract. The objective of the present work was to study the effect of nitrogen deficiency on drought sensitivity of tall fescue plants. The authors compared photosynthetic and stomatal behaviour of plants grown at either high (8 mol m−3 ) or low (0.5 mol m−3 ) nitrogen levels during a drought cycle followed by rehydration. Other processes investigated were stomatal and non-stomatal inhibition of leaf photosynthesis, water use efficiency and leaf rolling. Plants were grown in pots in controlled conditions on expanded clay. A Wescor in situ hygrometer placed on the leaf base outside the assimilation chamber permitted, simultaneously to leaf gas exchange measurements, monitoring of leaf water potential. Drought was imposed by withholding water from the pot. CO2 uptake and stomatal conductance decreased and leaves started to roll at a lower leaf water potential in the high-N than in the low-N grown plants. Stomatal inhibition of leaf photosynthesis seemed larger in the low-N than in the high-N plants. Water-use efficiency increased more in the high-N than in the low-N grown plants during the drought. The decrease of photosynthesis was largely reversible after rehydration in low-N but not in high-N leaves. The authors suggest that low-N plants avoid water deficit rather than tolerate it. 相似文献
11.
M.C. Cia A.C.R. Guimarães L.O. Medici S.M. Chabregas R.A. Azevedo 《The Annals of applied biology》2012,161(3):313-324
Water deficit is the major yield‐limiting factor of crop plants. The exposure of plants to this abiotic stress can result in oxidative damage due to the overproduction of reactive oxygen species. The aim of this work was to study the antioxidant‐stress response of drought‐tolerant (SP83‐2847 and SP83‐5073) and drought‐sensitive (SP90‐3414 and SP90‐1638) sugarcane varieties to water‐deficit stress, which was imposed by withholding irrigation for 3, 10 and 20 days. The drought‐sensitive varieties exhibited the lowest leaf relative water content and highest lipid peroxidation, hydrogen peroxide (H2O2) and proline contents during the progression of the drought‐stress condition. The antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPOX) and glutathione reductase (GR) activities changed according to variety and stress intensity. SP83‐2847 exhibited higher CAT and APX activities than the other varieties in the early stage of drought, while the activities of GPOX and GR were the highest in the other varieties at the end of the drought‐stress period. A Cu/Zn SOD isoenzyme was absent at the end of drought period from the SP90‐3414‐sensitive variety. The results indicate that lipid peroxidation and early accumulation of proline may be good biochemical markers of drought sensitivity in sugarcane. 相似文献
12.
Osvaldo M. R. Cabral Humberto R. Rocha John H. Gash Marcos A. V. Ligo Jonatan D. Tatsch Helber C. Freitas Emília Brasilio 《Global Change Biology Bioenergy》2012,4(5):555-565
The evapotranspiration (E) from a sugarcane plantation in the southeast Brazil was measured by the eddy‐covariance method during two consecutive cycles. These represented the second (393 days) and third year (374 days) re‐growth (ratoon). The total E in the first cycle was 829 mm, accounting for 69% of rainfall, whereas in the second cycle, it was 690 mm, despite the total rainfall (1353 mm) being 13% greater. The ratio of E to available energy, the evaporative fraction, exhibited a smaller variation between the first and second cycles: 0.58 and 0.51, respectively. The estimated interception losses were 88 and 90 mm, respectively, accounting for approximately 7% of the total rainfall. The sugarcane yield in the second cycle (61.5 ± 4.0 t ha?1) was 26% lower than the first cycle, as well as lower than the regional average for the third ratoon (76 t ha?1). The below average yield was associated with less available soil water at the beginning of the cycle, with the amount of rainfall recorded during the first 120 days of re‐growth in the second cycle being 16% of that recorded in the first (203 mm). 相似文献
13.
T. Zh. Hu 《Russian Journal of Plant Physiology》2008,55(4):530-537
OsLEA3 is a late embryogenesis abundant group 3 protein. The OsLEA3 gene located on chromosome 5 of rice (Oryza sativa L.) includes one intron and two exons and encodes a protein of 200 amino acid residues. Expression analysis revealed that OsLEA3 was induced by water deficit and salt stress. Overexpression of the OsLEA3 gene in the transgenic rice plants allowed us to test the role of the OsLEA3 protein in stress tolerance. The accumulation of the OsLEA3 protein in the vegetative tissues of transgenic rice plants enhanced their tolerance to water deficit and salt stress. These results demonstrate a role for the OsLEA3 protein in stress protection and suggest the potential of the OsLEA3 gene for genetic engineering of stress tolerance. 相似文献
14.
15.
不同生育期玉米叶片光合特性及水分利用效率对水分胁迫的响应 总被引:23,自引:0,他引:23
利用大型移动防雨棚开展了玉米水分胁迫及复水试验,通过分析玉米叶片光合数据,揭示了不同生育期水分胁迫及复水对玉米光合特性及水分利用效率的影响。结果表明:水分胁迫导致玉米叶片整体光合速率、蒸腾速率和气孔导度下降以及光合速率日变化的峰值提前;水分胁迫后的玉米叶片蒸腾速率、光合速率和气孔导度为适应干旱缺水均较对照显著下降,从而提高了水分利用效率,缩小了与水分充足条件下玉米叶片的水分利用效率差值;在中度和重度水分胁迫条件下,玉米叶片的水分利用效率降幅低于光合速率、蒸腾速率和气孔导度的降幅, 有时甚至高于正常供水条件下的水分利用效率;适度的水分胁迫能提高玉米叶片的水分利用效率,从而增强叶片对水分的利用能力,抵御干旱的逆境;水分亏缺对玉米光合速率、蒸腾速率及水分利用效率的影响具有较明显滞后效应,干旱后复水,光合作用受抑制仍然持续;水分胁迫时间越长、胁迫程度越重,叶片的光合作用越呈不可逆性;拔节-吐丝期水分胁迫对玉米叶片光合作用的逆制比三叶-拔节期更难恢复。 相似文献
16.
