首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The microbial ecology of the nitrogen cycle in agricultural soils is an issue of major interest. We hypothesized a major effect by farm management systems (mineral versus organic fertilizers) and a minor influence of soil texture and plant variety on the composition and abundance of microbial nitrifiers. We explored changes in composition (16S rRNA gene) of ammonia-oxidizing archaea (AOA), bacteria (AOB), and nitrite-oxidizing bacteria (NOB), and in abundance of AOA and AOB (qPCR of amoA genes) in the rhizosphere of 96 olive orchards differing in climatic conditions, agricultural practices, soil properties, and olive variety. Majority of archaea were 1.1b thaumarchaeota (soil crenarchaeotic group, SCG) closely related to the AOA genus Nitrososphaera. Most AOB (97%) were identical to Nitrosospira tenuis and most NOB (76%) were closely related to Nitrospira sp. Common factors shaping nitrifiers assemblage composition were pH, soil texture, and olive variety. AOB abundance was positively correlated with altitude, pH, and clay content, whereas AOA abundances showed significant relationships with organic nitrogen content and exchangeable K. The abundances of AOA differed significantly among soil textures and olive varieties, and those of AOB among soil management systems and olive varieties. Overall, we observed minor effects by orchard management system, soil cover crop practices, plantation age, or soil organic matter content, and major influence of soil texture, pH, and olive tree variety.  相似文献   

3.
Forest fertilization in British Columbia is increasing, to alleviate timber shortfalls resulting from the mountain pine beetle epidemic. However, fertilization effects on soil microbial communities, and consequently ecosystem processes, are poorly understood. Fertilization has contrasting effects on ammonia-oxidizing bacteria and archaea (AOB and AOA) in grassland and agricultural ecosystems, but there are no studies on AOB and AOA in forests. We assessed the effect of periodic (6-yearly application 200 kg N ha?1) and annual (c. 75 kg N ha?1) fertilization of lodgepole pine and spruce stands at five long-term maximum productivity sites on potential nitrification (PN), and the abundance and diversity of AOB, AOA and Nitrobacter and Nitrospira-like nitrite-oxidizing bacteria (NOB). Fertilization increased AOB and Nitrobacter-like NOB abundances at some sites, but did not influence AOA and Nitrospira-like NOB abundances. AOB and Nitrobacter-like NOB abundances were correlated with PN and soil nitrate concentration; no such correlations were observed for AOA and Nitrospira-like NOB. Autotrophic nitrification dominated (55–97%) in these forests and PN rates were enhanced for up to 2 years following periodic fertilization. More changes in community composition between control and fertilized plots were observed for AOB and Nitrobacter-like NOB than AOA. We conclude that fertilization causes rapid shifts in the structure of AOB and Nitrobacter-like NOB communities that dominate nitrification in these forests.  相似文献   

4.
Biochemical processes relevant to soil nitrogen (N) cycling are performed by soil microorganisms affiliated with diverse phylogenetic groups. For example, the oxidation of ammonia, representing the first step of nitrification, can be performed by ammonia oxidizing bacteria (AOB) and, as recently reported, also by ammonia oxidizing archaea (AOA). However, the contribution to ammonia oxidation of the phylogenetically separated AOA versus AOB and their respective responsiveness to environmental factors are still poorly understood. The present study aims at comparing the capacity of AOA and AOB to momentarily respond to N input and increased soil moisture in two contrasting forest soils. Soils from the pristine Rothwald forest and the managed Schottenwald forest were amended with either NH(4)(+)-N or NO(3)(-)-N and were incubated at 40% and 70% water-filled pore space (WFPS) for four days. Nitrification rates were measured and AOA and AOB abundance and community composition were determined via quantitative PCR (qPCR) and terminal restriction length fragment polymorphism (T-RFLP) analysis of bacterial and archaeal amoA genes. Our study reports rapid and distinct changes in AOA and AOB abundances in the two forest soils in response to N input and increased soil moisture but no significant effects on net nitrification rates. Functional microbial communities differed significantly in the two soils and responded specifically to the treatments during the short-term incubation. In the Rothwald soil the abundance and community composition of AOA were affected by the water content, whereas AOB communities responded to N amendment. In the Schottenwald soil, by contrast, AOA responded to N addition. These results suggest that AOA and AOB may be selectively influenced by soil and management factors.  相似文献   

