首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent work has demonstrated that antibody phage display libraries containing restricted diversity in the complementarity determining regions (CDRs) can be used to target a wide variety of antigens with high affinity and specificity. In the most extreme case, antibodies whose combining sites are comprised of only two residues – tyrosine and serine – have been identified against several protein antigens. [F.A. Fellouse, B. Li, D.M. Compaan, A.A. Peden, S.G. Hymowitz, S.S. Sidhu, J. Mol. Biol. 348 (2005) 1153–1162.] Here, we report the isolation and characterization of antigen-binding fragments (Fabs) from such “minimalist” diversity synthetic antibody libraries that bind the heptad repeat regions of human immunodeficiency virus type 1 (HIV-1) gp41. We show that these Fabs are highly specific for the HIV-1 epitope and comparable in affinity to a single chain variable fragment (scFv) derived from a natural antibody repertoire that targets the same region. Since the heptad repeat regions of HIV-1 gp41 are required for viral entry, these Fabs have potential for use in therapeutic, research, or diagnostic applications.  相似文献   

2.
Dual-specific antibodies are characterized by an antigen-combining site mediating specific interactions with two different antigens. We have generated five dual-specific single chain variable fragments (scFv) that neutralize the activity of the two chemokines, CXCL9 and CXCL10, to bind to their receptor CXCR3. To better understand how these dual-specific scFvs bind these two chemokines that only share a 37% sequence identity, we mapped their epitopes on human CXCL9 and CXCL10 and identified serine 13 (Ser(13)) as a critical residue. It is conserved between the two chemokines but not in the third ligand for CXCR3, CXCL11. Furthermore, Ser(13) is exposed in the tetrameric structure of CXCL10, which is consistent with our finding that the scFvs are able to bind to CXCL9 and CXCL10 immobilized on glycosaminoglycans. Overall, the data indicate that these dual-specific scFvs bind to a conserved surface involved in CXCR3 receptor interaction for CXCL10 and CXCL9. Thus, structural mimicry between the two targets is likely to be responsible for the observed dual specificity of these antibody fragments.  相似文献   

3.
The specificities of four monoclonal antibodies rho 1D4, 1C5, 3A6, and 3D6 prepared by immunization of rod outer segments containing rhodopsin have been defined using synthetic peptides. All of these antibodies interact within the 18 residues at the COOH terminus of rhodopsin and recognize linear antigenic determinants of 4-11 residues. Twenty-seven synthetic peptide analogs of varying lengths of native sequence or containing single amino acid substitutions at each position of the COOH-terminal 18 residues have provided some insight into the mechanism of antigen-antibody binding. Our results clearly demonstrate that antibodies can be highly specific at key positions as shown by the loss of binding on single amino acid substitutions in the binding site. In contrast single amino acid substitutions at other positions in the binding site only affect affinity for some antibodies. Ionic interactions can dominate immunogenic determinants. Immunogenic determinants are not restricted to highly charged hydrophilic regions on the surface of a protein and may be dominated by hydrophobic interactions. Although certain side chains can dominate the interaction of the antigen with antibody, our results are in agreement with the interpretation that the free energies of all the contact points are additive and a certain free energy must be present to achieve binding. Antibodies with different specificities directed to the same region of the protein antigen can be produced in an immune response. Peptide antigens representing regions of a protein antigen bind best to the anti-protein antibody when the sequence is shortened to contain only those residues binding to the specificity site in the antibody. Cross-reactivity between protein antigens can be explained by conservation of the critical residues in the combining site.  相似文献   

4.
Both laboratory and early clinical studies to date have demonstrated that bispecific antibodies (BsAb) may have potentially significant application in cancer therapy. The clinical development of BsAb as therapeutics has been hampered, however, by the difficulty in preparing the materials in sufficient quantity and quality by traditional methods. In recent years, a variety of recombinant methods has been developed for efficient production of BsAb, both as antibody fragments and as full-length IgG-like molecules. Here we describe a novel recombinant approach for the production of an Fc domain-containing, IgG-like tetravalent BsAb, with two antigen-binding sites to each of its target antigens, by genetically fusing a single variable domain antibody to the N terminus of the light chain of a functional IgG antibody of different specificity. A model BsAb was constructed using a single variable domain antibody to mouse platelet-derived growth factor receptor alpha and a conventional IgG antibody to mouse vascular endothelial growth factor receptor 2. The BsAb was expressed in mammalian cells and purified to homogeneity by one-step protein A affinity chromatography. Furthermore, the BsAb retains the antigen binding specificity and the receptor neutralizing activity of both of its parent antibodies. This design and expression of Fc domain-containing, IgG-like BsAb should be applicable to the construction of similar BsAb from antibodies recognizing any pair of antigens.  相似文献   

