首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Big-vein diseased lettuce plants contained an agent that could consistently be transmitted mechanically to Chenopodium quinoa, in which it caused characteristic local lesions. Mechanical transmission was also possible to five other plant species including Nicotiana benthamiana, N. clevelandii and N. occidentalis, but not to lettuce. Symptoms in N. occidentalis were reminiscent of those of tobacco stunt disease. With zoospores of originally virus-free Olpidium brassicae, subcultured on the roots of N. occidentalis-P1, sap-inoculated either from lettuce or via C. quinoa, the agent could be transferred back to lettuce in which characteristic symptoms of big-vein were reproduced.
Infectivity in sap at room temperature was reduced by half after 2 h, and was practically lost after one day. Thermal inactivation was considerable at 45°C and complete at 50°C. Most infectivity was lost at dilution 1:5, and the dilution end-point was 1:10. The agent survived well in leaf material stored at -80°C, or in sap from leaves ground in buffer with DIECA and activated charcoal and freeze-dried. Mechanical transmission required low dilution (1:2) in the buffer with charcoal, and chilling of materials and utensils.
In lettuce, N. occidentalis-P1 and C. quinoa, with all isolates tested but one, infection was always associated with the presence of rod-shaped particles which in the literature have been associated with lettuce big-vein, and are similar to those described for tobacco stunt. Results obtained corroborate the assumption that these particles are the virions of lettuce big-vein virus. The virus also resembles tobacco stunt virus in mechanical transmissibility, instability in sap and symptoms on N. occidentalis.  相似文献   

2.
Spatial patterns of spread of lettuce big‐vein disease (LBVD) and Lettuce necrotic yellows virus (LNYV) were examined in two plantings each consisting of two blocks of lettuce. LBVD came from planting land infested with viruliferous Olpidium brassicae resting spores, while LNYV was introduced by aphid vectors from external sources consisting of LNYV‐infected sowthistle (Sonchus oleraceus) weeds. Clustering of LBVD was obvious in an area where the soil was heavily infested with only sporadic occurrence elsewhere. There was a steep decline in LNYV incidence over distance from a concentrated external weed source, with clustering of LNYV‐infected plants at the crop edge closest to it. There was no evidence of secondary spread with LBVD or LNYV.  相似文献   

3.
Transmission of Pepino mosaic virus (PepMV) by the fungal vector Olpidium virulentus was studied in two experiments. Two characterized cultures of the fungus were used as stock cultures for the assay: culture A was from lettuce roots collected in Castellón (Spain), and culture B was from tomato roots collected in Murcia (Spain). These fungal cultures were maintained in their original host and irrigated with sterile water. The drainage water collected from irrigating these stock cultures was used for watering PepMV‐infected and non‐infected tomato plants to constitute the acquisition–source plants of the assay, which were divided into six different plots: plants containing fungal culture A (non‐infected and PepMV‐infected); plants containing fungal culture B (non‐infected and PepMV‐infected); PepMV‐infected plants without the fungus; and plants non‐infected either with PepMV and the fungus. Thirty‐six healthy plants grouped into six plots, which constituted the virus acquisition–transmission plants of the assay, were irrigated with different drainage waters obtained by watering the different plots of the acquisition–source plants. PepMV was only transmitted to plants irrigated with the drainage water collected from PepMV‐infected plants whose roots contained the fungal culture B from tomato with a transmission rate of 8%. No infection was detected in plants irrigated with the drainage water collected from plots with only a fungus or virus infection. Both the virus and fungus were detected in water samples collected from the drainage water of the acquisition–source plants of the assay. These transmission assays demonstrated the possibility of PepMV transmission by O. virulentus collected from tomato crops.  相似文献   

4.
Triacontanol at concentrations from 2.3 × 10-9 M to 2.3 × 10-7 M did not affect the germination of lettuce ( Lactuca sativa L., cv. Grand Rapids) seeds in darkness, stimulated by light at 25°C or by benzyladenine at 31°C. Stimulation of seed germination by gibberellin A3 (10-5 M ) was significantly inhibited by triacontanol; the most effective concentration was 4.6 × 10-8 M. Pulse experiments demonstrated that triacontanol was ineffective when applied later than gibberellin, whereas an inverse sequence of treatment caused an inhibition comparable to that resulting from continuous treatment of seeds with both factors. Possible interaction of triacontanol with gibberellin receptor is discussed.  相似文献   

