首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 103 毫秒
1.
Many studies at the regional scale have found either negative or hump‐shaped relationships between productivity and diversity, and some theories propose that these occur because soil resource heterogeneity is either lower or less important in more productive environments. However, there have been few explicit tests of these theories in natural ecosystems. We evaluated the relationship between soil resource heterogeneity and plant richness within a well characterized system of 30 islands in northern Sweden across which soil fertility and productivity declines, and species richness increases, as a consequence of ecosystem retrogression. On each island we created a spatially explicit grid consisting of 49 sampling points in a 9.5 m quadrat, which we used to quantify spatial heterogeneity of five soil variables (NH4+‐N, amino N, PO4?‐P, microbial biomass, and decomposition), and plant community composition. Using a hierarchical Bayesian approach, we estimated mean semivariograms of each variable for each island size class to compare three components of spatial heterogeneity: total variability, spatial grain, and patchiness. This analysis showed that variability within islands was usually lowest on small islands, where species richness was highest and productivity lowest; however, NH4+‐N and amino N had greater patchiness and spatial grain on small islands. We did not detect any significant across‐island correlations between whole‐plot plant species richness and either whole‐plot standard deviation or coefficient of variation of any soil variable. Using partial Mantel tests, we found that mean correlation coefficients between within‐plot plant community composition and the soil variables were never significant for any island size class, and did not differ between island size classes. Our findings do not provide any evidence that soil resource heterogeneity controls the productivity–diversity relationship in this system, and suggests other mechanisms are primarily responsible.  相似文献   

2.
One of the most important drivers for the coexistence of plant species is the resource heterogeneity of a certain environment, and several studies in different ecosystems have supported this resource heterogeneity–diversity hypothesis. However, to date, only a few studies have measured heterogeneity of light and soil resources below forest canopies to investigate their influence on understory plant species richness. Here, we aim to determine (1) the influence of forest stand structural complexity on the heterogeneity of light and soil resources below the forest canopy and (2) whether heterogeneity of resources increases understory plant species richness. Measures of stand structural complexity were obtained through inventories and remote sensing techniques in 135 1‐ha study plots of temperate forests, established along a gradient of forest structural complexity. We measured light intensity and soil chemical properties on six 25 m² subplots on each of these 135 plots and surveyed understory vegetation. We calculated the coefficient of variation of light and soil parameters to obtain measures of resource heterogeneity and determined understory plant species richness at plot level. Spatial heterogeneity of light and of soil pH increased with higher stand structural complexity, although heterogeneity of soil pH did not increase in conditions of generally high levels of light availability. Increasing light heterogeneity was also associated with increasing understory plant species richness. However, light heterogeneity had no such effects in conditions where soil resource heterogeneity (variation in soil C:N ratios) was low. Our results support the resource heterogeneity–diversity hypothesis for temperate forest understory at the stand scale. Our results also highlight the importance of interaction effects between the heterogeneity of both light and soil resources in determining plant species richness.  相似文献   

3.
Theoretical and empirical evidence exists for a positive relationship between environmental heterogeneity and species diversity. Alpine plant communities can exhibit exceptional diversity at a fine scale, which niche theory would suggest is the result of fine scale spatial heterogeneity of the environment. To test if species diversity of alpine plants is driven by environmental heterogeneity, we sampled vascular plant species composition, microtopography, and ground cover within 1?m2 plots with and without solifluction forms in Glacier National Park, MT. We analyzed the relationship between microtopographic heterogeneity and species richness at the plot and sub-plot scale with linear and quantile regression, respectively. Species richness does not differ between the plots varying in cover type. Species richness is negatively related to the fractal dimension (D) of the ground surface and non-vegetated ground cover within 1?m2 plots. At a finer scale, the standard deviation of elevation and slope appear to impose a limit on species richness such that more variable sub-plots have lower species richness. Contrary to our expectations, microtopographic heterogeneity does not promote the diversity of alpine plants. The negative relationship between topographic heterogeneity and species richness is contrary to the theoretical prediction that environmental heterogeneity generally results in greater species diversity. It is possible that microtopographic variability represents a measure of soil disturbance, which would be expected to have a negative effect on species diversity in alpine tundra due to its low productivity.  相似文献   