5.
The structure of the antigen-binding fragment from the monoclonal antibody S64-4 in complex with a pentasaccharide bisphosphate fragment from chlamydial lipopolysaccharide has been determined by x-ray diffraction to 2.6 ? resolution. Like the well-characterized antibody S25-2, S64-4 displays a pocket formed by the residues of germline sequence corresponding to the heavy and light chain V gene segments that binds the terminal Kdo residue of the antigen; however, although S64-4 shares the same heavy chain V gene segment as S25-2, it has a different light chain V gene segment. The new light chain V gene segment codes for a combining site that displays greater affinity, different specificity, and allows a novel antigen conformation that brings a greater number of antigen residues into the combining site than possible in S25-2. Further, while antibodies in the S25-2 family use complementarity determining region (CDR) H3 to discriminate among antigens, S64-4 achieves its specificity via the new light chain V gene segment and resulting change in antigen conformation. These structures reveal an intriguing parallel strategy where two different combinations of germline-coded V gene segments can act as starting points for the generation of germline antibodies against chlamydial antigens and show how anti-carbohydrate antibodies can exploit the conformational flexibility of this class of antigens to achieve high affinity and specificity independently of CDR H3.  相似文献   

6.
We analyzed the idiotype (Id) expression on the surface of human anti-DNA antibody-producing cells. Murine monoclonal anti-Id antibodies with a specificity for determinants associated with the antigen-binding sites of human monoclonal anti-DNA autoantibodies were prepared. One anti-Id antibody reacted only with surface Id on anti-ssDNA-producing cells, but not with those on anti-dsDNA-producing B cell clones. Another anti-Id antibody did bind the surface Id on anti-dsDNA clones, but not those on anti-ssDNA clones. The interaction between anti-Id and surface Id was inhibited by pretreatment of the clones with DNA or appropriate polynucleotide antigens, or by preabsorption of anti-Id antibodies with free anti-DNA antibodies. Surface IgM and IgD expressed the same Id as the antibody secreted from the clones. The treatment of Id-positive clones by anti-Id antibody induced the redistribution of surface Id on the cells, indicating that these cells serve as targets for the regulatory action of anti-Id antibody.  相似文献   

7.
MNAC13, a mouse monoclonal antibody, recognizes with high affinity and specificity the neurotrophin receptor TrkA and displays a neutralizing activity toward the NGF/TrkA interaction. Detailed knowledge of the molecular basis determining the specificity of this antibody is of importance because of its potential use as a modulator of the TrkA-mediated NGF activity. Here, we report a full biochemical and structural characterization of the MNAC13 antibody. Epitope mapping studies, by serial deletion mutants and by phage display, reveal a conformational epitope that is localized on the carboxy-terminal region of the first immunoglobulin-like domain (d4) of TrkA. The X-ray crystal structure of the MNAC13 Fab fragment has been determined and refined to 1.8 A resolution. The antigen-binding site is characterized by a crevice, surrounded by hydrophilic-charged residues on either side, dipping deep toward three mainly hydrophobic subsites. Remarkably an isopropanol molecule has been found to bind in one of the hydrophobic crevices. Overall, the surface topology (shape and electrostatic potential) of the combining site is consistent with the binding data on TrkA ECD serial deletions mutants. The structure of the MNAC13 Fab fragment may assist in the rational structure-based design of high affinity humanized forms of MNAC13, appropriate for therapeutic approaches in neuropathy and inflammatory pain states.  相似文献   