5.
Light-requiring Grand Rapids lettuce ( Lactuca sativa L.) achenes develop skotodormancy when imbibed in darkness for 7 days at 25°C. Redried skotodormant achenes maintain this type of dormancy upon subsequent rehydration. At 25°C full germination of skotodormant achenes can be induced by continuous and intermittent red light illumination as well as by several brief red irradiations given daily. One brief (10 min) red light irradiation can partly break skotodormancy at 20°C, while at lower temperatures the same treatment results in full induction of germination. Phytochrome control of the release from skotodormancy is proven by a) the dependence of the germination response on the relative sequence of red and far-red light in cyclic irradiations, and b) the reversion of red action by subsequent far-red irradiation. The time course of germination of skotodormant achenes treated with intermittent red light depends upon the length of dark interval between the light pulses. Germination is considerably delayed compared to that of non-skotodormant ones, induced by a single brief red light treatment. This fact in combination with the requirement, over a long period of time, of Pfr action for full manifestation of germination, indicates that skotodormancy is a deeper form of dormancy. It is concluded that the germination of lettuce achenes may always be subjected to phytochrome control.  相似文献   

6.
The genetics of partial resistance (PR) of lettuce to the leaf aphid species Macrosiphum euphorbiae and Uroleucon sonchi was studied in F1 and F2 generations of six crosses between four cultivars. Partial resistance inherited mainly additively. With M. euphorbiae the estimates of broad-sense F2 heritability were low and non-significant in crosses between parents of the same resistance level (S x S and PR x PR), and high (0.69-0.76) in crosses between parents of different resistance level (PR x S). The level of resistance in lettuce cultivars ‘Charan’ and ‘Marbello’ led to a marked reduction in percentage of plants with colonies of M. euphorbiae in a field experiment. With U. sonchi the highest estimates of F2 heritability were found in ‘Charan x ‘Avoncrisp’ (0.51) and ‘Charan’ x ‘Chou de Naples' (0.48). In the cross ‘Charan’ x ‘Marbello’ (PR x PR) no significant segregation for resistance to M. euphorbiae was found, indicating that these cultivars may have the same genetic constitution for resistance to M. euphorbiae.‘Charan’ has additional genes for resistance to U. sonchi, that are not, or only weakly linked to the gene(s) for resistance to M. euphorbiae. The heritability estimates for the partial resistance to M. euphorbiae and U. sonchi indicate that it is possible to effectively select for these traits in plant breeding programmes.  相似文献   

7.
Root architecture in cultivated and wild lettuce (Lactuca spp.)   总被引:2,自引:1,他引:1  
Root architecture is described for intact root systems of cultivated (Lactuca sativa L.) and wild (L. serriola L.) lettuce, grown for 5 to 6 weeks in greenhouse pot and cylinder experiments in coarse-textured soil. L. sativa cv. Salinas and a sclinas line of L. serriola attained the same biomass at 4 to 6 weeks after planting. Root biomass allocation was also similar, but root architecture differed. In the top zone along the tap root (0 to 5 cm), Salinas tended to produce more laterals, a greater total root length, and more external links (segments that originate at a branch point and end in a meristem) than wild lettuce. In the 5 to 55cm zone of the tap root, these measures were greater in the wild species. These patterns of root structure were generally corroborated by a second cylinder study with a different pair of L. sativa and L. serriola. Regressions of root structural traits were made against total root dry weight as a means to compare root architecture independently of the size of the root system. Regressions demonstrated that production of root segments differed between the two species; for example the slope for the regression of summed external link length in the top 0 to 5 cm with total root dry weight was significantly higher for Salinas, indicating that the rate of construction in the top 0 to 5cm was greater for cultivated than for wild lettuce. Yet, from 5 cm depth to the tap root tip, the rate of construction of external link length was greater in L. serriola. For many of these types of regression, r2 and mean slope ± SE suggested that more variation occurred in cultivated than wild lettuce, yet genetic heterogeneity was probably low within the studied taxa. Inadvertent selection may have occurred in the breeding of cultivated lettuce varieties for increased root growth in the surface zone where water and fertilizer are applied, and for greater plasticity in construction of root segments, which might maximize the efficiency of exploitation of soil moisture and nutrients.  相似文献   

