首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioaugmentation for bioremediation: the challenge of strain selection   总被引:15,自引:0,他引:15  
Despite its long-term use in bioremediation, bioaugmentation of contaminated sites with microbial cells continues to be a source of controversy within environmental microbiology. This largely results from its notoriously unreliable performance record. In this article, we argue that the unpredictable nature of the approach comes from the initial strain selection step. Up until now, this has been dictated by the search for catabolically competent microorganisms, with little or no consideration given to other essential features that are required to be functionally active and persistent in target habitats. We describe how technical advances in molecular biology and analytical chemistry, now enable assessments of the functional diversity and spatial distribution of microbial communities to be made in situ. These advances now enable microbial populations, targeted for exploitation, to be differentiated to the cell level, an advance that is bound to improve microbial selection and exploitation. We argue that this information-based approach is already proving to be more effective than the traditional 'black-box' approach of strain selection. The future perspectives and opportunities for improving selection of effective microbial strains for bioaugmentation are also discussed.  相似文献   

2.
The assessment of microbial diversity and distribution is a major concern in environmental microbiology. There are two general approaches for measuring community diversity: quantitative measures, which use the abundance of each taxon, and qualitative measures, which use only the presence/absence of data. Quantitative measures are ideally suited to revealing community differences that are due to changes in relative taxon abundance (e.g., when a particular set of taxa flourish because a limiting nutrient source becomes abundant). Qualitative measures are most informative when communities differ primarily by what can live in them (e.g., at high temperatures), in part because abundance information can obscure significant patterns of variation in which taxa are present. We illustrate these principles using two 16S rRNA-based surveys of microbial populations and two phylogenetic measures of community beta diversity: unweighted UniFrac, a qualitative measure, and weighted UniFrac, a new quantitative measure, which we have added to the UniFrac website (http://bmf.colorado.edu/unifrac). These studies considered the relative influences of mineral chemistry, temperature, and geography on microbial community composition in acidic thermal springs in Yellowstone National Park and the influences of obesity and kinship on microbial community composition in the mouse gut. We show that applying qualitative and quantitative measures to the same data set can lead to dramatically different conclusions about the main factors that structure microbial diversity and can provide insight into the nature of community differences. We also demonstrate that both weighted and unweighted UniFrac measurements are robust to the methods used to build the underlying phylogeny.  相似文献   

3.
The detection and analysis of nucleic acids extracted from microbial communities are the ultimate ways to determine the diversity and functional capability of microbial communities in the environments. However, it remains a challenge to use molecular techniques for unequivocal determination and quantification of microbial species composition and functional activities. Considerable efforts have been made to enhance the capability of molecular techniques. Here an update of the recent developments in molecular techniques for environmental microbiology is provided.  相似文献   

4.
This report details the outcome the first meeting of the Earth Microbiome Project to discuss sample selection and acquisition. The meeting, held at the Argonne National Laboratory on Wednesday October 6(th) 2010, focused on discussion of how to prioritize environmental samples for sequencing and metagenomic analysis as part of the global effort of the EMP to systematically determine the functional and phylogenetic diversity of microbial communities across the world.  相似文献   

5.
The relationship between biodiversity and biogeochemical processes gained much interest in light of the rapidly decreasing biodiversity worldwide. In this article, we discuss the current status, challenges and prospects of functional concepts to plant litter diversity and microbial decomposer diversity. We also evaluate whether these concepts permit a better understanding of how biodiversity is linked to litter decomposition as a key ecosystem process influencing carbon and nutrient cycles. Based on a literature survey, we show that plant litter and microbial diversity matters for decomposition, but that considering numbers of taxonomic units appears overall as little relevant and less useful than functional diversity. However, despite easily available functional litter traits and the well-established theoretical framework for functional litter diversity, the impact of functional litter diversity on decomposition is not yet well enough explored. Defining functional diversity of microorganisms remains one of the biggest challenges for functional approaches to microbial diversity. Recent developments in microarray and metagenomics technology offer promising possibilities in the assessment of the functional structure of microbial communities. This might allow significant progress in measuring functional microbial diversity and ultimately in our ability to predict consequences of biodiversity loss in the decomposer system for biogeochemical processes.  相似文献   