8.
Seven populations of site-specific antibodies were isolated from each of three sera of rabbits immunized against glutaraldehyde-polymerized horse cytochrome c. The antibodies were separated using an immunoadsorption scheme which employed the following cytochromes c: horse, beef, guanaco, rabbit, mouse testicular, pigeon, and the cyanogen-bromide cleaved fragment of the rabbit protein containing residues 1 to 65. The monovalent, antigen-binding fragments of the antibodies (Fab') gave 1:1 stoichiometries with native horse cytochrome c in fluorescence quenching assays. Cross-reactivities with heterologous cytochromes c using fluorescence quenching and a modified Farr assay demonstrated that the antigenic determinants are situated around residues 44, 60, and 89/92, four of the six amino acid sequence positions where horse and rabbit cytochromes c differ. The remaining two differences occur at residues 47 and 62. The apparent lack of immunogenicity of these two substitutions may result from the presence of the more immunogenic residues 44 and 60 nearby. Of the seven antibody populations isolated, four were shown to bind in the region of residues 89 and 92. Since several cytochromes c have amino acid sequence differences from the horse protein at either of these two residue positions, it was possible to fractionate the antibodies directed against this complex site on the basis of subtle specificity differences between them. Two antibody populations bind in the region of residue 44. One of these is specific for proline at that position, while the other antibody population also binds to cytochrome c containing glutamic acid at position 44. The remaining antibody population binds in the region of the lysine residue at position 60. Each of the seven site-specific antibody populations binds effectively to any cytochrome c having a suitable amino acid sequence in the antigenic determinant regardless of any residue differences from the immunogen outside of that area. It was also demonstrated that these seven antibody populations represent the totality of the antibodies elicited in rabbits against horse cytochrome c, since the immunoadsorbants bound all the antibodies specific for the native protein. Furthermore, the rabbit antisera contained no other antibody population that could bind to the conformationally disturbed, cyanogen bromide-cleaved fragment of horse cytochrome c containing residues 1 to 65, making it appear that there were no antibodies elicited against a "processed" form of cytochrome c.  相似文献   

9.
Bostrom J  Haber L  Koenig P  Kelley RF  Fuh G 《PloS one》2011,6(4):e17887
The antigen-binding site of Herceptin, an anti-human Epidermal Growth Factor Receptor 2 (HER2) antibody, was engineered to add a second specificity toward Vascular Endothelial Growth Factor (VEGF) to create a high affinity two-in-one antibody bH1. Crystal structures of bH1 in complex with either antigen showed that, in comparison to Herceptin, this antibody exhibited greater conformational variability, also called "structural plasticity". Here, we analyzed the biophysical and thermodynamic properties of the dual specific variants of Herceptin to understand how a single antibody binds two unrelated protein antigens. We showed that while bH1 and the affinity-improved bH1-44, in particular, maintained many properties of Herceptin including binding affinity, kinetics and the use of residues for antigen recognition, they differed in the binding thermodynamics. The interactions of bH1 and its variants with both antigens were characterized by large favorable entropy changes whereas the Herceptin/HER2 interaction involved a large favorable enthalpy change. By dissecting the total entropy change and the energy barrier for dual interaction, we determined that the significant structural plasticity of the bH1 antibodies demanded by the dual specificity did not translate into the expected increase of entropic penalty relative to Herceptin. Clearly, dual antigen recognition of the Herceptin variants involves divergent antibody conformations of nearly equivalent energetic states. Hence, increasing the structural plasticity of an antigen-binding site without increasing the entropic cost may play a role for antibodies to evolve multi-specificity. Our report represents the first comprehensive biophysical analysis of a high affinity dual specific antibody binding two unrelated protein antigens, furthering our understanding of the thermodynamics that drive the vast antigen recognition capacity of the antibody repertoire.  相似文献   

10.
Synthetic antibody libraries with restricted chemical diversity were used to explore the intrinsic contributions of four amino acids (Tyr, Ser, Gly and Arg) to the affinity and specificity of antigen recognition. There was no correlation between nonspecific binding and the content of Tyr, Ser or Gly in the antigen-binding site, and in fact, the most specific antibodies were those with the highest Tyr content. In contrast, Arg content was clearly correlated with increased nonspecific binding. We combined Tyr, Ser and Gly to generate highly specific synthetic antibodies with affinities in the subnanomolar range, showing that the high abundance of Tyr, Ser and Gly in natural antibody germ line sequences reflects the intrinsic capacity of these residues to work together to mediate antigen recognition. Despite being a major functional contributor to co-evolved protein-protein interfaces, we find that Arg does not contribute generally to the affinity of naïve antigen-binding sites and is detrimental to specificity. Again, this is consistent with studies of natural antibodies, which have shown that nonspecific, self-reactive antibodies are rich in Arg and other positively charged residues. Our findings suggest that the principles governing naïve molecular recognition differ from those governing co-evolved interactions. Analogous studies can be designed to explore the roles of the other amino acids in molecular recognition. Results of such studies should illuminate the basic principles underlying natural protein-protein interactions and should aid the design of synthetic binding proteins with functions beyond the scope of natural proteins.  相似文献   

