共查询到20条相似文献,搜索用时 15 毫秒
1.
Thi Loan Anh Nguyen Sara Vieira-Silva Adrian Liston Jeroen Raes 《Disease models & mechanisms》2015,8(1):1-16
The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research.KEY WORDS: Gut microbiota, Humanized mouse models, Mouse core gut microbiota, Mouse models, Mouse pan-gut microbiota 相似文献
2.
Markus Neteler Markus Metz Duccio Rocchini Annapaola Rizzoli Eleonora Flacio Luca Engeler Valeria Guidi Peter Lüthy Mauro Tonolla 《PloS one》2013,8(12)
Background
Over the last 30 years, the Asian tiger mosquito, Aedes albopictus, has rapidly spread around the world. The European distribution comprises the Mediterranean basin with a first appearance in Switzerland in 2003. Early identification of the most suitable areas in Switzerland allowing progressive invasion by this species is considered crucial to suggest adequate surveillance and control plans.Methodology/Principal Findings
We identified the most suitable areas for invasion and establishment of Ae. albopictus in Switzerland. The potential distribution areas linked to the current climatic suitability were assessed using remotely sensed land surface temperature data recorded by the MODIS satellite sensors. Suitable areas for adult survival and overwintering of diapausing eggs were also identified for future climatic conditions, considering two different climate change scenarios (A1B, A2) for the periods 2020–2049 and 2045–2074. At present, the areas around Lake Geneva in western Switzerland provide suitable climatic conditions for Ae. albopictus. In northern Switzerland, parts of the Rhine valley, around Lake Constance, as well as the surroundings of Lake Neuchâtel, appear to be suitable for the survival at least of adult Ae. albopictus. However, these areas are characterized by winters currently being too cold for survival and development of diapausing eggs. In southern Switzerland, Ae. albopictus is already well-established, especially in the Canton of Ticino. For the years 2020–2049, the predicted possible spread of the tiger mosquito does not differ significantly from its potential current distribution. However, important expansions are obtained if the period is extended to the years 2045–2074, when Ae. albopictus may invade large new areas.Conclusions/Significance
Several parts of Switzerland provide suitable climatic conditions for invasion and establishment of Ae. albopictus. The current distribution and rapid spread in other European countries suggest that the tiger mosquito will colonize new areas in Switzerland in the near future. 相似文献3.
4.
Does the microbiota regulate immune responses outside the gut? 总被引:7,自引:0,他引:7
Perturbations in the gastrointestinal (GI) microbiota composition that occur as a result of antibiotics and diet in "westernized" countries are strongly associated with allergies and asthma ("hygiene hypothesis"). The microbiota ("microflora") plays a crucial role in the development of mucosal tolerance, including the airways. Significant attention has been focused on the role of the microbiota in GI development, immune adaptation and initiation of GI inflammatory diseases. This review covers the post-developmental functions that the microbiota plays in regulating immunological tolerance to allergen exposure outside the GI tract and proposes the question: is the microbiota a major regulator of the immune system? 相似文献
5.
Contini C 《Parassitologia》2007,49(1-2):33-35
The Asian tiger mosquito Aedes albopictus (Skuse, 1894) was first discovered in the South of Sardinia in October 1994, in a tyre depot not far from Cagliari-Elmas airport. Insecticide treatment was thought to have successfully eradicated the mosquito, but in 1996 and 1997 new breeding sites were discovered, a few at some distance from the first. More recently two sites have been reported in the heart of the city of Cagliari. It is not known whether the mosquito has spread from the first breeding place discovered, where treatment may not have been definitive, or whether they have been newly introduced. The recent sighting of Ae. albopictus in Olbia in the Northeast of the island tends to suggest the latter. Cagliari and Olbia are actually Sardinia's two largest sea ports of entry. 相似文献
6.