4.
We investigated the effects of arbuscular mycorrhizal fungal (AMF) species richness and composition on plant community productivity and diversity, and whether AMF mediate plant species coexistence by promoting niche differentiation in phosphorus use. Our experiment manipulated AMF species richness and identity across a range of P conditions in tallgrass prairie mesocosms. We showed that increasing AMF richness promoted plant diversity and productivity, but that this AMF richness effect was small relative to the effects of individual AMF species. We found little support for AMF-facilitated complementarity in P use. Rather, the AMF richness effect appeared to be caused by the inclusion of particular diversity- and productivity-promoting AMF (a sampling effect). Furthermore, the identity of the diversity-promoting fungi changed with P environment, as did the relationship between the diversity-promoting and productivity-promoting benefits of AMF. Our results suggest that plant diversity and productivity are more responsive to AMF identity than to AMF diversity per se, and that AMF identity and P environment can interact in complex ways to alter community-level properties.  相似文献   

5.
Questions: What is the observed relationship between plant species diversity and spatial environmental heterogeneity? Does the relationship scale predictably with sample plot size? What are the relative contributions to diversity patterns of variables linked to productivity or available energy compared to those corresponding to spatial heterogeneity? Methods: Observational and experimental studies that quantified relationships between plant species richness and within‐sample spatial environmental heterogeneity were reviewed. Effect size in experimental studies was quantified as the standardized mean difference between control (homogeneous) and heterogeneous treatments. For observational studies, effect sizes in individual studies were examined graphically across a gradient of plot size (focal scale). Relative contributions of variables representing spatial heterogeneity were compared to those representing available energy using a response ratio. Results: Forty‐one observational and 11 experimental studies quantified plant species diversity and spatial environmental heterogeneity. Observational studies reported positive species diversity‐spatial heterogeneity correlations at all points across a plot size gradient from ~1.0 × 10?1 to ~1.0 × 1011 m2, although many studies reported spatial heterogeneity variables with no significant relationships to species diversity. The cross‐study effect size in experimental studies was not significantly different from zero. Available energy variables explained consistently more of the variance in species richness than spatial heterogeneity variables, especially at the smallest and largest plot sizes. Main conclusions: Species diversity was not related to spatial heterogeneity in a way predictable by plot size. Positive heterogeneity‐diversity relationships were common, confirming the importance of niche differentiation in species diversity patterns, but future studies examining a range of spatial scales in the same system are required to determine the role of dispersal and available energy in these patterns.  相似文献   

6.
The abundance of microbes in soil is thought to be strongly influenced by plant productivity rather than by plant species richness per se. However, whether this holds true for different microbial groups and under different soil conditions is unresolved. We tested how plant species richness, identity and biomass influence the abundances of arbuscular mycorrhizal fungi (AMF), saprophytic bacteria and fungi, and actinomycetes, in model plant communities in soil of low and high fertility using phospholipid fatty acid analysis. Abundances of saprophytic fungi and bacteria were driven by larger plant biomass in high diversity treatments. In contrast, increased AMF abundance with larger plant species richness was not explained by plant biomass, but responded to plant species identity and was stimulated by Anthoxantum odoratum. Our results indicate that the abundance of saprophytic soil microbes is influenced more by resource quantity, as driven by plant production, while AMF respond more strongly to resource composition, driven by variation in plant species richness and identity. This suggests that AMF abundance in soil is more sensitive to changes in plant species diversity per se and plant species composition than are abundances of saprophytic microbes.  相似文献   

7.
Aims Environmental heterogeneity is a primary mechanism explaining species coexistence and extant patterns of diversity. Despite strong theoretical support and ample observational evidence, few experimental studies in plant communities have been able to demonstrate a causal link between environmental heterogeneity and plant diversity. This lack of experimental evidence suggests that either fine-scale heterogeneity has weak effects on plant diversity or previous experiments have been unable to effectively manipulate heterogeneity. Here, we utilize a unique soil manipulation to test whether fine-scale soil heterogeneity will increase plant richness through species sorting among experimental patch types.Methods This experiment was conducted in the tallgrass prairie region of south-central Kansas, USA. We utilized the inherent variation found in the vertical soil profile, which varied in both biotic and abiotic characteristics, and redistributed these strata into either homogeneous or heterogeneous spatial arrangements in 2.4×2.4 m plots. After the soil manipulation, 34 native prairie species were sown into all plots. We conducted annual censuses at peak biomass to quantify species composition and plant density by species within the experimental communities.Important findings After 2 years, species richness was significantly higher in heterogeneous relative to homogeneous plots and this pattern was independent of total plant density. In the heterogeneous plots, 13 species had higher establishment in a specific patch type representing one of the three soil strata. Conversely, no species had greater establishment in the mixed stratum, which comprised the homogeneous plots, relative to the heterogeneous strata. These species sorting patterns suggest that fine-scale heterogeneity creates opportunities for plant establishment due to niche differences, which translates into increased plant diversity at the plot scale. Species richness was more strongly related to plant density among patches comprising homogenous plots—where fine-scale heterogeneity was minimized, but weak in heterogeneous plots. This pattern is consistent with the idea that richness–density relationships dominate when neutral processes are important but are weak when niche processes operate. Unlike many previous attempts, our results provide clear, experimental evidence that fine-scale soil heterogeneity increases species richness through species sorting during community assembly.  相似文献   