11.
The development of dual targeting antibodies promises therapies with improved efficacy over mono-specific antibodies. Here, we engineered a Two-in-One VEGF/angiopoietin 2 antibody with dual action Fab (DAF) as a potential therapeutic for neovascular age-related macular degeneration. Crystal structures of the VEGF/angiopoietin 2 DAF in complex with its two antigens showed highly overlapping binding sites. To achieve sufficient affinity of the DAF to block both angiogenic factors, we turned to deep mutational scanning in the complementarity determining regions (CDRs). By mutating all three CDRs of each antibody chain simultaneously, we were able not only to identify affinity improving single mutations but also mutation pairs from different CDRs that synergistically improve both binding functions. Furthermore, insights into the cooperativity between mutations allowed us to identify fold-stabilizing mutations in the CDRs. The data obtained from deep mutational scanning reveal that the majority of the 52 CDR residues are utilized differently for the two antigen binding function and permit, for the first time, the engineering of several DAF variants with sub-nanomolar affinity against two structurally unrelated antigens. The improved variants show similar blocking activity of receptor binding as the high affinity mono-specific antibodies against these two proteins, demonstrating the feasibility of generating a dual specificity binding surface with comparable properties to individual high affinity mono-specific antibodies.  相似文献   

12.
A new isoform of the light chain of a fully human monoclonal immunoglobulin gamma2 (IgG2) antibody panitumumab against human epidermal growth factor receptor (EGFR) was generated by in vitro aging. The isoform was attributed to the isomerization of aspartate 92 located between phenylalanine 91 and histidine 93 residues in the antigen-binding region. The isomerization rate increased with increased temperature and decreased pH. A size-exclusion chromatography binding assay was used to show that one antibody molecule was able to bind two soluble extracellular EGFR molecules in solution, and isomerization of one or both Asp-92 residues deactivated one or both antigen-binding regions, respectively. In addition, isomerization of Asp-92 showed a decrease in in vitro potency as measured by a cell proliferation assay with a 32D cell line that expressed the full-length human EGFR. The data indicate that antibodies containing either one or two isomerized residues were not effective in inhibiting EGFR-mediated cell proliferation, and that two unmodified antigen binding regions were needed to achieve full efficacy. For comparison, the potency of an intact IgG1 antibody cetuximab against the same receptor was correlated with the bioactivity of its individual antigen-binding fragments. The intact IgG1 antibody with two antigen-binding fragments was also much more active in suppressing cell proliferation than the individual fragments, similar to the IgG2 results. These results indicated that avidity played a key role in the inhibition of cell proliferation by these antibodies against the human EGFR, suggesting that their mechanisms of action are similar.  相似文献   

13.
Monoclonal antibodies (mAb) are not only useful reagents but also represent a promising type of therapeutics due to their high affinity and exquisite specificity for their antigens. A critical step in mAb generation is to identify antigen-specific antibodies. Although enzyme-linked immunosorbent assay (ELISA) has been broadly applied for antibody selection against secreted antigens, an inherent disadvantage for ELISA is the difficulty in identifying antibodies that recognize the native conformation of cell surface antigens. To overcome this drawback, the authors have developed a high-throughput cell-based antibody binding assay using fluorometric microvolume assay technology (FMAT). This method offers a homogeneous assay for detection of antibody binding to its antigen on the cell surface. To distinguish antibodies that bind to antigen on the cell surface from those that bind nonspecifically to cells, the binding is assessed using both antigen-expressing cells and related cells devoid of the antigen expression. This assay can detect antibodies at a concentration as low as 5 ng/mL and cell surface antigen as low as 9000 copies per cell. Results demonstrate that the FMAT method provides a sensitive and homogeneous assay to detect antibody binding to cell surface antigens and is amenable for high-throughput hybridoma selection.  相似文献   