Amir Salek Farrokhi Narges Darabi Bahman Yousefi Rafee Habib Askandar Mansoreh Shariati Majid Eslami 《Journal of cellular physiology》2019,234(9):14941-14950
Recent studies demonstrated that a combination of the gut microbiome has the vital effect on the efficacy of anticancer immune therapies. Regulatory effects of microbiota have been shown in different types of cancer therapies such as chemotherapy and immunotherapy. Immune-checkpoint-blocked therapies are the recent efficient cancer immunotherapy strategies. The target of immune-checkpoint blocking is cytotoxic T lymphocyte protein-4 (CTLA-4) or blockade of programmed death-1 (PD-1) protein and its ligand programmed death ligand 1 (PD-L1) that they have been considered as cancer immunotherapy in recent years. In the latest studies, it have been demonstrated that several gut bacteria such as Akkermansia muciniphila, Bifidobacterium spp., Faecalibacterium spp., and Bacteroides fragilis have the regulatory effects on PD-1, PD-L1, and CTLA-4 blocked anticancer therapy outcome. 相似文献
7.
8.
9.
Paul Giacomin John Croese Lutz Krause Alex Loukas Cinzia Cantacessi 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2015,370(1675)
Multiple recent investigations have highlighted the promise of helminth-based therapies for the treatment of inflammatory disorders of the intestinal tract of humans, including inflammatory bowel disease and coeliac disease. However, the mechanisms by which helminths regulate immune responses, leading to the amelioration of symptoms of chronic inflammation are unknown. Given the pivotal roles of the intestinal microbiota in the pathogenesis of these disorders, it has been hypothesized that helminth-induced modifications of the gut commensal flora may be responsible for the therapeutic properties of gastrointestinal parasites. In this article, we review recent progress in the elucidation of host–parasite–microbiota interactions in both animal models of chronic inflammation and humans, and provide a working hypothesis of the role of the gut microbiota in helminth-induced suppression of inflammation. 相似文献
10.
Background
Visceral pain is a complex and heterogeneous disorder, which can range from the mild discomfort of indigestion to the agonizing pain of renal colic. Regulation of visceral pain involves the spinal cord as well as higher order brain structures. Recent findings have linked the microbiota to gastrointestinal disorders characterized by abdominal pain suggesting the ability of microbes to modulate visceral hypersensitivity and nociception to pain.Main body
In this review we describe the neuroanatomical basis of visceral pain signaling and the existing evidence of its manipulation exerted by the gut microbiota. We included an updated overview of the potential therapeutic effects of dietary intervention, specifically probiotics and prebiotics, in alleviating hypersensitivity to visceral pain stimuli.Conclusions
The gut microbiota dramatically impacts normal visceral pain sensation and affects the mechanisms mediating visceral nociception. Furthermore, manipulation of the gut microbiota using prebiotics and probiotics plays a potential role in the regulation of visceral pain disorders.11.
12.
13.
14.
Jen Nguyen Deanna M. Pepin Carolina Tropini 《Microbes and infection / Institut Pasteur》2021,23(6-7):104815
The human gut hosts a dense and diverse microbial community, spatially organized in multiple scales of structure. Here, we review how microbial organization differs between health and disease. We describe how changes in spatial organization may induce alterations in gut homeostasis, concluding with a future outlook to reveal causality. 相似文献
15.
Florent Mazel 《Molecular ecology》2019,28(9):2119-2121
At high altitude, the reduced availability of thermal energy and oxygen poses major challenges to organisms. Different species or populations have evolved similar solutions to these challenges, such as blood flow regulation in animals (Bouverot, 1985). Previous studies investigating such convergent adaptations have primarily looked at changes in host genomes (e.g., see Scheinfeldt & Tishkoff, 2010), but have rarely considered the potential role of the gut microbiome in mediating host adaptation. As gut microbes can indirectly regulate host blood pressure (Pluznick, 2014) and energy intake efficiency, it has been hypothesized that they could help maintain normal energy production and/or optimize nutritional assimilation in high‐altitude hypoxic environments (e.g., Li & Zhao, 2015). However, it has been hard to (a) show that there is a direct effect of altitude on the gut microbiota, because of the many potential confounding effects of altitude (e.g., diet is correlated to altitude, as well as to the microbiome) and to (b) understand the mechanisms by which the microbiota could mediate host hypoxic and thermoregulatory stresses. In this issue of Molecular Ecology, Suzuki, Martins, and Nachman (2018) show that, independently of diet, taxonomic composition and functions of mouse gut microbiota converge in independent high‐altitude environments and propose the intriguing hypothesis that some of these functional convergences might be beneficial to their host. 相似文献
16.
17.
18.
David R 《Nature reviews. Microbiology》2011,9(12):831
The gut microbiota can facilitate viral infection and transmission. 相似文献
19.