6.
In the medical, environmental, and biotechnological fields, microbial communities have attracted much attention due to their roles and numerous possible applications. The study of these communities is challenging due to their diversity and complexity. Innovative methods are needed to identify the taxonomic components of individual microbiota, their changes over time, and to determine how microoorganisms interact and function. Metaproteomics is based on the identification and quantification of proteins, and can potentially provide this full picture. Due to the wide molecular panorama and functional insights it provides, metaproteomics is gaining momentum in microbiome and holobiont research. Its full potential should be unleashed in the coming years with progress in speed and cost of analyses. In this exploratory crystal ball exercise, I discuss the technical and conceptual advances in metaproteomics that I expect to drive innovative research over the next few years in microbiology. I also debate the concepts of ‘microbial dark matter’ and ‘Metaproteomics-Assembled Proteomes (MAPs)’ and present some long-term prospects for metaproteomics in clinical diagnostics and personalized medicine, environmental monitoring, agriculture, and biotechnology.  相似文献   

7.
The recent availability of extensive metagenomic sequences from various environmental microbial communities has extended the postgenomic era to the field of environmental microbiology. Although still restricted to a small number of studies, metaproteomic investigations have revealed interesting aspects of functional gene expression within microbial habitats that contain limited microbial diversity. These studies highlight the potential of proteomics for the study of microbial consortia. However, the application of proteomic investigations to complex microbial assemblages such as seawater and soil still presents considerable challenges. Nonetheless, metaproteomics will enhance the understanding of the microbial world and link microbial community composition to function.  相似文献   

8.
Metagenomic analyses: past and future trends   总被引:2,自引:0,他引:2  
  相似文献   

9.
? Below-ground microbial communities influence plant diversity, plant productivity, and plant community composition. Given these strong ecological effects, are interactions with below-ground microbes also important for understanding natural selection on plant traits? ? Here, we manipulated below-ground microbial communities and the soil moisture environment on replicated populations of Brassica rapa to examine how microbial community structure influences selection on plant traits and mediates plant responses to abiotic environmental stress. ? In soils with experimentally simplified microbial communities, plants were smaller, had reduced chlorophyll content, produced fewer flowers, and were less fecund when compared with plant populations grown in association with more complex soil microbial communities. Selection on plant growth and phenological traits also was stronger when plants were grown in simplified, less diverse soil microbial communities, and these effects typically were consistent across soil moisture treatments. ? Our results suggest that microbial community structure affects patterns of natural selection on plant traits. Thus, the below-ground microbial community can influence evolutionary processes, just as recent studies have demonstrated that microbial diversity can influence plant community and ecosystem processes.  相似文献   

10.
Many ecosystem restoration programmes can take over 15 years to achieve ecosystem functioning comparable to that of an unmodified ecosystem, therefore a reliable shorter-term method of assessing and monitoring ecosystem recovery is needed to ensure that recovery is following an appropriate trajectory. Soil microbes respond to environmental change relatively quickly, and shifts in microbial communities can reflect the current status of their environment. As well as potentially acting as ‘indicator communities’, microbes play an integral role in restoring ecosystem functions. On an active opencast mine on New Zealand's West Coast, three main restoration methods are used, differing in cost and restoration effort. They range from most expensive (1) vegetation direct transfer (VDT), to (2) biosolids-amended stockpiles that are spread and replanted, and (3) untreated stockpiles that are spread and replanted. We assessed the impacts of these methods on soil microbial communities by measuring microbial biomass, dehydrogenase activity, community level physiological profile (CLPP) and functional diversity as measured by carbon substrate utilisation, where restored sites were 5 years old or less. These measures were compared to an unmodified reference ecosystem in the same location. Microbial activity and biomass were highest in pristine habitats, followed by VDT and biosolids-amended soils, then untreated stockpile soil. When compared to all other treatments untreated stockpiled soils had significantly different CLPPs and significantly reduced microbial biomass and activity; microbial biomass was an order of magnitude lower than in pristine soils. Functional diversity and richness did not differ between pristine, VDT and biosolids-amended soils, but were higher than in untreated stockpiled soils. CLPPs did not differ between pristine habitat soil and VDT soil but biosolids-amended and untreated stockpiled soils were significantly different to pristine soil. This study has shown that soil microbial communities are a valuable tool to assess restoration progress, and that ecosystem restoration can begin in a relatively short time following investment in appropriate restoration strategy, ultimately benefiting recolonisation by plants and animals.  相似文献   

11.
Functional gene arrays (FGAs) have been considered as a specific, sensitive, quantitative, and high throughput metagenomic tool to detect, monitor and characterize microbial communities. Especially GeoChips, the most comprehensive FGAs have been applied to analyze the functional diversity, composition, structure, and metabolic potential or activity of a variety of microbial communities from different habitats, such as aquatic ecosystems, soils, contaminated sites, extreme environments, and bioreactors. FGAs are able to address fundamental questions related to global change, bioremediation, land use, human health, and ecological theories, and link the microbial community structure to environmental properties and ecosystem functioning. This review focuses on applications of FGA technology for profiling microbial communities, including target preparation, hybridization and data processing, and data analysis. We also discuss challenges and future directions of FGA applications.  相似文献   