14.
Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.  相似文献   

15.
To investigate the role of Vernier zone residues, which are comprised in the framework regions and underlie the complementarity-determining regions (CDRs) of antibodies, in the specific, high affinity interactions of antibodies with their targets, we focused on the variable domain fragment of murine anti-human epidermal growth factor receptor antibody 528 (m528Fv). Grafting of the CDRs of m528Fv onto a selected framework region of human antibodies, referred to as humanization, reduced the antibody's affinity for its target by a factor of 1/40. The reduction in affinity was due to a substantial reduction in the negative enthalpy change associated with binding. Crystal structures of the ligand-free antibody fragments showed no noteworthy conformational changes due to humanization, and the loop structures of the CDRs of the humanized antibodies were identical to those of the parent antibodies. Several mutants of the CDR-grafted (humanized) variable domain fragment (h528Fv), in which some of the Vernier zone residues in the heavy chain were replaced with the parental murine residues, were constructed and prepared using a bacterial expression system. Thermodynamic analyses of the interactions between the mutants and the soluble extracellular domain of epidermal growth factor receptor showed that several single mutations and a double mutation increased the negative enthalpy and heat capacity changes. Combination of these mutations, however, led to somewhat reduced negative enthalpy and heat capacity changes. The affinity of each mutant for the target was within the range for the wild-type h528Fv, and this similarity was due to enthalpy-entropy compensation. These results suggest that Vernier zone residues make enthalpic contributions to antigen binding and that the regulation of conformational entropy changes upon humanization of murine antibodies must be carefully considered and optimized.  相似文献   

16.
Antibodies provide immune protection by recognizing antigens of diverse chemical properties, but elucidating the amino acid sequence-function relationships underlying the specificity and affinity of antibody-antigen interactions remains challenging. We designed and constructed phage-displayed synthetic antibody libraries with enriched protein antigen-recognition propensities calculated with machine learning predictors, which indicated that the designed single-chain variable fragment variants were encoded with enhanced distributions of complementarity-determining region (CDR) hot spot residues with high protein antigen recognition propensities in comparison with those in the human antibody germline sequences. Antibodies derived directly from the synthetic antibody libraries, without affinity maturation cycles comparable to those in in vivo immune systems, bound to the corresponding protein antigen through diverse conformational or linear epitopes with specificity and affinity comparable to those of the affinity-matured antibodies from in vivo immune systems. The results indicated that more densely populated CDR hot spot residues were sustainable by the antibody structural frameworks and could be accompanied by enhanced functionalities in recognizing protein antigens. Our study results suggest that synthetic antibody libraries, which are not limited by the sequences found in antibodies in nature, could be designed with the guidance of the computational machine learning algorithms that are programmed to predict interaction propensities to molecules of diverse chemical properties, leading to antibodies with optimal characteristics pertinent to their medical applications.  相似文献   

17.
Rabbit, mouse, and guanaco cytochromes c differ from each other by only two amino acid residues. The identification is described of all of the antigenic determinants of mouse and guanaco cytochrome c that elicit an antibody response in rabbits, and those of the rabbit and guanaco proteins that elicity antibodies in the mouse. All except one of these sites center around single amino acid residue differences between the antigen and the host cytochrome c. The corresponding antibody popylations bind only to the areas of the protein in which the substitutions occur. Such antigenic determinants manifested in rabbits by quanaco and mouse cytochromes c are centered around residues 62 and 89, and residues 44 and 89, respectively. Similarly, the mouse recognizes sites containing residues 44 and 62 in guanaco cytochrome c, and residues 44 and 89 in rabbit cytochrome c. In none of these instances has a change in sequence failed to produce an antibody response. Each of these determinants appears to elicit and bind to its antibody, independently of other determinants present on the protein. In addition, two different autoantigenic responses have been detected. The antibodies produced against the determinant formed by glutamyl residue 62 of the guanaco protein in both rabbits and mice, the cytochromes c of which carry an aspartyl residue in that position, also bind to the aspartyl-containing region but with lower affinity. However, mouse and rabbit cytochrome c also elicit antibodies to the area of residue 62 in rabbits and mice, respectively, and these antibodies still bind more strongly to the glutamyl-than to the aspartyl-containing determinant. This last response occurs only when there are residue substitutions elsewhere in the molecule, because mice and rabbits fail to respond to their own cytochrome c. Antibodies produced in mice against the change from alanyl to valyl residue 44 by rabbit and guanaco cytochromes c also bind to the alanyl-containing determinant, except less tightly than to the valyl region. Conversely, antibodies raised in rabbits against the change from valyl to alanyl residue 44 only bind to this region when it carries an alanine. It is suggested that antigenic determinants that arise as a result of amino acid residue substitutions between the immunizing and the corresponding host protein, without a change in the spatial arrangement of the polypeptide backbone, be termed topographic determinants.  相似文献   