8.
Lettuce mosaic virus (LMV) is transmitted by aphid vectors in a nonpersistent manner as well as by seeds. The virus causes severe disease outbreaks in commercial lettuce crops in several regions of Spain. The temporal and spatial patterns of spread of LMV were studied in autumn 2002 in the central region of Spain. Symptomatic lettuce (var. Cazorla) plant samples were collected weekly, first at the seedling stage from the greenhouse nursery and later outdoors after transplantation. The exact position of symptomatic plants sampled in the field was recorded and then material was tested by enzyme‐linked immunosorbent assay to assess virus infection. Cumulative spatial data for infected plants at different growth stages were analysed using spatial analysis by distance indices. For temporal analysis, the monomolecular, Gompertz, logistic and exponential models were evaluated for goodness of fit to the entire set of disease progress data obtained. The results indicated that the disease progress curve of LMV epidemics in the selected area is best described by a Gompertz model and that the epidemic follows a polycyclic disease progression. Our data suggest that secondary cycle of spread occurs when noncolonising aphid species land on the primary infected plants (probably coming from infected seed) and move to adjacent plants before leaving the crop. The role of weeds growing close to lettuce fields as potential inoculum sources of virus and the aphid species most likely involved in the transmission of LMV were also identified.  相似文献   

9.
A virus survey was conducted during the spring and autumn of 2001 and 2002 to determine the presence, prevalence and distribution in Spain of the viruses that are most commonly found infecting lettuce and Brassica worldwide. Crop plants showing virus symptoms from the principal lettuce and Brassica-growing regions of Spain, and some samples of the annual and perennial flora nearby, were tested by enzyme-linked immunosorbent assays using specific commercial antibodies against the following viruses: Alfalfa mosaic virus (AMV), Broad bean wilt virus 1 (BBWV-1), Beet western yellows virus (BWYV), Cauliflower mosaic virus (CaMV), Cucumber mosaic virus (CMV), Lettuce mosaic virus (LMV), Pea seed-borne mosaic virus (PSbMV), Turnip mosaic virus (TuMV) and Tomato spotted wilt virus (TSWV). Samples were also tested with a Potyvirus genus antibody. Virus incidence was much lower in spring than in autumn, especially in 2001. In spring 2002, CMV and LMV were the most prevalent viruses in lettuce, while CaMV was the most important virus present in Brassica crops grown in Navarra, followed by CMV and BWYV. In the autumn, the spectrum of viruses was different; potyviruses were widespread in lettuce grown in Madrid, but TSWV and BWYV were predominant in the Murcia region. The prevalent Potyvirus detected in lettuce fields was LMV, but none of the samples collected were positive for PSbMV or TuMV. In Brassica crops, TSWV was the most abundant in autumn-sown crops, especially in the Navarra region. All of the viruses present in lettuce and Brassica were also frequently detected in their associated natural vegetation at the same time, suggesting that they probably play an important role as virus reservoirs. Sonchus spp. were particularly common and were frequently infected with CMV, LMV and BWYV. Another common species, Chenopodium album, was often infected with TSWV and BWYV. Multiple infections were common, especially in non-crop plants, and the most common combination was BWYV and TSWV. The role of weeds in the epidemiology of viruses that infect lettuce and Brassica crops in Spain is discussed.  相似文献   

10.
莴笋炭疽病病原鉴定   总被引:1,自引:0,他引:1  
【背景】2018年7-8月,甘肃省兰州市永登县武胜驿镇种植的莴笋大面积发生炭疽病,约40%的地块发病,绝收面积达10%。【目的】明确莴笋炭疽病的病原。【方法】采用组织分离法进行病原菌分离;通过Koch’s法则明确分出病菌的致病性;采用形态学和分子生物学方法对病原菌进行种类鉴定。【结果】分离得到形态特征一致的真菌菌株3株。在PDA平板上20°C培养7 d,病菌分生孢子无色,单隔,梭形,(10.44-19.40)μm×(2.61-4.48)μm。代表性菌株Lett-11接种莴笋离体叶片可引起与自然发病相似的症状。BLASTn分析结果显示,菌株Lett-11 (GenBank登录号MK252097)的r DNA-ITS序列与莴苣盘二孢菌Marssonina panattoniana strain CBS 163.25 (GenBank登录号MH854831.1)的序列相似性达99%。【结论】引起莴笋炭疽病的病原菌被鉴定为莴苣盘二孢菌Mar. panattoniana [Synonymy:Microdochium panattonianum],这是莴苣盘二孢菌引起莴笋炭疽病在甘肃的首次报道。  相似文献   

11.
Independent mode of action of cyanide and light on lettuce seed germination   总被引:1,自引:0,他引:1  
Gaseous hydrogen cyanide stimulated subsequent lettuce seed ( Lactuca sativa L. cv. Grand Rapids) germination in darkness when applied for 1 or 22 h. Optimum concentrations were 5 × 10-5 M and 10-6 M, respectively. However, seeds did not germinate in the presence of HCN even at 10-8 M. The effects of unsaturating red light (R) and HCN (1 μM) showed a slight synergism. On the other hand, there was no difference between the effects of the sequences HCN – R and R – HCN. Stimulation of lettuce germination by an HCN pulse was practically not affected by far-red illumination, independently of the sequence of treatments. It was concluded that the primary stimulatory effect of HCN is of a regulatory character. Cyanide controls a regulatory point different from that affected by activated phytochrome.  相似文献   