5.
Ongoing climate change, characterized by winter warming, snow cover decline and extreme weather events, is changing terrestrial ecosystem processes in high altitude and latitude regions. Winter soil processes could be particularly sensitive to climate change. In fact, winter warming and snow cover decline are interdependent in cold biomes, and have a synergistic effect on soil processes. Soil microorganisms not only play crucial roles in material cycling and energy flow, but also act as sensitive bio-indicators of climate change. However, little information is available on the effect of winter warming on forest soil ammonia-oxidizing bacteria (AOB) and archaea (AOA). The alpine and subalpine forest ecosystems on the eastern Tibet Plateau have important roles in conserving soil, holding water, and maintaining biodiversity. To understand the changes in AOB and AOA communities under climate change scenarios, an altitudinal gradient experiment in combination with soil column transplanting was conducted at the Long-term Research Station of Alpine Forest Ecosystems, which is situated in the Bipeng Valley of Lixian County, Sichuan, China. Thirty intact soil columns under an alpine forest at an altitude of 3582 m were transplanted and incubated at 3298 m and 3023 m forest sites, respectively. Compared with the 3582 m, we expected air temperature increases of 2 °C and 4 °C at the 3298 m and 3023 m, respectively. However, the temperatures in the soil organic layer (OL) and mineral soil layer (ML) increased by 0.27 °C and 0.13 °C, respectively, at 3023 m and ? 0.36 °C and ? 0.35 °C at 3298 m. Based on a previous study and with simultaneous monitoring of soil temperature, the abundances of AOB and AOA communities in both the OL and ML were measured by qPCR in December 2010 (i.e., the onset of the frozen soil period) and March 2011 (i.e., the late frozen soil period). The soil columns incubated at 3023 m had relatively higher AOB abundances and lower AOA/AOB ratios than those at 3298 m, while higher AOA abundances and AOA/AOB ratios were observed at 3298 m. The abundance of the microbial community at the late frozen period was higher than that at the onset of frozen soil, and the changes in microbial community abundance at the late frozen period were more substantial. Furthermore, the nitrate nitrogen (N) concentrations in both the OL and ML were significantly higher than ammonia N concentrations, implying that soil nitrate N is the primary component of the inorganic N pool in the alpine forest ecosystem. Additionally, the responses of AOA and AOB in the soil OL to soil column transplanting were more sensitive than the responses of those in ML. In conclusion, climate warming alters the abundance of the ammonia-oxidizing microbial community in the alpine forest ecosystem, which, in turn, might affect N cycling.  相似文献   

6.
Archaeal communities in arable soils are dominated by Nitrososphaeria, a class within Thaumarchaeota comprising all known ammonia-oxidizing archaea (AOA). AOA are key players in the nitrogen cycle and defining their niche specialization can help predicting effects of environmental change on these communities. However, hierarchical effects of environmental filters on AOA and the delineation of niche preferences of nitrososphaerial lineages remain poorly understood. We used phylogenetic information at fine scale and machine learning approaches to identify climatic, edaphic and geomorphological drivers of Nitrososphaeria and other archaea along a 3000 km European gradient. Only limited insights into the ecology of the low-abundant archaeal classes could be inferred, but our analyses underlined the multifactorial nature of niche differentiation within Nitrososphaeria. Mean annual temperature, C:N ratio and pH were the best predictors of their diversity, evenness and distribution. Thresholds in the predictions could be defined for C:N ratio and cation exchange capacity. Furthermore, multiple, independent and recent specializations to soil pH were detected in the Nitrososphaeria phylogeny. The coexistence of widespread ecophysiological differences between closely related soil Nitrososphaeria highlights that their ecology is best studied at fine phylogenetic scale.  相似文献   

7.
王智慧  蒋先军 《微生物学报》2021,61(7):1933-1944
[目的]揭示典型农田旱地紫色土硝化微生物的群落组成及其对pH的响应规律.[方法]针对同一母质发育但pH差异显著的3种紫色土,利用宏基因组技术深度测序研究土壤中硝化微生物丰度和群落,包括氨氧化古菌(ammonia-oxidizing archaea,AOA),氨氧化细菌(ammonia-oxidizing bacteri...  相似文献   