18.
Monoclonal antibodies developed for therapeutic or diagnostic purposes need to demonstrate highly defined binding specificity profiles. Engineering of an antibody to enhance or reduce binding to related antigens is often needed to achieve the desired biologic activity without safety concern. Here, we describe a deep sequencing-aided engineering strategy to fine-tune the specificity of an angiopoietin-2 (Ang2)/vascular endothelial growth factor (VEGF) dual action Fab, 5A12.1 for the treatment of age-related macular degeneration. This antibody utilizes overlapping complementarity-determining region (CDR) sites for dual Ang2/VEGF interaction with KD in the sub-nanomolar range. However, it also exhibits significant (KD of 4 nM) binding to angiopoietin-1, which has high sequence identity with Ang2. We generated a large phage-displayed library of 5A12.1 Fab variants with all possible single mutations in the 6 CDRs. By tracking the change of prevalence of each mutation during various selection conditions, we identified 35 mutations predicted to decrease the affinity for Ang1 while maintaining the affinity for Ang2 and VEGF. We confirmed the specificity profiles for 25 of these single mutations as Fab protein. Structural analysis showed that some of the Fab mutations cluster near a potential Ang1/2 epitope residue that differs in the 2 proteins, while others are up to 15 Å away from the antigen-binding site and likely influence the binding interaction remotely. The approach presented here provides a robust and efficient method for specificity engineering that does not require prior knowledge of the antigen antibody interaction and can be broadly applied to antibody specificity engineering projects.  相似文献   

19.
Bispecific antibodies (BsAbs) are designed to engage two antigens simultaneously, thus, effectively expanding the ability of antibody-based therapeutics to target multiple pathways within the same cell, engage two separate soluble antigens, bind the same antigen with distinct paratopes, or crosslink two different cell types. Many recombinant BsAb formats have emerged, however, expression and purification of such constructs can often be challenging. To this end, we have developed a chemical strategy for generating BsAbs using native IgG2 architecture. Full-length antibodies can be conjugated via disulfide bridging with linkers bearing orthogonal groups to produce BsAbs. We report that an αHER2/EGFR BsAb was successfully generated by this approach and retained the ability to bind both antigens with no significant loss of potency.  相似文献   

20.
The variable regions of antibody molecules bind antigens with high affinity and specificity. This binding is imparted largely by the hypervariable portions of the variable region. Hypervariable regions typically fold into reverse turn or loop structures. Peptides derived from antibody hypervariable region sequences can bind antigens with similar specificity, albeit with markedly lower affinity. In this study, cyclic and dimeric peptide analogs of an anti-idiotypic/antireceptor antibody hypervariable region were developed. This antibody (87.92.6) binds to reovirus type 3 receptors on cells as well as to a neutralizing anti-reovirus type 3 monoclonal antibody (9B.G5). The cyclic peptides were utilized to probe the optimal conformation for binding to both the receptor and 9B.G5. By dimerizing or constraining the conformation of these peptides, higher affinity binding was produced. By utilizing several different cyclic peptides, the optimal conformation for binding was established. The conformationally optimized cyclic peptide possessed greater than 40-fold higher affinity for the receptor and the idiotype than the linear analog. This study suggests that conformationally constrained and dimeric peptides derived from antibody hypervariable loop sequences can bind antigens (including receptors) with reasonable affinity. hypervariable loop sequences can bind antigens (including  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号