8.
Drew A. Scott  Sara G. Baer 《Oikos》2019,128(8):1116-1122
The ‘environmental heterogeneity hypothesis’ (EHH) has been proposed as a mechanism that enables species coexistence through resource partitioning. In accordance with this hypothesis, plant diversity is predicted to increase with variability in resources, but there has been weak support for this hypothesis from experimental studies. The objectives of this research were to 1) characterize how resource availability and heterogeneity (coefficient of variation) change as plant communities develop using sequentially restored grasslands, 2) determine if resource heterogeneity relates to plant diversity (effective number of species, richness and evenness) and 3) reveal if the strength of resource heterogeneity–diversity relationships is different among levels of resource availability. We quantified means and coefficients of variation in soil nitrate and light availability in grasslands established on former agricultural lands for different times and their relationship to plant diversity using a geostatistically‐informed design. Nitrate availability decreased exponentially with restoration age, but no directional change in nitrate heterogeneity across the chronosequence occurred due to high resource variability in some restorations. Light availability also decreased exponentially across the chronosequence, but there was no directional change in light heterogeneity. Nitrate heterogeneity was positively correlated with both plant richness and plant effective number of species at high levels of nitrate availability. However, no nitrate heterogeneity correlation was detected at low levels of nitrate availability. Light heterogeneity was positively correlated with plant effective number of species at low levels of light availability. However, no light heterogeneity correlation was detected at high levels of light availability. Plant evenness was not correlated with resource heterogeneity at any resource availability level. These results support the positive heterogeneity–diversity relationship predicted by EHH, and uniquely that this relationship develops within a decade of plant community development, but can be obscured by resource availability.  相似文献   

9.
Soil chemistry can play an important role in determining plant diversity. Serpentine soils are usually toxic to many plant taxa, which limits plant diversity compared to that on adjacent non-serpentine soils. The usually high concentrations of toxic metals in serpentine soils are considered to be the edaphic factors that cause low diversity and high endemism. This paper aimed primarily to determine whether there is a relationship between serpentine soil chemistry and species richness on the Witwatersrand and to compare species richness of the serpentine areas with that of adjacent non-serpentine areas as well as with the species richness of the serpentine areas in the Barberton Greenstone Belt. The alpha- and beta-diversity of the Witwatersrand serpentine and non-serpentine areas was also investigated. A secondary aim of this study was to determine which of the non-serpentine taxa were more common on the serpentine than off the serpentine, which taxa were more common off the serpentine than on the serpentine and which taxa were equally common on and off serpentine soils. There was no significant difference in alpha-diversity between the serpentine and the adjacent non-serpentine areas, but beta-diversity is higher between serpentine plots than between non-serpentine plots. Although soil factors do affect species richness and diversity of plants on the Witwatersrand to a limited extent, the concentrations of soil chemicals in serpentine soils are not sufficiently different from those in non-serpentine soils to significantly influence the species richness and diversity of the serpentine soils. The high, but similar, diversity on serpentine and non-serpentine soils on the Witwatersrand indicates that soil factors do not play a significant role in determining diversity on potentially toxic soils in the area.  相似文献   