8.
农田温室气体减排已成为农业绿色发展的重要内容,驱动温室气体氧化亚氮(N2O)产生的氨氧化微生物受到了研究者们的广泛关注。为探究轮作模式对土壤氨氧化微生物群落的影响,基于田间定位试验,研究了夏红小豆-冬小麦、夏绿豆-冬小麦、夏花生-冬小麦、夏大豆-冬小麦和夏玉米-冬小麦5种轮作模式中冬小麦根际和非根际土壤氨氧化古菌(AOA)和氨氧化细菌(AOB)的群落组成和多样性变化特征。结果表明:与夏玉米-冬小麦模式相比,豆禾轮作模式增加了根际土中有机碳和硝态氮含量,以及非根际土中全氮和铵态氮含量。豆禾轮作模式降低了非根际土壤中AOA群落的ACE指数和Chao1指数,并显著降低根际土中AOB群落的ACE指数和Chao1指数(P<0.05)。豆禾轮作显著增加AOA群落中泉古菌门(Crenarchaeota)和AOB群落中变形菌门(Proteobacteria)某些类群的相对丰度(P<0.05)。根际土中豆禾轮作模式与麦玉模式的AOA群落结构发生明显分离,而非根际土中豆禾轮作模式与麦玉模式的AOB群落发生分离(P<0.05)。研究结果表明:豆禾轮作种植改变了AOA和AOB的群落结构和多样性,土壤pH值和速效氮含量是驱动AOA和AOB群落结构变化的重要因子,且根际与非根际土壤中氨氧化微生物存在生态位分离。  相似文献   

9.
生物结皮作为荒漠地表的重要覆被类型, 在荒漠生态系统的氮素循环中扮演重要角色。融雪期为古尔班通古特沙漠生物结皮的复苏和生长提供了充足的水分, 也成为该沙漠氮素固定和转化的重要时期, 但该时期生物结皮如何影响驱动氨氧化转化的微生物群落动态尚未明确。因此, 我们利用荧光定量PCR (fluorescent quantitative PCR, qPCR)方法分析融雪期生物结皮与去除结皮不同土层(0-2, 2-5, 5-10和10-20 cm)氨氧化菌群丰度特征, 结合潜在硝化速率和土壤理化参数, 探究融雪期生物结皮对荒漠土壤氮素转化作用。结果表明: 氨氧化古菌(ammonia-oxidizing archaea, AOA)是古尔班通古特沙漠土壤优势氨氧化菌, 生物结皮对0-2 cm层土壤中AOA、氨氧化细菌(ammonia-oxidizing bacteria, AOB) amoA基因丰度具有显著抑制作用(P < 0.01), 对10-20 cm层土壤中AOA amoA基因丰度具有显著促进作用(P < 0.01)。冗余分析(redundancy analysis, RDA)表明, AOA、AOB amoA基因丰度主要受土壤含水量和铵态氮含量的影响, 占总条件效应的54.90%。氨氧化速率分析发现, 去除生物结皮显著降低古尔班通古特沙漠土壤硝化作用潜力(P < 0.001), 证实生物结皮对荒漠土壤氮素转化具有重要的调控作用。综上所述, 古尔班通古特沙漠氨氧化微生物的分布规律受环境因子调控, 特别是生物结皮可以通过调节土壤含水量和铵态氮含量影响AOA和AOB的空间生态位分化, 促进沙漠土壤的硝化作用。  相似文献   

10.
Ammonia oxidation is the first and rate-limiting step of nitrification and is performed by both ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the environmental drivers controlling the abundance, composition, and activity of AOA and AOB communities are not well characterized, and the relative importance of these two groups in soil nitrification is still debated. Chinese tea orchard soils provide an excellent system for investigating the long-term effects of low pH and nitrogen fertilization strategies. AOA and AOB abundance and community composition were therefore investigated in tea soils and adjacent pine forest soils, using quantitative PCR (qPCR), terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of respective ammonia monooxygenase (amoA) genes. There was strong evidence that soil pH was an important factor controlling AOB but not AOA abundance, and the ratio of AOA to AOB amoA gene abundance increased with decreasing soil pH in the tea orchard soils. In contrast, T-RFLP analysis suggested that soil pH was a key explanatory variable for both AOA and AOB community structure, but a significant relationship between community abundance and nitrification potential was observed only for AOA. High potential nitrification rates indicated that nitrification was mainly driven by AOA in these acidic soils. Dominant AOA amoA sequences in the highly acidic tea soils were all placed within a specific clade, and one AOA genotype appears to be well adapted to growth in highly acidic soils. Specific AOA and AOB populations dominated in soils at particular pH values and N content, suggesting adaptation to specific niches.  相似文献   