12.
Wagner M  Smidt H  Loy A  Zhou J 《Microbial ecology》2007,53(3):498-506
High-throughput technologies are urgently needed for monitoring the formidable biodiversity and functional capabilities of microorganisms in the environment. Ten years ago, DNA microarrays, miniaturized platforms for highly parallel hybridization reactions, found their way into environmental microbiology and raised great expectations among researchers in the field. In this article, we briefly summarize the state-of-the-art of microarray approaches in microbial ecology research and discuss in more detail crucial problems and promising solutions. Finally, we outline scenarios for an innovative combination of microarrays with other molecular tools for structure-function analysis of complex microbial communities.  相似文献   

13.
Scaling up: the next challenge in environmental microbiology   总被引:1,自引:0,他引:1  
Great strides have recently been made in identifying and characterizing the staggering diversity of microorganisms conducting primary and secondary production, nutrient transformation and mineralization processes that underlie ecosystem and regional biogeochemical, trophodynamic and ecological change. We are now faced with the challenge of assigning and coupling function to structure in highly complex and interactive microbial communities mediating such change. Previous and ongoing ecophysiological work has shown that microbial processes controlled by environmental variables and limiting resources are highly specific in terms of what, when, where and why they are active, not to mention how they impact ecosystem dynamics. As such, it is imperative that we assess the activities and roles of key microbial 'players' along the appropriate environmental scales and gradients catalysing ecological change. Here, we discuss conceptual and technical challenges for some key microbially mediated environmental processes, problems and extremes that require synthesizing our growing knowledge of microbial community structure with emerging knowledge of function in aquatic ecosystems. We emphasize the importance of assessing ecological change over a range of relevant time scales that vary from minutes to millennia and spatial scales that range from microscale aggregates to ocean basins.  相似文献   

14.
Species enter and persist in local communities because of their ecological fit to local conditions, and recently, ecologists have moved from measuring diversity as species richness and evenness, to using measures that reflect species ecological differences. There are two principal approaches for quantifying species ecological differences: functional (trait‐based) and phylogenetic pairwise distances between species. Both approaches have produced new ecological insights, yet at the same time methodological issues and assumptions limit them. Traits and phylogeny may provide different, and perhaps complementary, information about species' differences. To adequately test assembly hypotheses, a framework integrating the information provided by traits and phylogenies is required. We propose an intuitive measure for combining functional and phylogenetic pairwise distances, which provides a useful way to assess how functional and phylogenetic distances contribute to understanding patterns of community assembly. Here, we show that both traits and phylogeny inform community assembly patterns in alpine plant communities across an elevation gradient, because they represent complementary information. Differences in historical selection pressures have produced variation in the strength of the trait‐phylogeny correlation, and as such, integrating traits and phylogeny can enhance the ability to detect assembly patterns across habitats or environmental gradients.  相似文献   

15.
In this review, we present a conceptual model which links plant communities and saprotrophic microbial communities through the reciprocal exchange of growth-limiting resources. We discuss the numerous ways human-induced environmental change has directly and indirectly impacted this relationship, and review microbial responses that have occurred to date. We argue that compositional shifts in saprotrophic microbial communities underlie functional responses to environmental change that have ecosystem-level implications. Drawing on a long-term, large-scale, field experiment, we illustrate how and why chronic atmospheric N deposition can alter saprotrophic communities in the soil of a wide-spread sugar maple (Acer saccharum) ecosystem in northeastern North America, resulting in the slowing of plant litter decay, the rapid accumulation of soil organic matter, and the accelerated production and loss of dissolved organic carbon (DOC). Compositional shifts in soil microbial communities, mediated by ecological interactions among soil saprotrophs, appear to lie at the biogeochemical heart of ecosystem response to environmental change.  相似文献   