12.
Iodine is considered an essential trace element for mammals, and its deficiency is related to numerous pathologies as severe as goitre, reproductive failure, mental retardation and brain damage, among others. Currently, about 30% of the world's population are affected by this deficiency, and thus, in an attempt to ameliorate these nutritional disorders, we propose a biofortification programme with iodine by an application of different dosages and forms of this element (iodide versus iodate) in lettuce plants. In this work, a study has been made of the iodine concentration in roots and edible leaves and their influence on nutritional quality through an analysis of its antioxidant capacity. The results showed that the most appropriate application rates in hydroponic cultivation were 40 μM or lower in the form I because these concentrations did not reduce biomass in the treated plants with respect to control plants and caused a foliar accumulation of this element that guarantees the viability of this type of programmes. Furthermore, these data are novel, given that the treated plants show a significant increase in antioxidant compounds after the application of iodine.  相似文献   

13.
Resistance to bialaphos, a broad-spectrum herbicide, was introduced into Lactuca sativa cv. Evola by Agrobacterium tumefaciens-mediated transformation. A. tumefaciens strains 0310 and 1310, both carrying the bialaphos resistance (bar) and neomycin phosphotransferase (nptII) genes, were used for transformation. Primary transformants were selected on kanamycin sulphate-supplemented shoot regeneration medium. Integration of both transgenes was confirmed by non-radioactive Southern hybridisation. The hypervirulent plasmid ToK47 in A. tumefaciens strain 1310 generated multiple insertions of T-DNA in some transgenic plants; the absence of pToK47 (strain 0310) resulted in single gene inserts in all plants tested. Resistance to glufosinate ammonium was observed in axenic seedlings grown on medium supplemented with the herbicide at 5 mg l–1 and in glasshouse-grown plants sprayed with the compound at 300 mg l–1. Stable expression of the bar gene was observed in R2 generation plants. The kanamycin resistance of R1 seedlings was observed by germinating seeds on medium supplemented with 200 mg l–1 kanamycin sulphate. The presence of NPTII protein and PAT enzyme activity were demonstrated by ELISA and PAT enzyme assay respectively. Transgenes segregated in a Mendelian fashion in some plant lines in the R1 generation; herbicide resistance also segregated in the expected ratio in the R2 generation in most transgenic lines. This study confirmed that an agronomically important transgene can be integrated and stably expressed over several generations in lettuce.  相似文献   

14.
Mirafiori lettuce virus (MiLV), a plant RNA virus belonging to the genus Ophiovirus, is considered to be a causal agent of lettuce big-vein disease. In this study, inverted repeats of a fragment of the coat protein (CP) gene of MiLV in a binary vector pBI121 were transferred via Agrobacterium tumefaciens-mediated transformation into lettuce (Lactuca sativa L.) in order to generate MiLV-resistant lettuce. Forty T1 lines were analyzed for resistance to MiLV by detecting MiLV in leaves, and two lines (lines 408 and 495) were selected as resistant to MiLV. Both lines were susceptible to Lettuce big-vein associated virus (LBVaV), and line 495 showed higher resistance to MiLV than line 408. Further analysis indicated that line 495 showed resistance to big-vein symptoms expression. Small interfering RNA (siRNA) molecules derived from the transgene were detected in plants of line 495. MiLV was detected in roots but not in leaves of line 495 plants after MiLV inoculation, suggesting that resistance to MiLV is less effective in roots than in leaves.  相似文献   

15.
In order to clarify the effect of protein synthesis inhibition on anoxiatolerance, lettuce (Lactuca sativa L.) seedlings weresubjected to anoxic stress in the presence of cycloheximide (CHM). Atconcentrations greater than 3 , CHM decreased thesurvivability of the roots and the survivability decreased with increasing CHMdoses. At 100 CHM, the survivability was 41% of thatof non-CHM-treated seedlings. Alcohol dehydrogenase (EC 1.1.1.1) activity andATP concentration in the roots of the seedlings were also decreased by CHM,which may be one of the causes of the reduced anoxia tolerance of the seedlings.  相似文献   