11.
The response of soil ammonia-oxidizing bacterial (AOB) and archaeal (AOA) communities to individual environmental variables (e.g., pH, temperature, and carbon- and nitrogen-related soil nutrients) has been extensively studied, but how these environmental conditions collectively shape AOB and AOA distributions in unmanaged agricultural soils across a large latitudinal gradient remains poorly known. In this study, the AOB and AOA community structure and diversity in 26 agricultural soils collected from eastern China were investigated by using quantitative PCR and bar-coded 454 pyrosequencing of the amoA gene that encodes the alpha subunit of ammonia monooxygenase. The sampling locations span over a 17° latitude gradient and cover a range of climatic conditions. The Nitrosospira and Nitrososphaera were the dominant clusters of AOB and AOA, respectively; but the subcluster-level composition of Nitrosospira-related AOB and Nitrososphaera-related AOA varied across the latitudinal gradient. Variance partitioning analysis showed that geography and climatic conditions (e.g., mean annual temperature and precipitation), as well as carbon-/nitrogen-related soil nutrients, contributed more to the AOB and AOA community variations (∼50% in total) than soil pH (∼10% in total). These results are important in furthering our understanding of environmental conditions influencing AOB and AOA community structure across a range of environmental gradients.  相似文献   

12.
Characterization of spatial patterns of functional microbial communities could facilitate the understanding of the relationships between the ecology of microbial communities, the biogeochemical processes they perform and the corresponding ecosystem functions. Because of the important role the ammonia-oxidizing bacteria (AOB) and archaea (AOA) have in nitrogen cycling and nitrate leaching, we explored the spatial distribution of their activity, abundance and community composition across a 44-ha large farm divided into an organic and an integrated farming system. The spatial patterns were mapped by geostatistical modeling and correlations to soil properties and ecosystem functioning in terms of nitrate leaching were determined. All measured community components for both AOB and AOA exhibited spatial patterns at the hectare scale. The patchy patterns of community structures did not reflect the farming systems, but the AOB community was weakly related to differences in soil pH and moisture, whereas the AOA community to differences in soil pH and clay content. Soil properties related differently to the size of the communities, with soil organic carbon and total nitrogen correlating positively to AOB abundance, while clay content and pH showed a negative correlation to AOA abundance. Contrasting spatial patterns were observed for the abundance distributions of the two groups indicating that the AOB and AOA may occupy different niches in agro-ecosystems. In addition, the two communities correlated differently to community and ecosystem functions. Our results suggest that the AOA, not the AOB, were contributing to nitrate leaching at the site by providing substrate for the nitrite oxidizers.  相似文献   

13.
Fan F  Yang Q  Li Z  Wei D  Cui X  Liang Y 《Microbial ecology》2011,62(4):982-990
The microbiology underpinning soil nitrogen cycling in northeast China remains poorly understood. These agricultural systems are typified by widely contrasting temperature, ranging from −40 to 38°C. In a long-term site in this region, the impacts of mineral and organic fertilizer amendments on potential nitrification rate (PNR) were determined. PNR was found to be suppressed by long-term mineral fertilizer treatment but enhanced by manure treatment. The abundance and structure of ammonia-oxidizing bacterial (AOB) and archaeal (AOA) communities were assessed using quantitative polymerase chain reaction and denaturing gradient gel electrophoresis techniques. The abundance of AOA was reduced by all fertilizer treatments, while the opposite response was measured for AOB, leading to a six- to 60-fold reduction in AOA/AOB ratio. The community structure of AOA exhibited little variation across fertilization treatments, whereas the structure of the AOB community was highly responsive. PNR was correlated with community structure of AOB rather than that of AOA. Variation in the community structure of AOB was linked to soil pH, total carbon, and nitrogen contents induced by different long-term fertilization regimes. The results suggest that manure amendment establishes conditions which select for an AOB community type which recovers mineral fertilizer-suppressed soil nitrification.  相似文献   