16.
The metacommunity concept, describing how local and regional scale processes interact to structure communities, has been successfully applied to patterns of taxonomic diversity. Functional diversity has proved useful for understanding local scale processes, but has less often been applied to understanding regional scale processes. Here, we explore functional diversity patterns within a metacommunity context to help elucidate how local and regional scale processes influence community assembly. We detail how each of the four metacommunity perspectives (species sorting, mass effects, patch dynamics, neutral) predict different patterns of functional beta‐ and alpha‐diversity and spatial structure along two key gradients: dispersal limitation and environmental conditions. We then apply this conceptual model to a case study from alpine tundra plant communities. We sampled species composition in 17 ‘sky islands’ of alpine tundra in the Colorado Rocky Mountains, USA that differed in geographic isolation and area (key factors related to dispersal limitation) and temperature and elevation (key environmental factors). We quantified functional diversity in each site based on specific leaf area, leaf area, stomatal conductance, plant height and chlorophyll content. We found that colder high elevation sites were functionally more similar to each other (decreased functional beta‐diversity) and had lower functional alpha‐diversity. Geographic isolation and area did not influence functional beta‐ or alpha‐diversity. These results suggest a strong role for environmental conditions structuring alpine plant communities, patterns consistent with the species sorting metacommunity perspective. Incorporating functional diversity into metacommunity theory can help elucidate how local and regional factors structure communities and provide a framework for observationally examining the role of metacommunity dynamics in systems where experimental approaches are less tractable.  相似文献   

17.
The ability to detect specific functions of uncultured microbial cells in complex natural communities remains one of the most difficult tasks of environmental microbiology. Here we present respiration response imaging (RRI) as a novel fluorescence microscopy-based approach for the identification of microbial function, such as the ability to use C(1) substrates, at a single-cell level. We demonstrate that RRI could be used for the investigation of heterogeneity of a single microbial population or for functional profiling of microbial cells from complex environmental communities, such as freshwater lake sediment.  相似文献   

18.
Biodegradation of anthropogenic pollutants in shallow aquifers is an important microbial ecosystem service which is mainly brought about by indigenous anaerobic microorganisms. For the management of contaminated sites, risk assessment and control of natural attenuation, the assessment of in situ biodegradation and the underlying microbial processes is essential. The development of novel molecular methods, “omics” approaches, and high-throughput techniques has revealed new insight into complex microbial communities and their functions in anoxic environmental systems. This review summarizes recent advances in the application of molecular methods to study anaerobic microbial communities in contaminated terrestrial subsurface ecosystems. We focus on current approaches to analyze composition, dynamics, and functional diversity of subsurface communities, to link identity to activity and metabolic function, and to identify the ecophysiological role of not yet cultured microbes and syntrophic consortia. We discuss recent molecular surveys of contaminated sites from an ecological viewpoint regarding degrader ecotypes, abiotic factors shaping anaerobic communities, and biotic interactions underpinning the importance of microbial cooperation for microbial ecosystem services such as contaminant degradation.  相似文献   

19.
Pakeman RJ  Lennon JJ  Brooker RW 《Oecologia》2011,167(1):209-218
Understanding how communities assemble is a key challenge in ecology. Conflicting hypotheses suggest that plant traits within communities should show divergence to reflect strategies to reduce competition or convergence to reflect strong selection for the environmental conditions operating. Further hypotheses suggest that plant traits related to productivity show convergence within communities, but those related to disturbance show divergence. Data on functional diversity (FDvar) of 12 traits from 30 communities ranging from arable fields, mown and grazed grasslands to moorland and woodland were employed to test this using randomisations tests and correlation and regression analysis. No traits showed consistent significant convergence or divergence in functional diversity. When correlated to measures of the environment, the most common pattern was for functional diversity to decline (7 out of 12 traits) and the degree of convergence (7 out of 12 traits) to increase as the levels of productivity (measured as primary productivity, soil nitrogen release and vegetation C:N) and disturbance increased. Convergence or a relationship between functional diversity and the environment was not seen for a number of important traits, such as LDMC and SLA, which are considered as key predictors of ecosystem function. The analysis indicates that taking into account functional diversity within a system may be a necessary part of predicting the relationship between plant traits and ecosystem function, and that this may be of particular importance within less productive and less disturbed systems.  相似文献   

20.
Recent interest in microbial diversity has led to increased emphasis on the development of appropriate techniques. Structural diversity encompasses the number and distribution of separate or interacting biological entities responsible for a given function within the overall set of functions of a community. This study evaluated an approach for estimating the relative degree of structural diversity in heterotrophic microbial communities by dilution to extinction of community phenotypic traits. Serial dilutions of environmental samples (rhizosphere, stream) were tested for community phenotypic traits (i.e. carbon source respiration). The non-linear relationship between the number of positive responses (i.e. functional richness or R) and inoculum density in each sample dilution (I) fit the simple rectangular hyperbola model, allowing estimation of the maximal richness (R(max)) and the inoculum density at half-maximal richness (K(I)). The later term appears to be useful in assessing relative structural diversity as evidenced by significantly higher values for communities with higher predicted species diversity. The examination of community functional characteristics across a series of dilutions, particularly in conjunction with other techniques, may be a useful approach for the study of microbial diversity and related ecological parameters such as niche width and metabolic redundancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号