10.
Aims With the aim of understanding why some of the world's forests exhibit higher tree beta diversity values than others, we asked: (1) what is the contribution of environmentally related variation versus pure spatial and local stochastic variation to tree beta diversity assessed at the forest plot scale; (2) at what resolution are these beta‐diversity components more apparent; and (3) what determines the variation in tree beta diversity observed across regions/continents? Location World‐wide. Methods We compiled an unprecedented data set of 10 large‐scale stem‐mapping forest plots differing in latitude, tree species richness and topographic variability. We assessed the tree beta diversity found within each forest plot separately. The non‐directional variation in tree species composition among cells of the plot was our measure of beta diversity. We compared the beta diversity of each plot with the value expected under a null model. We also apportioned the beta diversity into four components: pure topographic, spatially structured topographic, pure spatial and unexplained. We used linear mixed models to interpret the variation of beta diversity values across the plots. Results Total tree beta diversity within a forest plot decreased with increasing cell size, and increased with tree species richness and the amount of topographic variability of the plot. The topography‐related component of beta diversity was correlated with the amount of topographic variability but was unrelated to its species richness. The unexplained variation was correlated with the beta diversity expected under the null model and with species richness. Main conclusions Because different components of beta diversity have different determinants, comparisons of tree beta diversity across regions should quantify not only overall variation in species composition but also its components. Global‐scale patterns in tree beta diversity are largely coupled with changes in gamma richness due to the relationship between the latter and the variation generated by local stochastic assembly processes.  相似文献   

11.
Although it has become increasingly clear that arbuscular mycorrhizal fungi (AMF) play important roles in population, community, and ecosystem ecology, there is limited information on the spatial structure of the community composition of AMF in the field. We assessed small-scale spatial variation in the abundance and molecular diversity of AMF in a calcareous fen, where strong underlying environmental gradients such as depth to water table may influence AMF. Throughout an intensively sampled 2 × 2 m plot, we assessed AMF inoculum potential at a depth of 0–6 and 6–12 cm and molecular diversity of the AMF community using terminal restriction fragment length polymorphism of 18S rDNA. Inoculum potential was only significantly spatially autocorrelated at a depth of 6–12 cm and was significantly positively correlated with depth to water table at both depths. Molecular diversity of the AMF community was highly variable within the plot, ranging from 2–14 terminal restriction fragments (T-RFs) per core, but the number of T-RFs did not relate to water table or plant species richness. Plant community composition was spatially autocorrelated at small scales, but AMF community composition showed no significant spatial autocorrelation. Saturated soils of calcareous fens contain many infective AMF propagules and the abundance and diversity of AMF inoculum is patchy over small spatial scales. An erratum to this article can be found at  相似文献   

12.
Assessment of habitat heterogeneity and plant species richness at the landscape scale is often based on intensive and extensive fieldwork at great cost of time and money. We evaluated the use of satellite imagery as a quantitative measure of the relationship between the spectral diversity of satellite imagery, habitat heterogeneity, and plant species richness. A 16 km2 portion of a military training area in Germany was systematically sampled by plant taxonomic experts on a grid of one hundred 1-ha plots. The diversity of disturbance types, resulting habitat heterogeneity, and plant species richness were determined for each plot. Using an IKONOS multispectral satellite image, we examined 168 metrics of spectral diversity as potential indicators of those independent variables. Across all potential relationships, a simple count of values per spectral band per plot, after compressing the data from the original 11-bit format with 2048 potential values per band into a maximum of 100 values per band, resulted in the most consistent predictor for various metrics of habitat heterogeneity and plant species richness. The count of values in the green band generally out-performed the other bands. The relationship between spectral diversity and plant species richness was stronger than for measures of habitat heterogeneity. Based on the results, we conclude that remotely sensed assessment of spectral diversity, when coupled with limited ground-truthing, can provide reasonable estimates of habitat heterogeneity and plant species richness across broad areas.  相似文献   

13.
The cultivation of genetically engineered Bacillus thuringiensis toxin-expressing (Bt) maize continues to increase worldwide, yet the effects of Bt crops on arbuscular mycorrhizal fungi (AMF) in soil are poorly understood. In this field experiment, we investigated the impact of seven different genotypes of Bt maize and five corresponding non-Bt parental cultivars on AMF and evaluated plant growth responses at three different physiological time points. Plants were harvested 60 days (active growth), 90 days (tasseling and starting to produce ears), and 130 days (maturity) after sowing, and data on plant growth responses and percent AMF colonization of roots at each harvest were collected. Spore abundance and diversity were also evaluated at the beginning and end of the field season to determine whether the cultivation of Bt maize had a negative effect on AMF propagules in the soil. Plant growth and AMF colonization did not differ between Bt and non-Bt maize at any harvest period, but AMF colonization was positively correlated with leaf chlorophyll content at the 130-day harvest. Cultivation of Bt maize had no effect on spore abundance and diversity in Bt versus non-Bt plots over one field season. Plot had the most significant effect on total spore counts, indicating spatial heterogeneity in the field. Although previous greenhouse studies demonstrated that AMF colonization was lower in some Bt maize lines, our field study did not yield the same results, suggesting that the cultivation of Bt maize may not have an impact on AMF in the soil ecosystem under field conditions.  相似文献   

14.