14.
While microbial nitrogen transformations are sensitive indicators of trace metal toxicity in soils, studies that quantify the impacts of heavy metal pollution in polluted rice soils on microbial communities and their activities remain limited. We examined changes in the abundance, composition and activity of ammonia oxidizing communities in two paddy fields that have been polluted by metal mining and smelting activities for more than three decades. The results showed a shift in the community structure of ammonia oxidizing archaea (AOA) and, to a lesser extent, of ammonia oxidizing bacteria (AOB) under metal pollution in the soils. All the retrieved AOB sequences in this study belonged to the genus Nitrosospira. Among them, the species in Cluster 3 a.1 seemed to be more sensitive to heavy metal pollution. Both AOB abundance and nitrification activity were not affected by heavy metal pollution in the two sites; whereas, AOA abundance increased. Our results suggested an effect of metal pollutants on communities of ammonia oxidizers, the degree of which varied in accordance with the amount of metal pollution. Therefore, it is difficult to quantify the relationship between the AOB/AOA communities and nitrification activity in the polluted soil.  相似文献   

15.
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) in three types of paddy soils of China before and after rice plantation were investigated by using an integrated approach including geochemistry, 454 pyrosequencing, and quantitative polymerase chain reaction (PCR). The abundances of AOA amoA gene were 1~2 orders of magnitude higher than AOB amoA gene. The types of paddy soils had important impacts on the diversities of both AOA and AOB via clay mineralogy (smectite or illite-rich) and bioavailability of ammonium. The Nitrososphaera subcluster 5 and Nitrosopumilis cluster of AOA, and Nitrosomonas subcluster 5 and Nitrosospira subcluster 3 of AOB were well adapted to soils with high ammonium concentrations. AOA and AOB community structures were different before and after rice plantation, likely due to changes of pH and ammonium fertilization. The Nitrosospira subclusters 2 and 9 were well adapted to acidic paddy soils. However, the sensitivity of AOA and AOB community structures to these factors may be complicated by other geochemical conditions. The results of this study collectively demonstrated that multiple environmental factors, such as clay mineralogy, ammonium content and total organic carbon as well as soil pH, shaped AOA and AOB community structure and abundance.  相似文献   

16.
Increasing usage of nitrogen fertilizer for food production has resulted in severely environmental problems of nutrients enrichment. This study aimed to examine the response of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) to a long-term nitrogen fertilization in Tibetan alpine meadow. The abundance and composition of both AOB and AOA were assessed using quantitative real-time PCR, cloning and sequencing techniques based on amoA gene under different fertilization gradient (0, 30, 60, 90, and 120 g m?2 year?1). Our results showed that, abundances of AOA amoA genes (ranging from 1.48 × 109 to 2.00 × 109 copies per gram of dry soil) were significantly higher than those of AOB amoA genes (1.25 × 107 to 2.62 × 108 copies per gram of dry soil) under fertilization scenario. The abundance of AOB amoA genes increased with increasing nitrogen fertilization, whereas fertilization had little effect on AOA abundance. Sequences of clone libraries of the different treatments revealed that AOB communities were dominated by representatives of Cluster 4, constituting 48.94–64.44% in each clone library. Sequences of Clusters 9, 1 and 2 were prevalent in soils under higher fertilization. All archaeal amoA sequences recovered were affiliated with the soil/sediment clade and marine sediment clade, and no significant difference was observed on the community structure among different fertilization treatments. Variations in the AOB community structure and abundance were linked to ammonium-N and soil pH induced by different fertilization treatments. These results showed that the abundance and structure of the AOB community respond to the fertilization gradient, not AOA.  相似文献   

17.
Unraveling elevational diversity patterns of plants and animals has long been attracting scientific interests. However, whether soil microorganisms exhibit similar elevational patterns remains largely less explored, especially for functional microbial communities, such as ammonia oxidizers. Here, we investigated the diversity and distribution pattern of ammonia-oxidizing archaea (AOA) in meadow soils along an elevation gradient from 4400 m to the grassline at 5100 m on the Tibetan Plateau using terminal restriction fragment length polymorphism (T-RFLP) and sequencing methods by targeting amoA gene. Increasing elevations led to lower soil temperature and pH, but higher nutrients and water content. The results showed that AOA diversity and evenness monotonically increased with elevation, while richness was relatively stable. The increase of diversity and evenness was attributed to the growth inhibition of warm-adapted AOA phylotypes by lower temperature and the growth facilitation of cold-adapted AOA phylotypes by richer nutrients at higher elevations. Low temperature thus played an important role in the AOA growth and niche separation. The AOA community variation was explained by the combined effect of all soil properties (32.6%), and 8.1% of the total variation was individually explained by soil pH. The total AOA abundance decreased, whereas soil potential nitrification rate (PNR) increased with increasing elevations. Soil PNR positively correlated with the abundance of cold-adapted AOA phylotypes. Our findings suggest that low temperature plays an important role in AOA elevational diversity pattern and niche separation, rising the negative effects of warming on AOA diversity and soil nitrification process in the Tibetan region.  相似文献   