16.
17.
【目的】明确云南省番木瓜环斑病毒(Papaya ringspot virus,PRSV)发生情况,并对其进行遗传多样性分析。【方法】利用RT-PCR技术,于2011-2012年对采自云南省昆明市、楚雄州、保山市、德宏州、西双版纳州、临沧市、玉溪市、红河州、文山州等地的24个番木瓜、南瓜和罗汉果疑似病样进行扩增、测序,对样品中获得的940 bp PRSV部分cp基因及3′端非编码区的序列应用分子生物学软件MEGA 5进行系统发育分析。【结果】从17个样品中检测到了PRSV,检出率为70.8%,表明该病毒在云南的发生较为普遍。云南PRSV不同分离物间的核苷酸序列变异较大,与其他已报道的PRSV分离物之间的基因组3′端核苷酸序列一致性为81.7%-100%。基于PRSV的CP部分氨基酸序列及基因组3′端核苷酸的系统进化分析结果表明,来自亚洲、北美洲、南美洲和大洋洲的PRSV分离物可以分为2个组,其中第Ⅰ组均为来自中国的分离物,包括了大部分的PRSV云南分离物,第Ⅰ组内分离物间的差异较第Ⅱ组大;第Ⅱ组的分离物来源较为复杂,亚洲、北美洲、南美洲和大洋洲均有分布。基于PRSV CP部分氨基酸序列构建的系统进化树中,各分离物之间没有明显的地理和寄主相关性,而基于PRSV基因组3′端核苷酸序列构建的系统进化树中,除中国大陆分离物和印度分离物外,其他地区的PRSV在进化上与其地理来源有明显的相关性。【结论】PRSV在云南的昆明市、楚雄州、保山市、德宏州、西双版纳州、临沧市、玉溪市、红河州和文山州等地都有不同程度发生,且为害寄主植物涉及番木瓜、南瓜及罗汉果,PRSV侵染罗汉果为云南首次发现。云南PRSV分离物的分子变异很大,但是关于PRSV的分子变异是否与其地理分布及症状表现有关,以及P型和W型的分子区分特征还有待进一步研究。  相似文献   

18.
Occurrence and relative incidence of viruses infecting papaya in Venezuela   总被引:1,自引:0,他引:1  
A survey of the main papaya (Carica papaya L.) production fields in Venezuela during 1997, indicated that crops were heavily affected with various virus‐like symptoms. A total of 745 samples from papaya plants showing symptoms suggestive of virus infection were collected and analysed using electron microscopy and enzyme‐linked immunosorbent assay (ELISA). Papaya ringspot virus (PRSV) and Papaya mild yellowing virus (PMYV) were the most frequently found viruses, which also occurred, in mixed infections. Rhabdovirus‐like particles were found only in samples collected in Distrito Federal (D.F). Papaya mosaic virus (papMV) and Tomato spotted wild virus (TSW V) were not detected during the survey.  相似文献   

19.
The first major reserves to be mobilized following germination of light-promoted lettuce seeds ( Lactuca saliva L. cv. Grand Rapids) are the carbohydrates, largely mannans, located within the cell walls of the endosperm. When these have been depleted, the cotyledonary reserves are hydrolysed; the first of these to decline is protein. Water-, salt- and ethanol-soluble proteins are mobilized simultaneously, and coincident with their loss from the cotyledons there is an increase in aminopeptidase activity. The level of enzyme activity increases appreciably in irradiated seeds after about 30 h from the start of imbibition. Essential for this increase, at least initially, is the presence of the axis - first to perceive the light stimulus, and then to produce and/or release a chemical promoter which diffuses into the cotyledons and effects the rise in enzyme activity. Protein synthesis in the cotyledons is a prerequisite for both development and maintenance of the increased aminopeptidase activity.  相似文献   

20.
Growth substances, α-naphthaleneacetic (NAA) and kinetin, had an important role in the regulation of lateral root (LR) formation in lettuce ( Lactuca sativa L. cv. Grand Rapids) seedling roots. NAA (10-5 M ) was a potent stimulator of LR initiation and caused a 600% increase in the number of lateral root primordia (LRP) compared to untreated roots. NAA was required for only the first 20 h of the 72 h treatment period for maximum stimulation of LRP initiation. Kinetin (2 × 10-5 M ) effectively prevented the spontaneous formation of LRP and inhibited the NAA-stimulated production of LRP. Kinetin inhibition was maximal during the first 20 h of NAA treatment and this effect was not overcome by subsequent supply of NAA. Also, lettuce roots were most sensitive to kinetin at 20 h of NAA treatment, when the first signs of cell division were observed in the pericycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号