Aims

To study the relationship between changes in soil properties and plant community characters produced by grazing in a meadow steppe grassland and the composition and diversity of spore-producing arbuscular mycorrhizal fungi (AMF).

Methods

A field survey was carried out in a meadow steppe area with a gradient of grazing pressures (a site with four grazing intensities and a reserve closed to grazing). The AMF community composition (characterized by spore abundance) and diversity, the vegetation characters and soil properties were measured, and root colonization by AMF was assessed.

Results

AMF diversity (richness and evenness) was higher under light to moderate grazing pressure and declined under intense grazing pressures. Results of multiple regressions indicated that soil electrical conductivity was highly associated with AMF diversity. The variation in AMF diversity was partially associated to the density of tillers of the dominant grass (Leymus chinensis), the above and below-ground biomass and the richness of the plant community.

Conclusions

We propose that the relationship between plants and AMF is altered by environmental stress (salinity) which is in turn influenced by animal grazing. Direct and indirect interactions between vegetation, soil properties, and AMF community need to be elucidated to improve our ability to manage these communities.  相似文献   

15.
Aim  Habitat and climate heterogeneity may affect patterns of species diversity from the relatively local scale of communities to the broad biogeographical scale of continents. However, the effects of heterogeneity on species diversity have not been studied as widely at intermediate scales although differences among landscapes in local climate and habitat should maintain beta-diversity.
Location  Bailey ecoregions in the USA.
Methods  Using a geographically extensive dataset on bird distribution and abundance in 35 ecoregions, we tested for the effects of habitat and climate heterogeneity on beta-diversity at two discrete spatial scales: among sample points within landscapes, and among landscapes within ecoregions.
Results  Landscape-level beta-diversity typically accounted for 50% or more of gamma-diversity and was significantly and positively related to habitat heterogeneity (elevational range within an ecoregion) and climate heterogeneity (variation in potential evapotranspiration). Contrary to predictions, point-level beta-diversity was negatively related to habitat and climate heterogeneity, perhaps because heterogeneity constrains alpha-diversity at the landscape level. The geographical spatial separation of landscapes within an ecoregion did not significantly affect beta-diversity at either scale.
Main conclusions  Our results suggest that habitat selection and adaptation to local climate may be the primary processes structuring bird diversity among landscapes within ecoregions, and that dispersal limitation has a lesser role in influencing beta-diversity among landscapes.  相似文献   

16.
Changes in weed species richness and beta-diversity are partly attributable to different types and intensity of disturbance and partly to broad-scale variation in environmental conditions. We compiled a data set of 434 vegetation plots of weed vegetation in root crop and cereal fields in Moravia (eastern Czech Republic) to compare the effects of environmental conditions and different disturbance regimes on species richness and beta-diversity. To detect changes in species richness, we related the variation in species richness to individual environmental conditions. To assess differences in beta-diversity between the vegetation of cereal and root crop fields, we used Whittaker's measure of beta-diversity. The relative importance of each environmental variable for the variation in species composition was evaluated using canonical correspondence analysis. All analyses were done for all vascular plant species and separately for native species, archaeophytes and neophytes. A comparison of weed vegetation of root crops and cereals showed a distinct dichotomy between these two types of weed vegetation. There was no significant difference in total species richness and native species richness; however, cereal fields were richer in archaeophytes and root crop fields were richer in neophytes. The beta-diversity of weed vegetation was higher in root crops. Environmental factors explained a significant part of the variability in richness of both natives and aliens. The richness of native species increased and beta-diversity decreased with increasing precipitation. The opposite relationship was found for archaeophytes, in both cereals and root crops. These results confirmed the importance of climatic factors and management practices for changes in weed species composition. They also showed a distinct pattern of species richness and beta-diversity of native and alien weed species.  相似文献   