18.
Microbial communities transform nitrogen (N) compounds, thereby regulating the availability of N in soil. The N cycle is defined by interacting microbial functional groups, as inorganic N‐products formed in one process are the substrate in one or several other processes. The nitrification pathway is often a two‐step process in which bacterial or archaeal communities oxidize ammonia to nitrite, and bacterial communities further oxidize nitrite to nitrate. Little is known about the significance of interactions between ammonia‐oxidizing bacteria (AOB) and archaea (AOA) and nitrite‐oxidizing bacterial communities (NOB) in determining the spatial variation of overall nitrifier community structure. We hypothesize that nonrandom associations exist between different AO and NOB lineages that, along with edaphic factors, shape field‐scale spatial patterns of nitrifying communities. To address this, we sequenced and quantified the abundance of AOA, AOB, and Nitrospira and Nitrobacter NOB communities across a 44‐hectare site with agricultural fields. The abundance of Nitrobacter communities was significantly associated only with AOB abundance, while that of Nitrospira was correlated to AOA. Network analysis and geostatistical modelling revealed distinct modules of co‐occurring AO and NOB groups occupying disparate areas, with each module dominated by different lineages and associated with different edaphic factors. Local communities were characterized by a high proportion of module‐connecting versus module‐hub nodes, indicating that nitrifier assemblages in these soils are shaped by fluctuating conditions. Overall, our results demonstrate the utility of network analysis in accounting for potential biotic interactions that define the niche space of nitrifying communities at scales compatible to soil management.  相似文献   

19.
Ammonia oxidation is performed by both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, the current knowledge of the distribution, diversity, and relative abundance of these two microbial groups in freshwater sediments is insufficient. We examined the spatial distribution and analyzed the possible factors leading to the niche segregation of AOA and AOB in the sediments of the Qiantang River, using clone library construction and quantitative PCR for both archaeal and bacterial amoA genes. pH and NH4+-N content had a significant effect on AOA abundance and AOA operational taxonomy unit (OTU) numbers. pH and organic carbon content influenced the ratio of AOA/AOB OTU numbers significantly. The influence of these factors showed an obvious spatial trend along the Qiantang River. This result suggested that AOA may contribute more than AOB to the upstream reaches of the Qiantang River, where the pH is lower and the organic carbon and NH4+-N contents are higher, but AOB were the principal driver of nitrification downstream, where the opposite environmental conditions were present.  相似文献   

20.
Here, we investigated the patterns of microbial nitrogen cycling communities along a chronosequence of soil development in a salt marsh. The focus was on the abundance and structure of genes involved in N fixation (nifH), bacterial and archaeal ammonium oxidation (amoA; AOB and AOA), and the abundances of genes involved in denitrification (nirS, nirK, nosZ). Potential nitrification and denitrification activities were also measured, and increases in nitrification were found in soils towards the end of succession, whereas denitrification became maximal in soils at the intermediate stages. The nifH, nirK and nirS gene markers revealed increases in the sizes of the respective functional groups towards the intermediate stage (35 years), remaining either constant (for nifH) or slightly declining towards the latest stage of succession (for nirK and nirS). Moreover, whereas the AOB abundance peaked in soils at the intermediate stage, that of AOA increased linearly along the chronosequence. The abundance of nosZ was roughly constant, with no significant regression. The drivers of changes in abundance and structure were identified using path analysis; whereas the ammonia oxidizers (AOA and AOB) showed patterns that followed mainly N availability, those of the nitrogen fixers followed plant diversity and soil structure. The patterns of denitrifiers were group-dependent, following the patterns of plant diversity (nirK and nirS) and belowground shifts (nosZ). The variation observed for the microbial groups associated with the same function highlights their differential contribution at different stages of soil development, revealing an interplay of changes in terms of niche complementarity and adaptation to the local environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号