RICARDO CRUZ DE CARVALHO ANABELA BERNARDES DA SILVA RENATA SOARES ANDRÉ M. ALMEIDA ANA VARELA COELHO JORGE MARQUES DA SILVA CRISTINA BRANQUINHO 《Plant, cell & environment》2014,37(7):1499-1515
All bryophytes evolved desiccation tolerance (DT) mechanisms during the invasion of terrestrial habitats by early land plants. Are these DT mechanisms still present in bryophytes that colonize aquatic habitats? The aquatic bryophyte Fontinalis antipyretica Hedw. was subjected to two drying regimes and alterations in protein profiles and sucrose accumulation during dehydration and rehydration were investigated. Results show that during fast dehydration, there is very little variation in protein profiles, and upon rehydration proteins are leaked. On the other hand, slow dehydration induces changes in both dehydration and rehydration protein profiles, being similar to the protein profiles displayed by the terrestrial bryophytes Physcomitrella patens (Hedw.) Bruch and Schimp. and, to what is comparable with Syntrichia ruralis (Hedw.) F. Weber and D. Mohr. During dehydration there was a reduction in proteins associated with photosynthesis and the cytoskeleton, and an associated accumulation of proteins involved in sugar metabolism and plant defence mechanisms. Upon rehydration, protein accumulation patterns return to control values for both photosynthesis and cytoskeleton whereas proteins associated with sugar metabolism and defence proteins remain high. The current results suggest that bryophytes from different ecological adaptations may share common DT mechanisms. 相似文献
17.
Penny J Tricker Carlos M Rodríguez López P Hadley C Wagstaff Mike J Wilkinson 《Plant signaling & behavior》2013,8(10)
Epigenetic modification of the genome via cytosine methylation is a dynamic process that responds to changes in the growing environment. This modification can also be heritable. The combination of both properties means that there is the potential for the life experiences of the parental generation to modify the methylation profiles of their offspring and so potentially to “pre-condition” them to better accommodate abiotic conditions encountered by their parents. We recently identified high vapor pressure deficit (vpd)-induced DNA methylation at 2 gene loci in the stomatal development pathway and an associated reduction in leaf stomatal frequency.1 Here, we test whether this epigenetic modification pre-conditioned parents and their offspring to the more severe water stress of periodic drought. We found that 3 generations of high vpd-grown plants were better able to withstand periodic drought stress over 2 generations. This resistance was not directly associated with de novo methylation of the target stomata genes, but was associated with the cmt3 mutant’s inability to maintain asymmetric sequence context methylation. If our finding applies widely, it could have significant implications for evolutionary biology and breeding for stressful environments. 相似文献
18.
Background and Aims: Leaves expand during a given period of time until they reachtheir final size and form, which is called determinate growth.Duration of leaf expansion is stable when expressed in thermal-timeand in the absence of stress, and consequently it is often proposedthat it is controlled by a robust programme at the plant scale.The usual hypothesis is that growth cessation occurs when cellexpansion becomes limited by an irreversible tightening of cellwall, and that leaf size is fixed once cell expansion ceases.The objective of this paper was to test whether leaf expansioncould be restored by rewatering plants after a long soil water-deficitperiod. Methods: Four experiments were performed on two different species (Arabidopsisthaliana and Helianthus annuus) in which the area of leavesthat had apparently reached their final size was measured uponreversal of water stresses of different intensities and durations. Key Results: Re-growth of leaves that had apparently reached their finalsize occurred in both species, and its magnitude depended onlyon the time elapsed from growth cessation to rewatering. Leafarea increased up to 186% in A. thaliana and up to 88% in H.annuus after rewatering, with respect to the leaves of plantsthat remained under water deficit. Re-growth was accounted forby cell expansion. Increase in leaf area represented actualgrowth and not only a reversible change due to increased turgor. Conclusions: After the leaf has ceased to grow, leaf cells retain their abilityto expand for several days before leaf size becomes fixed. Aresponse window was identified in both species, during whichthe extent of leaf area recovery decreased with time after theinitial leaf growth cessation. These results suggestthat re-growth after rewatering of leaves having apparentlyattained their final size could be a generalized phenomenon,at least in dicotyledonous plants. 相似文献
19.
A WRKY transcription factor PbrWRKY53 from Pyrus betulaefolia is involved in drought tolerance and AsA accumulation 总被引:1,自引:0,他引:1
Yue Liu Tianyuan Yang Zekun Lin Bingjie Gu Caihua Xing Liangyi Zhao Huizhen Dong Junzhi Gao Zhihua Xie Shaoling Zhang Xiaosan Huang 《Plant biotechnology journal》2019,17(9):1770-1787
20.
The profiling of grapevine (Vitis vinifera L.) genes under water deficit was specifically targeted to sugar transporters. Leaf water status was characterized by physiological parameters and soluble sugars content. The expression analysis provided evidence that VvHT1 hexose transporter gene was strongly down-regulated by the increased sugar content under mild water-deficit. The genes of monosaccharide transporter VvHT5, sucrose carrier VvSUC11, vacuolar invertase VvGIN2 and grape ASR (ABA, stress, ripening) were up-regulated under severe water stress. Their regulation in a drought-ABA signalling network and possible roles in complex interdependence between sugar subcellular partitioning and cell influx/efflux under Grapevine acclimation to dehydration are discussed. 相似文献