17.
Arbuscular mycorrhizal fungi (AMF) were investigated in roots of 18 host plant species in a salinized south coastal plain of Laizhou Bay, China. From 18 clone libraries of 18S rRNA genes, all of the 22 AMF phylotypes were identified into Glomus, of which 18 and 4 were classified in group A and B in the phylogenetic tree, respectively. The phylotypes related to morphologically defined Glomus species occurred generally in soil with higher salinity. AMF phylotype richness, Shannon index, and evenness were not significantly different between root samples from halophytes vs. non-halophytes, invades vs. natives, or annuals vs. perennials. However, AMF diversity estimates frequently differed along the saline gradient or among locations, but not among pH gradients. Moreover, UniFrac tests showed that both plant traits (salt tolerance, life style or origin) and abiotic factors (salinity, pH, or location) significantly affected the community composition of AMF colonizers. Redundancy and variation partitioning analyses revealed that soil salinity and pH, which respectively explained 6.9 and 4.2 % of the variation, were the most influential abiotic variables in shaping the AMF community structure. The presented data indicate that salt tolerance, life style, and origin traits of host species may not significantly affect the AMF diversity in roots, but do influence the community composition in this salinized ecosystem. The findings also highlight the importance of soil salinity and pH in driving the distribution of AMF in plant and soil systems.  相似文献   

18.
太行山干瘠山地土壤厚度空间变异及草灌群落分布特征   总被引:2,自引:0,他引:2  
高峻  何春霞  张劲松  孟平 《生态学报》2020,40(6):2080-2089
在自然条件下,太行山低山区干瘠山地土层浅薄,易形成一定的裸地斑块造成水土流失等灾害,天然林覆盖率低,植被丰富度、物种多样性也受到限制。为探讨土壤厚度与植物群落分布特征的关系,选择太行山低山区干瘠山地东北向和西南向2个坡面,运用地统计学方法研究了土壤厚度的空间变异特征,比较了不同土壤厚度下群落分布、物种多样性和物种丰富度的差异。研究表明:1)东北向和西南向2个坡面的土壤厚度在0—50 cm间,平均厚度分别为11.69 cm和12.77 cm;在0—15 cm的土壤厚度分别占总数的71.43%和62.81%。2)东北向和西南向2坡面土壤厚度呈斑块状分布,但具有显著的空间异质性和强烈的空间相关性,属于中等偏强空间变异,结构性因素是造成土壤厚度空间变异的主导因子。3)所选取坡面的植物主要以草灌为主,共有22科33属38种。土层厚度在10 cm以下时,植物以草本为主;土层厚度在10 cm以上时,植物以灌木为主。其中,土层厚度在10—20 cm时,胡枝子为优势种;土层厚度在20 cm以上时,荆条、酸枣为优势种。4)随着土壤厚度的增加,植物群落组成发生显著变化,在土壤厚度小于15 cm时,物种多样性和物种丰富度随着土壤厚度逐渐增加,在土壤厚度为10—15 cm时达到最大,在土壤厚度大于15 cm时,随着土壤厚度的增加物种多样性和物种丰富度逐渐降低,说明土壤厚度影响植物多样性和物种丰富度。  相似文献   

19.
We investigated changes in plant diversity in the traditionally fertilised and species-rich Golden Oat meadows by repeating historic grassland relevés from the 1940s in two agricultural areas in the Swiss Alps. The effects of time on alpha and beta diversity at plot level were analysed within the study areas. The specificity of the two study areas was investigated by comparing the variability of species composition within and between study areas.In both regions, species richness at plot level (alpha diversity) was found to be lower in the recent relevés than in the historic ones. However, the variability of species composition within the study areas (beta diversity) was higher between the recent relevés than between the historic relevés. There was a significant floristic differentiation between the two study areas sixty years ago but not today.Plant diversity in Golden Oat meadows has changed significantly during the last sixty years. The decrease in species richness at plot level was anticipated, but not the increase in beta diversity between plots, which may indicate individualised management regimes of modern farmers. The loss of specificity between the study areas revealed an important and as yet hardly considered further dimension of biodiversity change, which leads to a homogenisation of plant diversity at a regional level.  相似文献   

20.
Different species of arbuscular mycorrhizal fungi (AMF) alter plant growth and affect plant coexistence and diversity. Effects of within-AMF species or within-population variation on plant growth have received less attention. High genetic variation exists within AMF populations. However, it is unknown whether genetic variation contributes to differences in plant growth. In our study, a population of AMF was cultivated under identical conditions for several generations prior to the experiments thus avoiding environmental maternal effects. We show that genetically different Glomus intraradices isolates from one AMF population significantly alter plant growth in an axenic system and in greenhouse experiments. Isolates increased or reduced plant growth meaning that plants potentially receive benefits or are subject to costs by forming associations with different individuals in the AMF population. This shows that genetic variability in AMF populations could affect host-plant fitness and should be considered in future research to understand these important soil organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号