首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Nonlinear amplification of gene expression of master regulators is essential for cellular differentiation. Here we investigated determinants that control the kinetics of the genetic switching process from the vegetative state (B-state) to the competent state (K-state) of Bacillus subtilis, explicitly including the switching window which controls the probability for competence initiation in a cell population. For individual cells, we found that after initiation of switching, the levels of the master regulator [ComK](t) increased with sigmoid shape and saturation occurred at two distinct levels of [ComK]. We analyzed the switching kinetics into the state with highest [ComK] and found saturation after a switching period of length 1.4 ± 0.3 h. The duration of the switching period was robust against variations in the gene regulatory network of the master regulator, whereas the saturation levels showed large variations between individual isogenic cells. We developed a nonlinear dynamics model, taking into account low-number stochastic effects. The model quantitatively describes the probability and timescale of switching at the single cell level and explains why the ComK level in the K-state is highly sensitive to extrinsic parameter variations. Furthermore, the model predicts a transition from stochastic to deterministic switching at increased production rates of ComK in agreement with experimental data.  相似文献   

8.
9.
10.
11.
Rok, a Bacillus subtilis nucleoid-associated protein (NAP), negatively regulates competence development and silences xenogeneic genes. We show that rok inactivation increases rpoB482 natural intraspecies chromosomal transformation (CT) and plasmid transformation to a different extent. In ΔaddAB, ΔrecO, recF15, ΔrecU, ΔruvAB or rec+ cells intraspecies CT significantly increases, but the ΔrecD2 mutation reduces, and the ΔrecX, ΔradA or ΔdprA mutation further decreases CT in the Δrok context when compared to rok+ cells. These observations support the idea that rok inactivation, by altering the topology of the recipient DNA, differentially affects the integration of homologous DNA in rec-deficient strains, and in minor extent the competent subpopulation size. The impairment of other NAP (Hbsu or LrpC) also increased intra- and interspecies CT (nonself-DNA, ~8% nucleotide sequence divergence) in rec+ cells, but differentially reduced both types of CTs in certain rec-deficient strains. We describe that rok inactivation significantly stimulates intra and interspecies CT but differentially reduces them in transformation-deficient cells, perhaps by altering the nucleoid architecture. We extend the observation to other NAPs (Hbsu, LrpC).  相似文献   

12.
13.
14.
Natural competence is the ability of certain microbes to take up exogenous DNA from the environment and integrate it in their genome. Competence development has been described for a variety of bacteria, but has so far not been shown to occur in Bacillus cereus. However, orthologues of most proteins involved in natural DNA uptake in Bacillus subtilis could be identified in B. cereus. Here, we report that B. cereus ATCC14579 can become naturally competent. When expressing the B. subtilis ComK protein using an IPTG‐inducible system in B. cereus ATCC14579, cells grown in minimal medium displayed natural competence, as either genomic DNA or plasmid DNA was shown to be taken up by the cells and integrated into the genome or stably maintained respectively. This work proves that a sufficient structural system for DNA uptake exists in B. cereus. Bacillus cereus can be employed as a model system to investigate the mechanism of DNA uptake in related bacteria such as Bacillus anthracis and Bacillus thuringiensis. Moreover, natural competence provides an important tool for biotechnology, as it will allow more efficient transformation of B. cereus and related organisms, e.g. to knockout genes in a high‐throughput way.  相似文献   

15.
16.
Cumulus cells (CCs) have an important role during oocyte growth, competence acquisition, maturation, ovulation and fertilization. In an attempt to isolate potential biomarkers for bovine in vitro fertilization, we identified genes differentially expressed in bovine CCs from oocytes with different competence statuses, through microarray analysis. The model of follicle size, in which competent cumulus–oocyte complexes (COCs) were recovered from bigger follicles (≥8.0 mm in diameter) and less competent ones from smaller follicles (1–3 mm), was used. We identified 4178 genes that were differentially expressed (< 0.05) in the two categories of CCs. The list was further enriched, through the use of a 2.5‐fold change in gene expression as a cutoff value, to include 143 up‐regulated and 80 down‐regulated genes in CCs of competent COCs compared to incompetent COCs. These genes were screened according to their cellular roles, most of which were related to cell cycle, DNA repair, energy metabolism, metabolism of amino acids, cell signaling, meiosis, ovulation and inflammation. Three candidate genes up‐regulated (FGF11, IGFBP4, SPRY1) and three down‐regulated (ARHGAP22, COL18A1 and GPC4) in CCs from COCs of big follicles (≥8.1 mm) were selected for qPCR analysis. The selected genes showed the same expression patterns by qPCR and microarray analysis. These genes may be potential genetic markers that predict oocyte competence in in vitro fertilization routines.  相似文献   

17.
Summary Sporulation and competent cell formation have been studied in four Bacillus subtilis strains, carrying septum-initiation mutations of different loci, div-31, div-341, div-12 and div-355 which exhibit filamentous growth at 45° C. The div-31 mutant was found to be defective in competence development at 30°–40°C whereas the div-12 mutant was affected only slightly. The div-341 and div-355 mutants showed lower competence, particularly at the higher temperatures. The four div mutant strains all showed poor sporulation at higher temperatures compared to the wild-type strain. We propose that some of the initial steps of septation are involved both in sporulation (possibly in forespore septum formation) and in competent cell formation and that these two processes share certain common features distinct from those in vegetative cell division.  相似文献   

18.
19.
Bacillus subtilis flagella are not only required for locomotion but also act as sensors that monitor environmental changes. Although how the signal transmission takes place is poorly understood, it has been shown that flagella play an important role in surface sensing by transmitting a mechanical signal to control the DegS‐DegU two‐component system. Here we report a role for flagella in the regulation of the K‐state, which enables transformability and antibiotic tolerance (persistence). Mutations impairing flagellar synthesis are inferred to increase DegU‐P, which inhibits the expression of ComK, the master regulator for the K‐state, and reduces transformability. Tellingly, both deletion of the flagellin gene and straight filament (hagA233V) mutations increased DegU phosphorylation despite the fact that both mutants had wild type numbers of basal bodies and the flagellar motors were functional. We propose that higher viscous loads on flagellar motors result in lower DegU‐P levels through an unknown signaling mechanism. This flagellar‐load based mechanism ensures that cells in the motile subpopulation have a tenfold enhanced likelihood of entering the K‐state and taking up DNA from the environment. Further, our results suggest that the developmental states of motility and competence are related and most commonly occur in the same epigenetic cell type.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号